1
|
Soliman MM, Elshehawei AM, Althobaiti S, Sayed SM. Protective impacts of Withania somnifera leaf extract from Taif area against diclofenac induced hepato-renal toxicity: role of antioxidants, inflammation, apoptosis, and anti-oxidative stress biomarkers. Toxicol Res (Camb) 2023; 12:685-692. [PMID: 37663806 PMCID: PMC10470349 DOI: 10.1093/toxres/tfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Current study examined the boosting impacts of Withania somnifera leaf extract from Taif area (high-altitude area) against hepatic and renal toxicity induced by diclofenac in experimental rats. Withania is highly grown on Taif area as environmental herb with multiple functions. Diclofenac is non-steroidal medication used for treatment of pain but over dose has severe side effects. Thirty-two adult Wistar rats of male type were subdivided into 4 groups. The control rats (group 1) received saline. Second group received diclofenac (50 mg/kg BW intraperitoneally) at days 4 and 5. Third group received W. somnifera leaf extract (250 mg /kg body weight) for 6 days. The fourth protective group, received W. somnifera leaf extract plus diclofenac for 6 days as shown in groups 2 and 3. Diclofenac significantly increased serum AST, ALT, and decreased albumin and total proteins levels. It also increased serum concentrations of uric acid and creatinine. In addition, it increased lipid peroxidation, and decreased reduced glutathione and superoxide dismutase levels. Diclofenac increased inflammatory cytokines secretion and up-regulated hepatic oxidative stress genes (HO-1; hemoxygenase-1 and Nrf2nuclear factor erythroid 2-related factor 2 (Nrf2) and renal inflammatory transcriptional markers (TGF-β1; transforming growth factor-beta1 and COX-2; cycloxygenas-2). In parallel, hepatic caspase-3 expression was up-regulated as an apoptotic marker, while Bcl2; (B-cell lymphoma 2) mRNA expression was down regulated as anti-apoptotic marker. W. somnifera pre-administration in the protective group ameliorated the altered parameters induced by diclofenac. In conclusion, W. somnifera leaf extract has the potential to antagonize side effects of diclofenac by regulating the pathways of oxidative stress, inflammation, and apoptosis/antiapoptosis.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M Elshehawei
- Department of Bitechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saed Althobaiti
- Biology Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy M Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
2
|
Sayed AEDH, Hamed M, El-Sayed AAA, Nunes B, Soliman HAM. The mitigating effect of Spirulina (Arthrospira platensis) on the hemotoxicity of gibberellic acid on juvenile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25701-25711. [PMID: 36346524 PMCID: PMC9995583 DOI: 10.1007/s11356-022-23844-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The use of plant growth regulators has led to environmental contamination of water bodies that occur adjacent to agricultural areas. Some of these chemicals are bioactive, not only to plants, but also to non-target exposed biota, namely of the aquatic compartment. Previous work demonstrated the establishment of hepato- and nephrotoxic effects in juvenile tilapia (Oreochromis niloticus) exposed via aquatic media to gibberellic acid (GA3), which is among the most used plant growth regulators, in agricultural practices. Here, we investigated the effect of GA3 on hematological indices, poikilocytosis, nuclear abnormalities, and genotoxic indices measured in Nile tilapia (Oreochromis niloticus), as well as the putative protective effects of dietary supplementation of Spirulina (Arthrospira platensis). Fish were evenly assorted into 5 groups: group I served as a control, and groups II-V were fed diets supplemented with Spirulina at rates of 0 g/kg, 5 g/kg, 20 g/kg, and 100 g/kg, respectively, for 2 months before being exposed to 150 mg/L GA3. The results revealed that GA3 exposure decreased significantly all hematological indices (P < 0.05), except leucocytes and mean corpuscular hemoglobin concentration (MCHC), compared to the control group (P > 0.05). GA3 exposure increased significantly the percentage of nuclear abnormalities, altered erythrocytes and the percentages of tail DNA, compared to the control group (P < 0.05). Spirulina supplementation restored the hematological, poikilocytosis, nuclear abnormalities, and the percentages of tail DNA to near normal levels. The 100 g/kg SP treatment was the most effective in attaining such effect, showing concentration-dependency. The present study reinforces our findings of the toxicity of GA3 on O. niloticus and suggests that the addition of Spirulina to fish diet can mitigate the hemotoxic effects of GA3.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Mohamed Hamed
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Abdelaziz A A El-Sayed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Zoology Department, Faculty of Science, Islamic University of Madinah, Medina, 42238, Saudi Arabia
| | - Bruno Nunes
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Hamdy A M Soliman
- Zoology Department, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| |
Collapse
|
3
|
Soliman MM, Aldhahrani A, Ghamry HI, Albogami S, Youssef GBA, Kesba H, Shukry M. Chrysin abrogates gibberellic acid-induced testicular oxidative stress and dysfunction via the regulation of antioxidants and steroidogenesis- and apoptosis-associated genes. J Food Biochem 2022; 46:e14165. [PMID: 35383962 DOI: 10.1111/jfbc.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022]
Abstract
GA3 is widely used as a growth stimulant in agricultural regions. The long-term use of GA3 can cause organs damage. Chrysin is a flavonoid found in nature that is commonly used to treat organ toxicity. In this study, we examined the effect of chrysin on the testes function of GA3-affected rats. A total of 24 male Wistar rats were divided into 4 groups. Saline was given to the control group. The chrysin group was given orally 50 mg/kg/BW of chrysin in saline. The GA3 group received a daily oral gavage of GA3 (55 mg/kg/BW). The protective group (chrysin + GA3) was given chrysin and GA3 as those described in chrysin and GA3 groups. There were an increase in MDA levels in the serum and testicular tissue of GA3-treated group. Catalase, GSH, and SOD levels were all lowered in the GA3-treated rats. Chrysin dramatically reduced the harmful effects of GA3 by restoring reproductive hormone levels, altered sperm parameters, and antioxidant capabilities. Furthermore, GA3 reduced the quantitative expression of steroidogenesis genes StAR and 3-HSD, as well as Bcl2 genes, while it increased the apoptotic marker BAX; all were alleviated by the pre-administration of chrysin. The pre-administration of chrysin protected the GA3 group from spermatogenic vacuolation, interstitial edema, necrosis, and depletion. Chrysin inhibited oxidative stress and modulated antioxidant activity, as well as apoptosis-/anti-apoptosis-related mediators in the testes. Chrysin has the potential to repair GA3-induced testicular dysfunctions. This suggests that chrysin is preferable as a medication to mitigate GA3-induced oxidative damage in the testes. PRACTICAL APPLICATIONS: Chrysin has the potential to repair GA3-induced testicular dysfunctions. This suggests that chrysin is preferable as a medication to mitigate GA3-induced oxidative damage in the testes.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Heba I Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, Abha, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Gehan B A Youssef
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Hosny Kesba
- Zoology and Agricultural Nematology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
4
|
Soliman MM, Aldhahrani A, Gaber A, Alsanie WF, Mohamed WA, Metwally MMM, Elbadawy M, Shukry M. Ameliorative impacts of chrysin against gibberellic acid-induced liver and kidney damage through the regulation of antioxidants, oxidative stress, inflammatory cytokines, and apoptosis biomarkers. Toxicol Res (Camb) 2022; 11:235-244. [PMID: 35237428 PMCID: PMC8882807 DOI: 10.1093/toxres/tfac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 02/05/2023] Open
Abstract
Gibberellic acid (GA3), a widely known plant growth regulator, has been mostly used in agriculture. Little is known regarding its toxicity or the impact of its metabolic mechanism on human health. The current study examined the protective impact of chrysin against GA3-induced liver and kidney dysfunctions at biochemical, molecular, and histopathological levels. Forty male albino rats were allocated into 4 groups. The control group received saline; the chrysin group received 50 mg/kg/BW orally daily for 4 weeks; the GA3 group received 55 mg/kg/BW GA3 via daily oral gavage for 4 weeks, and the protective group (chrysin + GA3) was administered both chrysin and GA3 at the same dosage given in chrysin and GA3 groups. Chrysin was administered 1 h earlier than GA3. The GA3 induced liver and kidney injuries as proven by the elevation of hepatic and renal markers with a significant increase in malondialdehyde levels. Furthermore, a decrease of catalase and glutathione was reported in the GA3-administered rats. Pre-administration of chrysin significantly protected the hepatorenal tissue against the deleterious effects of GA3. Chrysin restored the hepatorenal functions and their antioxidant ability to normal levels. Moreover, chrysin modulated the hepatorenal toxic effects of GA3 at the molecular level via the upregulation of the antiapoptotic genes, interleukin-10 (IL-10), hemoxygenase-1, and nuclear factor erythroid 2-related factor 2 expressions; the downregulation of the kidney injury molecule-1 and caspase-3 mRNA expressions; and a decrease in IL-1β and tumor necrosis factor-α secretions. Additionally, the pre-administration of chrysin effectively attenuated the GA3-induced hepatorenal histopathological changes by regulating the immunoexpression of cytochrome P450 2E1 (CYP2E1) and pregnane X receptor, resulting in normal values at the cellular level. In conclusion, chrysin attenuated GA3-induced oxidative hepatorenal injury by inhibiting free-radical production and cytokine expression as well as by modulating the antioxidant, apoptotic, and antiapoptotic activities. Chrysin is a potent hepatorenal protective agent to antagonize oxidative stress induced by GA3.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995 Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995 Saudi Arabia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Center of Biomedical Sciences Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Walaa F Alsanie
- Center of Biomedical Sciences Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafaa Abdou Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalioubiya 13736, Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Elsheikh, P.O.Box 33516, Egypt
| |
Collapse
|
5
|
Soliman MM, Gaber A, Alsanie WF, Mohamed WA, Metwally MMM, Abdelhadi AA, Elbadawy M, Shukry M. Gibberellic acid-induced hepatorenal dysfunction and oxidative stress: Mitigation by quercetin through modulation of antioxidant, anti-inflammatory, and antiapoptotic activities. J Food Biochem 2022; 46:e14069. [PMID: 34984688 DOI: 10.1111/jfbc.14069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
The plant growth regulator gibberellic acid (GA3) is widely used in agriculture in many countries. However, little is known about its danger to human health or its physiologic and biochemical pathways. Our study examined the effect of GA3 on liver and kidney function and the effect of quercetin on the hepatorenal toxicity induced by GA3 in four groups of male albino rats. For 4 weeks, the control group (CNT) received saline, the quercetin group (QR) received daily intraperitoneal injections of quercetin (50 mg/kg/BW) dissolved in saline, the gibberellic acid group (GA3) received GA3 (55 mg/kg/BW) via oral gavage, and the protective group (QR) was injected with quercetin and gavaged with GA3 in the same doses used in the QR and GA3 groups (50 mg/kg/BW +GA3 and 55 mg/kg/BW). GA3 induced liver and kidney injury, as shown by elevated serum glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and gamma-glutamyl transferase (GPT, GOT, and GGT) as well as increased levels of creatinine, urea, and uric acid. Hepatorenal toxicity was demonstrated by a significant increase in levels of serum and tissue malondialdehyde (MDA) and decreased antioxidant enzyme activity, such as catalase (CAT) and superoxide dismutase (SOD), accompanied by a subsequent decrease in glutathione peroxidase (GPx) levels in liver and kidney tissue of GA3-treated rats. Administration of quercetin (QR) significantly protected hepatorenal tissue against the toxic effect of GA3 through normalization of the hepatic and renal function markers. It also retrieved the antioxidant ability by modulating the hepatorenal toxic effect at the molecular level through upregulation of antiapoptotic genes and downregulation of transforming growth factor-β1 (TFG-β1), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB). Impairment of liver and kidney function was confirmed by histologic and immunohistochemical analyses. Pretreatment with quercetin was effective at attenuating histopathologic changes in hepatic and renal tissues by regulating the immunoexpression of caspase-3 and Bcl-2 to return them to more normal values. PRACTICAL APPLICATIONS: The confirmed hepatorenal dysfunction caused by GA3 was ameliorated by quercetin administration. Moreover, quercetin demonstrated the potential to reverse hepatorenal dysfunction by regulating inflammatory and antioxidant properties, inhibiting the production of free radicals and inflammation-associated cytokines, and modulating antioxidants and antiapoptotic activity.
Collapse
Affiliation(s)
- Mohamed M Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Center of Biomedical Sciences Research, Taif University, Taif, Saudi Arabia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif, Saudi Arabia
| | - Wafaa A Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
6
|
Sayed AEDH, AbdAllah EA, Hamed M, Soliman HAM. Hepato-nephrotoxicity in late juvenile of Oreochromis niloticus exposed to gibberellic acid: Ameliorative effect of Spirulina platensis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104600. [PMID: 32527444 DOI: 10.1016/j.pestbp.2020.104600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
The current work intended to inspect the hepato-nephrotoxicity of gibberellic acid (GA3) in juvenile of Oreochromis niloticus as well as the possibility of restoration after dietary addition of different concentrations of Spirulina platensis (SP). Fishes were evenly assorted into five groups: Group I assigned as control, Group II fed on basal diet and exposed to 150 mg/L gibberellic acid (GA3). The 3rd, 4th, and 5th groups exposed to150 mg/L gibberellic acid (GA3) and previously fed for two months on SP supplemented diets at levels of 5, 20, and 100 g/kg, respectively. Fish serum were utilized to check glucose, total protein, hepatic and renal functions, enzymatic and non-enzymatic antioxidants activities (superoxide dismautase; SOD, catalase; CAT, and total antioxidant capacity; TAC) as well as histopathological alterations in liver and kidney. The results showed that creatinine, uric acid, liver enzymes, glucose, total protein, SOD, and CAT were significantly elevated in GA3-treated group. Liver of GA3-treated fish manifested some histopathological changes (hypertrophy, cytoplasmic vacuolization, and apoptotic cells with pyknotic nuclei, necrosis, dilated blood sinusoids, and lymphocytic aggregation around the central veins). Kidney of GA3-exposed fish revealed edema of the epithelium lining of some renal tubules and some showed vacuolar degeneration and dissociation. Hypertrophy in the glomerulus was observed with dilated blood capillaries. SP supplementation restored these biochemical, antioxidants, and histological changes near to control levels. This improvement was higher with 100 g/kg SP showing concentration dependency. According to this study we can conclude that SP supplementation can improve the hepato- and nephrotoxicity caused by GA3 exposure indicating its role as potent antioxidant food additive.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | - Elham A AbdAllah
- Zoology Department, Faculty of Science, New Valley University,72511 New Valley, Egypt
| | - Mohamed Hamed
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch, 71524 Assiut, Egypt
| | - Hamdy A M Soliman
- Zoology Department, Faculty of Science, Sohag University, 8562 Sohag, Egypt
| |
Collapse
|
7
|
Guo Y, Wang W, Chen Y, Sun Y, Li Y, Guan F, Shen Q, Guo Y, Zhang W. Continuous gibberellin A3 exposure from weaning to sexual maturity induces ovarian granulosa cell apoptosis by activating Fas-mediated death receptor signaling pathways and changing methylation patterns on caspase-3 gene promoters. Toxicol Lett 2020; 319:175-186. [PMID: 31733319 DOI: 10.1016/j.toxlet.2019.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
Abstract
Information on the effects of gibberellic acid (gibberellin A3, GA3) on ovarian follicle development is limited. In our present study, 21-day-old female Wistar rats were exposed to GA3 by gavage (25, 50, and 100 mg/kg body weight, once per day) for eight weeks to evaluate the influence of GA3 on ovarian follicle development. After treatment, significant (P < 0.05) increases (to 40.17 % and 44.5 %, respectively) in atretic follicle proportions and significant decreases (to 19.49 % and 17.86 %, respectively) in corpus luteum proportions were observed in the 50 and 100 mg/kg treatment groups compared to the control group. Significant (P < 0.05) increases (to 31.3 % and 42.0 %, respectively) in follicle apoptosis were observed in the 50 and 100 mg/kg treatment groups by transmission electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Significantly increased expression of caspase-3, caspase-8, caspase-9 and Fas was observed by real-time PCR and Western blotting. Bisulfite sequencing PCR (BSP) revealed obviously decreased total methylation percentages of the caspase-3 promoter region in the two treatment groups. Real-time quantitative PCR also showed significantly decreased mRNA expression of DNA methyltransferase (Dnmt) 3a and Dnmt3b. Further in vitro studies showed that a DNA methylation inhibitor could enhance the GA3-induced increase in the mRNA expression of caspase-3. Overall, our present study indicates that GA3 administration from weaning until sexual maturity can affect ovarian follicle development by inducing apoptosis and suggests that signaling through the Fas-mediated apoptotic pathway may be an important underlying mechanism of this apoptosis. In addition, GA3-induced aberrant DNA methylation patterns might be partly responsible for upregulation of caspase-3 gene expression.
Collapse
Affiliation(s)
- Yiwei Guo
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yiqin Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Sun
- Center for Reproductive Medicine, Teaching Hospital of Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Yuchen Li
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Fangyuan Guan
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Qi Shen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yiruo Guo
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenchang Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Tousson E, El-Atrsh A, Mansour M, Abdallah A. Modulatory effects of Saussurea lappa root aqueous extract against ethephon-induced kidney toxicity in male rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:1277-1284. [PMID: 31392797 DOI: 10.1002/tox.22828] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Ethephon (2-chloroethyl phosphonic acid) is a plant growth promoter used to control the plant growth process by liberating ethylene and stimulating the production of endogenous ethylene. Medicinal plants are sources of novel drug discovery targets. Costus (Saussurea lappa) has been used as traditional Chinese medicine. The current study was conducted to examine the possible modifying effects of costus (S. lappa) root aqueous extract against kidney toxicity induced by ethephon in male rats. A total of 50 adult male rats were divided into five groups (first, control; second, costus; third, ethephon; fourth, posttreated ethephon with costus; fifth, ethephon self-healing). There is a significant increase in the serum levels of urea, creatinine, potassium ions, chloride ions, kidney injury, DNA damage, and proliferating cell nuclear antigen expressions in treated rats with ethephon when compared to the control group. In contrast, the treated rats with ethephon revealed a significant decrease in the levels of sodium ions and an insignificant decrease in the calcium ions. Saussurea lappa extract modified these alterations when compared to the control group. As a result, costus root extract significantly reduced rat kidney toxicity after ethephon administration. We recommend costus to be included in diet for its valuable effects, and also producers and consumers should become more aware about the toxic effects of ethephon.
Collapse
Affiliation(s)
- Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Gharbia, Egypt
| | - Afaf El-Atrsh
- Zoology Department, Faculty of Science, Tanta University, Tanta, Gharbia, Egypt
| | - Merfaat Mansour
- Zoology Department, Faculty of Science, Tanta University, Tanta, Gharbia, Egypt
| | - Assem Abdallah
- Zoology Department, Faculty of Science, Tanta University, Tanta, Gharbia, Egypt
| |
Collapse
|
9
|
Khalaf HA, Arafat EA, Ghoneim FM. A histological, immunohistochemical and biochemical study of the effects of pomegranate peel extracts on gibberellic acid induced oxidative stress in adult rat testes. Biotech Histochem 2019; 94:569-582. [DOI: 10.1080/10520295.2019.1602884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- H. A. Khalaf
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Al Mansurah, Egypt
| | - E. A. Arafat
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Al Mansurah, Egypt
| | - F. M. Ghoneim
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Al Mansurah, Egypt
| |
Collapse
|
10
|
Xu CS, Zhou Y, Jiang Z, Wang LE, Huang JJ, Zhang TY, Zhao Y, Shen W, Zou SH, Zang LL. The in vitro effects of gibberellin on human sperm motility. Aging (Albany NY) 2019; 11:3080-3093. [PMID: 31118311 PMCID: PMC6555458 DOI: 10.18632/aging.101963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
Abstract
Gibberellin, a plant growth regulator, is widely used to increase the shelf life and quality of fruits and vegetables. In this study, human semen samples were exposed to different concentrations of gibberellin, which reduced spermatozoa motility in vitro. Gibberellin exposure also increased levels of reactive oxygen species and the protein levels of apoptosis markers in human sperm. Gibberellin inhibited the activity of Na+/K+-adenosine triphosphatase (ATPase) and Ca2+-ATPase, which maintain the stability of ions inside and outside the membranes of spermatozoa. Moreover, gibberellin exposure suppressed adenosine triphosphate production and reduced the protein levels of adenosine triphosphate synthases, which may have induced the protein expression of adenosine 5'-monophosphate-activated protein kinase (AMPK) and its phosphorylated form. These results suggest that gibberellin reduces human sperm motility in vitro by increasing reactive oxygen species levels and reducing ATPase activity, which may upregulate AMPK and consequently reduce the fertilization potential of spermatozoa.
Collapse
Affiliation(s)
- Chun-Shuang Xu
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| | - Yi Zhou
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| | - Zhou Jiang
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| | - Li-E Wang
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| | - Jiao-Jiao Huang
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| | - Tian-Yu Zhang
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yong Zhao
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shu-Hua Zou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Li-Li Zang
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| |
Collapse
|
11
|
Histological and biochemical changes induced by gibberellic acid in the livers of pregnant albino rats and their offspring: ameliorative effect of Nigella sativa. Anat Sci Int 2019; 94:307-323. [PMID: 31054114 DOI: 10.1007/s12565-019-00488-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/20/2019] [Indexed: 01/17/2023]
Abstract
Gibberellic acid (GA3), a plant growth regulator, is widely used in agriculture in many countries to accelerate the growth of fruits and vegetables. We designed histological, immunohistochemical, and biochemical studies to evaluate the deleterious effects of GA3 on the livers of adult pregnant rats and their offspring and to assess the possible ameliorative effect of Nigella sativa Linn. (NsL.oil) against these effects. Twenty-four pregnant albino rats were utilized, randomly divided into four groups: The first group was used as a negative control group, while the second group (positive control group) was provided NsL.oil at a dose of 100 mg/kg of bodyweight. Animals in the third group (GA3 group) were provided 200 ppm of GA3 dissolved in distilled water from the 7th day of pregnancy until 1 day after delivery. Animals in the last group (GA3 + NsL.oil group) were provided GA3 and NsL-oil at the same doses as mentioned above. One day after delivery, each group of lactating mothers and their pups were sacrificed. Liver specimens were subjected to histopathological, immunohistochemical, and biochemical examinations. The livers of rats from the GA3 group showed various degenerative changes, being predominant in the livers of the mothers compared with the offspring. The pathological changes in the livers of the offspring suggested transplacental passage of GA3. The results reveal that GA3 ingestion induced a significant increase in alanine aminotransferase (ALT) and aspartate transaminase (AST) activities in the serum of both groups of mothers and their pups, with a significant increment in lipid peroxidation as evidenced by enhanced malondialdehyde (MDA) levels with significant decrements in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzymatic activities in comparison with control groups in the liver of mothers and their offspring. Histopathological examination showed hydropic degeneration and inflammatory cellular infiltration. Additionally, there was fibrosis around the portal area. Moreover, immunolocalization revealed downregulation of the expression of the antiapoptotic marker Bcl-2 in hepatocytes and upregulation of the expression of the apoptotic marker Bax in the treated group. Concomitant use of NsL.oil along with GA3 exerted a considerable reversing effect on histopathological and biochemical changes in the livers of mother groups and their pups. The results of the present study highlight the consequences of exposure to GA3 during pregnancy on hepatic tissue in both mothers and their offspring. Furthermore, the study suggests use of NsL.oil as a potential protective strategy against GA3-induced liver toxicity.
Collapse
|
12
|
Yang R, Xiao CF, Guo YF, Ye M, Lin J. Inclusion complexes of GA 3 and the plant growth regulation activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:475-485. [PMID: 30033279 DOI: 10.1016/j.msec.2018.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 04/22/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
Abstract
Gibberellic acid (GA3) is an important phytohormone that is applied in agriculture, nurseries, tissue culture, tea gardens, etc. However, it has some drawbacks such as potential hazardous effects on mammals and labile in the condition of a weak base or acid. In this study, the enhanced stability and bioavailability of GA3 were achieved by forming the inclusion complexes of GA3 with cyclodextrins (β- or γ-CD) and its derivative (HP-β-CD). In the preliminary plant growth regulation assay, GA3/CDs displays superior bioactivity compared to pure GA3 to help with the early seedling growth of cucumber and mung bean and the root growth of cucumber and mung bean, respectively. The results showed that there was a certain relationship between the inclusion ability, stability and bioactivity. The inclusion stability constants of gibberellin clathrate are consistent with the order of stabilities of the inclusion complex. Among these complexes, GA3/HP-β-CD possess highest inclusion constant, and the binding ability of the HP-β-CD not only enhances the stability of gibberellic acid in the stability test but also plays a slow release role in the bioactivity assay. Therefore, the complex of GA3 may be used as a promising plant growth regulator.
Collapse
Affiliation(s)
- Rui Yang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China; Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China.
| | - Chuan-Fan Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Ya-Fei Guo
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, PR China.
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China.
| |
Collapse
|
13
|
Lafi B, Chaâbane M, Elwej A, Grati M, Jamoussi K, Mnif H, Boudawara T, Ketata Bouaziz H, Zeghal N. Effects of co-exposure to imidacloprid and gibberellic acid on redox status, kidney variables and histopathology in adult rats. Arch Physiol Biochem 2018; 124:175-184. [PMID: 28875714 DOI: 10.1080/13813455.2017.1371195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Data on the individual nephrotoxic effects of imidacloprid (IMI) and gibberellic acid (GA3) are scarce. Moreover, there is a lack of information about their combined effects on the renal tissue. Our study investigated the effects of IMI and GA3 separately or together on rats kidney. IMI (64 mg/kg bw) was given for 3 weeks by gavage either individually or in combination with GA3 (200 mg/L) via drinking water. IMI associated or no with GA3 increased the levels of kidney malondialdehyde, advanced oxidation protein products, protein carbonyls and metallothionein, plasma creatinine, urea, blood urea nitrogen and lactate dehydrogenase activity. A decline of kidney uric acid level and antioxidant status was also observed. All these changes were supported by histopathological observations. Our results highlighted the role of IMI and/or GA3-induced nephrotoxicity. Co-exposure to IMI and GA3 exhibited synergism in biochemical kidney variables and histopathology and antagonism in physical and morphological parameters.
Collapse
Affiliation(s)
- Bornia Lafi
- a Animal Physiology Laboratory, Research Unit of Toxicology and Environmental Health, Sfax Faculty of Sciences , University of Sfax , Sfax , Tunisia
| | - Mariem Chaâbane
- a Animal Physiology Laboratory, Research Unit of Toxicology and Environmental Health, Sfax Faculty of Sciences , University of Sfax , Sfax , Tunisia
| | - Awatef Elwej
- a Animal Physiology Laboratory, Research Unit of Toxicology and Environmental Health, Sfax Faculty of Sciences , University of Sfax , Sfax , Tunisia
| | - Malek Grati
- b Biochemistry Laboratory , CHU Hedi Chaker, University of Sfax , Sfax , Tunisia
| | - Kamel Jamoussi
- b Biochemistry Laboratory , CHU Hedi Chaker, University of Sfax , Sfax , Tunisia
| | - Hela Mnif
- c Anatomopathology Laboratory , CHU Habib Bourguiba, University of Sfax , Sfax , Tunisia
| | - Tahia Boudawara
- c Anatomopathology Laboratory , CHU Habib Bourguiba, University of Sfax , Sfax , Tunisia
| | - Hanen Ketata Bouaziz
- a Animal Physiology Laboratory, Research Unit of Toxicology and Environmental Health, Sfax Faculty of Sciences , University of Sfax , Sfax , Tunisia
| | - Najiba Zeghal
- a Animal Physiology Laboratory, Research Unit of Toxicology and Environmental Health, Sfax Faculty of Sciences , University of Sfax , Sfax , Tunisia
| |
Collapse
|
14
|
Seleem AA, Hussein BHM. Synthesis and effect of a new Terbium gibberellic complex on the histopathological alteration induced by Gibberellic acid on liver and kidney of mice Mus musculus. Chem Biol Drug Des 2018; 92:1288-1300. [DOI: 10.1111/cbdd.13191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/31/2018] [Accepted: 02/18/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Amin A. Seleem
- Biology Department; Faculty of Science and Arts; Al Ula; Taibah University; Almadinah Almunawwarah Saudi Arabia
- Zoology Department; Faculty of Science; Sohag University; Sohag Egypt
| | - Belal H. M. Hussein
- Chemistry Department; Faculty of Science and Arts; Al Ula; Taibah University; Almadinah Almunawwarah Saudi Arabia
- Chemistry Department; Faculty of Science; Suez Canal University; Ismailia Egypt
| |
Collapse
|
15
|
Hassan HA, Isa AM, El-Kholy WM, Nour SE. Testicular disorders induced by plant growth regulators: cellular protection with proanthocyanidins grape seeds extract. Cytotechnology 2013; 65:851-62. [PMID: 23292365 PMCID: PMC3967610 DOI: 10.1007/s10616-012-9525-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 12/12/2012] [Indexed: 01/13/2023] Open
Abstract
The present study aims to investigate the adverse effects of plant growth regulators : gibberellic acid (GA3) and indoleacetic acid (IAA) on testicular functions in rats, and extends to investigate the possible protective role of grape seed extract, proanthocyanidin (PAC). Male rats were divided into six groups; control group, PAC, GA3, IAA, GA3 + PAC and IAA + PAC groups. The data showed that GA3 and IAA caused significant increase in total lipids, total cholesterol, triglycerides, phospholipids and low-density-lipoprotein cholesterol in the serum, concomitant with a significant decrease in high-density-lipoprotein cholesterol, total protein, and testosterone levels. In addition, there was significant decrease in the activity of alkaline phosphatase, acid phosphatase, and gamma-glutamyl transferase. A significant decrease was detected also in epididymyal fructose along with a significant reduction in sperm count. Testicular lipid peroxidation product and hydrogen peroxide (H2O2) levels were significantly increased. Meanwhile, the total antioxidant capacity, glutathione, sulphahydryl group content, as well as superoxide dismutase, catalase, and glucose-6-phosphate dehydrogenase activity were significantly decreased. Moreover, there were a number of histopathological testicular changes including Leydig's cell degeneration, reduction in seminiferous tubule and necrotic symptoms and sperm degeneration in both GA3- and IAA-treated rats. However, an obvious recovery of all the above biochemical and histological testicular disorders was detected when PAC seed extract was supplemented to rats administered with GA3 or IAA indicating its protective effect. Therefore it was concluded that supplementation with PAC had ameliorative effects on those adverse effects of the mentioned plant growth regulators through its natural antioxidant properties.
Collapse
Affiliation(s)
- Hanaa A Hassan
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt,
| | | | | | | |
Collapse
|
16
|
Oat Attenuation of Hyperglycemia-Induced Retinal Oxidative Stress and NF-κB Activation in Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:983923. [PMID: 23365614 PMCID: PMC3556423 DOI: 10.1155/2013/983923] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/03/2012] [Indexed: 12/30/2022]
Abstract
The overproduction of reactive oxygen species (ROS) plays a central role in the pathogenesis of endothelial damage in diabetes. To assess the effect of oat on experimental diabetic retinopathy, five groups of Albino rats were studied: nondiabetic control, untreated diabetic, and diabetic rats treated with 5%, 10%, and 20% (W/W) oat of the diet for 12 weeks. Novel data were obtained in this study indicating a protective role of oat against oxidative stress and diabetic retinopathy. The effects of oat on parameters of oxidative stress, AGE, and nuclear factor kappa B (NF-κB) were assessed by ELISA and NF-κB activation by electrophoretic mobility shift assay. Tumor necrosis factor alpha (TNFα) and vascular endothelial growth factor (VEGF) were also determined. After 12 weeks of diabetes, oat treatment reduced blood glucose levels, HbA1c, all oxidative stress markers, CML, normalized NF-κB activation and TNFα expression. Furthermore it reduced VEGF in the diabetic retina by 43% (P < 0.001). In conclusion, oat modulates microvascular damage through normalized pathways downstream of ROS overproduction and reduction of NF-κB and its controlled genes activation, which may provide additional endothelial protection.
Collapse
|
17
|
Abstract
BACKGROUND Different factors are involved in the development of diabetic nephropathy (DN). Oxidative stress and inflammation play an important role in the pathogenesis of DN. Ferulsinaic Acid (FA) was isolated in 2007. In 2011, we found that FA prolonged the lifespan of C. elegans due to its antioxidative effect, and we hypothesized that FA restores the kidney function of diabetic rats via its antioxidant activity. METHODS Male Wistar rats were injected with STZ and divided into 5 groups of 10 each: control, diabetic untreated, diabetic treated with 500, 750 and 1000 ng/kg FA. FA treatment was continued for 21 weeks after induction of diabetes. RESULTS In the diabetic rats treated with FA, fasting blood sugar, HbA1C kidney/body weight ratio, creatinine, BUN, sodium and albuminurea were significantly decreased compared with untreated diabetic rats. Diabetic rats showed decreased activities of superoxide dismutase, glutathione peroxidase and catalase, increased concentrations of malondialdehyde and IL-6 in the kidney homogenate. In addition levels of 8-hydroxy-2'-deoxyguanosine in the urine and in the renal cortex DNA were increased. Moreover, severe destruction in glomerular and tubulointerstitial lesions such as glomerular sclerosis, atrophy, interstitial expansion and interstitial cellular infiltration was seen in the kidney of the diabetic untreated rats. Furthermore, the diabetic kidney was found to be positive for NF-κB p65 antigen in the immunohistochemistry examinations. Treatment with FA restored all the altered parameters in a dose-dependent manner. Furthermore, all the ultra-morphologic abnormalities and NF-κB activation in the kidney of diabetic rats were markedly ameliorated by FA treatment. CONCLUSION FA confers a considerable protection against kidney injuries of the diabetic rats by increasing activities of antioxidant enzymes, attenuating the formation of AGEs, attenuating the NF-κB activation, ameliorating the inflammatory markers and inhibiting the accumulation of oxidized DNA in the kidney, suggesting a potential drug for the prevention and therapy of DN.
Collapse
Affiliation(s)
- Ahmed A R Sayed
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
18
|
Sayed AAR. Ferulsinaic Acid Modulates SOD, GSH, and Antioxidant Enzymes in Diabetic Kidney. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:580104. [PMID: 22991571 PMCID: PMC3443615 DOI: 10.1155/2012/580104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 12/17/2022]
Abstract
The efficacy of Ferulsinaic acid (FA) to modulate the antioxidant enzymes and to reduce oxidative stress induced-diabetic nephropathy (DN) was studied. Rats were fed diets enriched with sucrose (50%, wt/wt), lard (30%, wt/wt), and cholesterol (2.5%, wt/wt) for 8 weeks to induce insulin resistance. After a DN model was induced by streptozotocin; 5, 50 and 500 mg/kg of FA were administrated by oral intragastric intubation for 12 weeks. In FA-treated diabetic rats, glucose, kidney/body weight ratio, creatinine, BUN, albuminurea, and creatinine clearance were significantly decreased compared with non treated diabetic rats. Diabetic rats showed decreased activities of SOD and GSH; increased concentrations of malondialdehyde and IL-6 in the serum and kidney, and increased levels of 8-hydroxy-2'-deoxyguanosine in urine and renal cortex. FA-treatment restored the altered parameters in a dose-dependent manner. The ultra morphologic abnormalities in the kidney of diabetic rats were markedly ameliorated by FA treatment. Furthermore, FA acid was found to attenuate chronic inflammation induced by both Carrageenan and dextran in rats. We conclude that FA confers protection against injuries in the kidneys of diabetic rats by increasing activities of antioxidant enzymes and inhibiting accumulation of oxidized DNA in the kidney, suggesting a potential drug for the prevention and therapy of DN.
Collapse
Affiliation(s)
- Ahmed Amir Radwan Sayed
- Biochemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| |
Collapse
|
19
|
KASAMATSU ATSUSHI, IYODA MANABU, USUKURA KATSUYA, SAKAMOTO YOSUKE, OGAWARA KATSUNORI, SHIIBA MASASHI, TANZAWA HIDEKI, UZAWA KATSUHIRO. Gibberellic acid induces α-amylase expression in adipose-derived stem cells. Int J Mol Med 2012; 30:243-7. [DOI: 10.3892/ijmm.2012.1007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/19/2012] [Indexed: 11/06/2022] Open
|