1
|
Begum R, Mamun-Or-Rashid ANM, Lucy TT, Pramanik MK, Sil BK, Mukerjee N, Tagde P, Yagi M, Yonei Y. Potential Therapeutic Approach of Melatonin against Omicron and Some Other Variants of SARS-CoV-2. Molecules 2022; 27:6934. [PMID: 36296527 PMCID: PMC9609612 DOI: 10.3390/molecules27206934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The Omicron variant (B.529) of COVID-19 caused disease outbreaks worldwide because of its contagious and diverse mutations. To reduce these outbreaks, therapeutic drugs and adjuvant vaccines have been applied for the treatment of the disease. However, these drugs have not shown high efficacy in reducing COVID-19 severity, and even antiviral drugs have not shown to be effective. Researchers thus continue to search for an effective adjuvant therapy with a combination of drugs or vaccines to treat COVID-19 disease. We were motivated to consider melatonin as a defensive agent against SARS-CoV-2 because of its various unique properties. Over 200 scientific publications have shown the significant effects of melatonin in treating diseases, with strong antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has a high safety profile, but it needs further clinical trials and experiments for use as a therapeutic agent against the Omicron variant of COVID-19. It might immediately be able to prevent the development of severe symptoms caused by the coronavirus and can reduce the severity of the infection by improving immunity.
Collapse
Affiliation(s)
- Rahima Begum
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - A. N. M. Mamun-Or-Rashid
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA 15231, USA
| | - Tanzima Tarannum Lucy
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Md. Kamruzzaman Pramanik
- Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar 1349, Bangladesh
| | - Bijon Kumar Sil
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Sydney 37729, Australia
| | - Priti Tagde
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal 462044, India
| | - Masayuki Yagi
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| |
Collapse
|
2
|
Almási N, Murlasits Z, Al-Awar A, Csonka Á, Dvorácskó S, Tömböly C, Török S, Bester D, Pósa A, Varga C, Kupai K. Effects of aging on proteasomal-ubiquitin system, oxidative stress balance and calcium homeostasis in middle-aged female rat colon. Physiol Int 2021. [PMID: 33835941 DOI: 10.1556/2060.2021.00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022]
Abstract
Aging is a multifactorial process, which is considered as a decline over time. It is increasingly clear that there is a gender difference in aging and in the prevalence of age-related diseases as well. We aimed to examine the effects of the aging process in the colonic tissue of female Wistar rats aged 10 weeks (young) and 13 months (middle-aged) at an early stage, according to three main symptoms associated with aging: a decrease in the efficacy of the proteasome and muscle function and an increase in oxidative stress. The aging process was found to cause a significant decrease in ubiquitin C-terminal hydrolase ligase (UCHL-1) and a significant increase in 3-nitrotyrosine (3-NT), total glutathione (GSH), calcium (Ca2+), calcitonin gene-related peptide (CGRP) and superoxide dismutase (SOD) activity in middle-aged animals. In summary, it is suggested that the reduced activity of the proteasomal degradation system may be the result of the diminished expression of the UCHL-1 enzyme and the decreased levels of ubiquitin; furthermore, we found some key targets which may help to better understand the fundamental aging process.
Collapse
Affiliation(s)
- N Almási
- 1Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Z Murlasits
- 2Laboratory Animals Research Center, Qatar University, Doha, Qatar
| | - A Al-Awar
- 1Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Á Csonka
- 3Department of Traumatology, University of Szeged, Szeged, Hungary
| | - S Dvorácskó
- 4Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - C Tömböly
- 4Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - S Török
- 1Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - D Bester
- 5Faculty of Health and Wellness, Cape Peninsula University of Technology, Cape Town, South Africa
| | - A Pósa
- 1Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- 6Department of Physiology, Anatomy and Neuroscience, Interdisciplinary Excellence Center, University of Szeged, Szeged, Hungary
| | - C Varga
- 1Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - K Kupai
- 1Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Martin-Cano FE, Camello-Almaraz C, Acuña-Castroviejo D, Pozo MJ, Camello PJ. Age-related changes in mitochondrial function of mouse colonic smooth muscle: beneficial effects of melatonin. J Pineal Res 2014; 56:163-74. [PMID: 24313280 DOI: 10.1111/jpi.12109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/03/2013] [Indexed: 01/13/2023]
Abstract
Aging is a multifactorial process that involves biochemical, structural, and functional changes in mitochondria. The ability of melatonin to palliate the alterations induced by aging is based on its chronobiologic, antioxidant, and mitochondrial effects. There is little information about the effects of melatonin on the in situ mitochondrial network of aging cells and its physiological implications. We have studied the ability of melatonin to prevent the functional alterations of in situ mitochondria of smooth muscle cells and its impact on contractility. Mitochondrial membrane potential was recorded in isolated colonic smooth muscle cells from young mice (3 month old), aged mice (22-24-month old), and aged mice treated with melatonin (starting at 14-month age). Aging induced a partial mitochondrial depolarization in resting conditions and reduced the depolarizing response to cellular stimulation. Use of oligomycin indicated that aging enhanced the resting activity of the mitochondrial ATP synthase, whereas in young cells, the enzyme operated mainly in reverse mode. Melatonin treatment prevented all these changes. Aging reduced both spontaneous and stimulated contraction of colonic strips and shifted the metabolic dependence of contraction from mitochondria to glycolysis, as indicated the use of mitochondrial and glycolysis inhibitors. These functional alterations were also palliated by melatonin treatment. Aging effects were not related to a decrease in Ca2+ store mobilization, because this was enhanced in aged cells and restored by melatonin. In conclusion, melatonin prevents the age induced in situ mitochondrial potential alterations in smooth muscle cells and the associated changes in contractility and metabolism.
Collapse
Affiliation(s)
- Francisco E Martin-Cano
- Department of Physiology, Faculty of Nursing and Occupational Therapy, University of Extremadura, Cáceres, Spain
| | | | | | | | | |
Collapse
|