1
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
2
|
Tohidian M, Tohidian M, Gangiazad M. Circular RNA: The promising genetic key between burn and cancer. Burns 2024; 50:533-534. [PMID: 38097441 DOI: 10.1016/j.burns.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 02/24/2024]
Affiliation(s)
- Mobina Tohidian
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahdi Tohidian
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Mojtaba Gangiazad
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Wei X, Yi X, Liu J, Sui X, Li L, Li M, Lv H, Yi H. Circ-phkb promotes cell apoptosis and inflammation in LPS-induced alveolar macrophages via the TLR4/MyD88/NF-kB/CCL2 axis. Respir Res 2024; 25:62. [PMID: 38287405 PMCID: PMC10826187 DOI: 10.1186/s12931-024-02677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Circular RNAs (CircRNAs) have been associated with acute lung injury (ALI), but their molecular mechanisms remain unclear. METHODS This study developed a rat model of lipopolysaccharide (LPS)-induced ALI and evaluated the modeling effect by hematoxylin and eosin staining, Masson's trichrome staining, lung wet-to-dry weight ratio, terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) detection of inflammatory factors (interleukin-1β, tumor necrosis factor alpha, and interleukin-6). Using lung tissues from a rat model of LPS-induced ALI, we then conducted circRNA sequencing, mRNA sequencing, and bioinformatics analysis to obtain differential circRNA and mRNA expression profiles as well as potential ceRNA networks. Furthermore, we performed quantitative real-time polymerase chain reaction (qRT-PCR) assays to screen for circ-Phkb in ALI rat lung tissues, alveolar macrophages, and LPS-induced NR8383 cells. We conducted induction with or without LPS with circ-Phkb siRNA and overexpression lentivirus in NR8383. Cell Counting Kit-8, C5-Ethynyl-2'-deoxyuridine (Edu), TUNEL, and cytometry were used to identify proliferation and apoptosis, respectively. We detected inflammatory factors using ELISA. Finally, we used Western blot to detect the apoptosis-related proteins and TLR4/MyD88/NF-kB/CCL2 pathway activation. RESULTS Our results revealed that both circRNA and mRNA profiles are different from those of the Sham group. We observed a significant circ-Phkb upregulation in NR8383 cells and LPS-exposed rats. Apoptosis and inflammation were greatly reduced when circ-Phkb expression was reduced in NR8383 cells, cell proliferation was increased, and circ-Phkb overexpression was decreased. CONCLUSIONS In terms of mechanism, circ-Phkb suppression inhibits CCL2 expression via the TLR4/MyD88/NF-kB pathway in LPS-induced alveolar macrophages.
Collapse
Affiliation(s)
- Xuxia Wei
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Xiaomeng Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Jianrong Liu
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Xin Sui
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Lijuan Li
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Mei Li
- VIP Healthcare Center, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China.
| | - Haijin Lv
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China.
| | - Huimin Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
4
|
Zhong J, Zhang W, Zhang L, Li J, Kang L, Li X. CircFLNA/miR-214 modulates regulatory T cells by regulating PD-1 in acute lung injury induced by sepsis. Autoimmunity 2023; 56:2259131. [PMID: 37724530 DOI: 10.1080/08916934.2023.2259131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) remains a major complication of death from bacterial infection. Regulatory T cells (Tregs) are important regulators in addressing lung injury. Considering the extensive research of circular RNAs (circRNAs), the role of circRNA in Treg modulation during ARDS remains unclear. In this study, patients with sepsis-induced ARDS along with non-ARDS controls were obtained, and bronchoalveolar lavage fluid (BALF) was collected as clinical samples. Additionally, cecal ligation and puncture (CLP) was performed to construct a septic ARDS model, and lung tissues as well as peripheral blood were collected. mRNA expressions were measured by RT-qPCR. ELISA was carried out to measure the concentration of inflammatory factors. A combination of online bioinformatics, dual-luciferase reporter, and RND pull-down assays was performed to verify interactions between microRNA (miRNA) and circRNA/mRNA. Tregs were measured by flow cytometry. Our data suggested that circFLNA was aberrantly elevated in ARDS, and depletion of circFLNA upregulated CD4+CD25+Foxp3+ Tregs and decreased inflammatory response. Additionally, miR-214-5p which binds with circFLNA, reversed circFLNA-induced effects in ARDS. Programmed cell death protein 1 (PD-1) is a downstream target gene of miR-214-5p, and abrogated the effects of miR-214-5p on regulating CD4+CD25+Foxp3+ Tregs and inflammatory response. In a word, circFLNA/miR-214-5p/PD-1 signaling is a novel pathway that modulates Tregs in ARDS.
Collapse
Affiliation(s)
- Jian Zhong
- Department of Emergency, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| | - Wei Zhang
- Department of Emergency, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| | - Leiyun Zhang
- Department of Emergency, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| | - Jieying Li
- Department of Emergency, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| | - Lingkai Kang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Xiaoyue Li
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| |
Collapse
|
5
|
Gao P, Duan W, Shi H, Wang Q. Silencing circPalm2 inhibits sepsis-induced acute lung injury by sponging miR-376b-3p and targeting MAP3K1. Toxicol Res 2023; 39:275-294. [PMID: 37008689 PMCID: PMC10050541 DOI: 10.1007/s43188-022-00169-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The apoptosis and inflammation of pulmonary epithelial cells are important pathogenic factors of sepsis-induced acute lung injury (ALI). Upregulation of circPalm2 (circ_0001212) expression levels has been previously detected in the lung tissue of ALI rats. Herein, the biological significance and detailed mechanism of circPalm2 in ALI pathogenesis were investigated. In vivo models of sepsis-induced ALI were established by treating C57BL/6 mice with cecal ligation and puncture (CLP) surgery. Murine pulmonary epithelial cells (MLE-12 cells) were stimulated with lipopolysaccharide (LPS) to establish in vitro septic ALI models. MLE-12 cell viability and apoptosis were evaluated by CCK-8 assay and flow cytometry analysis, respectively. The pathological alterations of the lung tissue were analysed based on hematoxylin-eosin (H&E) staining. Cell apoptosis in the lung tissue samples was examined by TUNEL staining assay. LPS administration suppressed the viability and accelerated the inflammation and apoptotic behaviours of MLE-12 cells. CircPalm2 displayed high expression in LPS-stimulated MLE-12 cells and possessed circular characteristics. The silencing of circPalm2 impeded apoptosis and inflammation in LPS-stimulated MLE-12 cells. Mechanistically, circPalm2 bound with miR-376b-3p, which targeted MAP3K1. In rescue assays, MAP3K1 enhancement reversed the repressive effects of circPalm2 depletion on LPS-triggered inflammatory injury and MLE-12 cell apoptosis. Furthermore, the lung tissue collected from CLP model mice displayed low miR-376b-3p expression and high levels of circPalm2 and MAP3K1. CircPalm2 positively regulated MAP3K1 expression by downregulating miR-376b-3p in murine lung tissues. Importantly, circPalm2 knockdown attenuated CLP-induced inflammation, apoptosis, and pathological alterations in lung tissues collected from mice. Silenced circPalm2 inhibits LPS-induced pulmonary epithelial cell dysfunction and mitigates abnormalities in lung tissues collected from CLP-stimulated mice via the miR-376b-3p/MAP3K1 axis in septic ALI. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00169-7.
Collapse
Affiliation(s)
- Pengfei Gao
- Shanghai East Clinical Medical College, Nanjing Medical University, No. 150, Jimo Road, Pudong New Area, Shanghai, 200120 China
- Department of Anesthesiology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu 223300 China
| | - Wenying Duan
- Shanghai East Clinical Medical College, Nanjing Medical University, No. 150, Jimo Road, Pudong New Area, Shanghai, 200120 China
| | - Huiyan Shi
- Jinzhou Medical University, Jinzhou, Liaoning 121001 China
| | - Qingxiu Wang
- Shanghai East Clinical Medical College, Nanjing Medical University, No. 150, Jimo Road, Pudong New Area, Shanghai, 200120 China
- Shanghai East Hopital, Tongji University School of Medicine, Shanghai, 200120 China
| |
Collapse
|
6
|
Non-coding RNA in idiopathic interstitial pneumonia and Covid-19 pulmonary fibrosis. Mol Biol Rep 2022; 49:11535-11546. [PMID: 36097114 PMCID: PMC9467421 DOI: 10.1007/s11033-022-07820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 12/02/2022]
Abstract
Pulmonary fibrosis is the key feature of majority of idiopathic interstitial pneumonias (IIPs) as well as many patients with post-COVID-19. The pathogenesis of pulmonary fibrosis is a complex molecular process that involves myriad of cells, proteins, genes, and regulatory elements. The non-coding RNA mainly miRNA, circRNA, and lncRNA are among the key regulators of many protein coding genes and pathways that are involved in pulmonary fibrosis. Identification and molecular mechanisms, by which these non-coding RNA molecules work, are crucial to understand the molecular basis of the disease. Additionally, elucidation of molecular mechanism could also help in deciphering a potential diagnostic/prognostic marker as well as therapeutic targets for IIPs and post-COVID-19 pulmonary fibrosis. In this review, we have provided the latest findings and discussed the role of these regulatory elements in the pathogenesis of pulmonary fibrosis associated with Idiopathic Interstitial Pneumonia and Covid-19.
Collapse
|
7
|
Li H, Niu X, Shi H, Feng M, Du Y, Sun R, Ma N, Wang H, Wei D, Gao M. circHECTD1 attenuates apoptosis of alveolar epithelial cells in acute lung injury. J Transl Med 2022; 102:945-956. [PMID: 36775423 DOI: 10.1038/s41374-022-00781-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
Circular RNAs (circRNAs) play important roles in many lung diseases. This study aimed to investigate the role of circHECTD1 in acute lung injury (ALI). The mouse and cell models of ALI were induced by lipopolysaccharide (LPS). The apoptosis of alveolar epithelial cells (AECs) was detected by flow cytometry. The relationships between circHECTD1, miRNAs, and target genes were assessed by RNA pull-down, luciferase reporter gene, and RNA-FISH assays. circHECTD1 was downregulated in LPS-induced human and mouse AECs (HBE and MLE-12). The knockdown of circHECTD1 increased the apoptotic rates and the expressions of miR-136 and miR-320a, while its overexpression caused opposite effects in LPS-induced HBE and MLE-12 cells. Mechanistically, circHECTD1 bound to miR-320a and miR-136. miR-320a targeted PIK3CA and mediated the effect of circHECTD1 on PIK3CA expression. miR-136 targeted Sirt1 and mediated the effect of circHECTD1 on Sirt1 expression. Silencing PIK3CA and/or Sirt1 reversed the effect of circHECTD1 overexpression on the apoptosis of LPS-induced HBE and MLE-12 cells. In vivo, overexpression of circHECTD1 alleviated the LPS-induced ALI of mice. Our findings suggested that circHECTD1 inhibits the apoptosis of AECs through miR-320a/PIK3CA and miR-136/Sirt1 pathways in LPS-induced ALI.
Collapse
Affiliation(s)
- Hongbin Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Xiaoxuan Niu
- Department of Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Huijuan Shi
- Department of Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Min Feng
- Department of Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Yuming Du
- Department of Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Rongqing Sun
- Department of Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Ning Ma
- Department of Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Haili Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Dan Wei
- Department of Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Min Gao
- Department of Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
8
|
Abstract
Circular RNAs (circRNAs) are a type of closed, long, non-coding RNAs, which have attracted significant attention in recent years. CircRNAs exhibit unique functions and are characterized by stable expression in various tissues across different species. Because the identification of circRNA in plant viroids in 1976, numerous studies have been conducted to elucidate its generation as well as expression under normal and disease conditions. The rapid development of research focused on the roles of circRNAs as biomarkers in diseases such as cancers has led to increased interests in evaluating the effects of toxicants on the human genetics from a toxicological perspective. Notably, increasing amounts of chemicals are generated in the environment; however, their toxic features and interactions with the human body, particularly from the epigenetic viewpoint, remain largely unknown. Considering the unique features of circRNAs as potential prognostic biomarkers as well as their roles in evaluating health risks following exposure to toxicants, the aim of this review was to assess the latest progress in the research concerning circRNA, to address the role of the circRNA-miRNA-mRNA axis in diseases and processes occurring after exposure to toxic compounds. Another goal was to identify the gaps in understanding the interactions between toxic compounds and circRNAs as potential biomarkers. The review presents general information about circRNA (ie, biogenesis and functions) and provides insights into newly discovered exosome-contained circRNA. The roles of circRNAs as potential biomarkers are also explored. A comprehensive review of the available literature on the role of circRNA in toxicological research (ie, chemical carcinogenesis, respiratory toxicology, neurotoxicology, and other unclassified toxicological categories) is included.
Collapse
Affiliation(s)
- Yueting Shao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
9
|
Dyamenahalli K, Garg G, Shupp JW, Kuprys PV, Choudhry MA, Kovacs EJ. Inhalation Injury: Unmet Clinical Needs and Future Research. J Burn Care Res 2020; 40:570-584. [PMID: 31214710 DOI: 10.1093/jbcr/irz055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary and systemic insults from inhalation injury can complicate the care of burn patients and contribute to significant morbidity and mortality. However, recent progress in diagnosis and treatment of inhalation injury has not kept pace with the care of cutaneous thermal injury. There are many challenges unique to inhalation injury that have slowed advancement, including deficiencies in our understanding of its pathophysiology, the relative difficulty and subjectivity of bronchoscopic diagnosis, the lack of diagnostic biomarkers, the necessarily urgent manner in which decisions are made about intubation, and the lack of universal recommendations for the application of mucolytics, anticoagulants, bronchodilators, modified ventilator strategies, and other measures. This review represents a summary of critical shortcomings in our understanding and management of inhalation injury identified by the American Burn Association's working group on Cutaneous Thermal Injury and Inhalation Injury in 2018. It addresses our current understanding of the diagnosis, pathophysiology, and treatment of inhalation injury and highlights topics in need of additional research, including 1) airway repair mechanisms; 2) the airway microbiome in health and after injury; and 3) candidate biomarkers of inhalation injury.
Collapse
Affiliation(s)
- Kiran Dyamenahalli
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado School of Medicine, Aurora
| | - Gaurav Garg
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| | - Jeffrey W Shupp
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| | - Paulius V Kuprys
- Department of Surgery, Burn & Shock Trauma Research Institute, Health Sciences Division, Loyola University, Maywood, Illinois
| | - Mashkoor A Choudhry
- Department of Surgery, Burn & Shock Trauma Research Institute, Health Sciences Division, Loyola University, Maywood, Illinois
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado School of Medicine, Aurora
| |
Collapse
|
10
|
Quietness of circular RNA circ_0054633 alleviates the inflammation and proliferation in lipopolysaccharides-induced acute lung injury model through NF-κB signaling pathway. Gene 2020; 766:145153. [PMID: 32950633 DOI: 10.1016/j.gene.2020.145153] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/20/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
AIM Acute lung injury (ALI) is the mild form of acute respiratory distress syndrome (ARDS) which is a common lung disease with a high incidence and mortality rate. Recent studies manifested that some circular RNAs were associated with ALI. In this study, we aimed to uncover the effect of circular RNA circ_0054633 on ALI initiation and progression and proposed a new mechanism related to ALI. METHODS The lipopolysaccharides (LPS)-induced acute lung injury model were build both in vivo of rat and in vitro of primary murine pulmonary microvascular endothelial cells (MPVECs). Hematoxylin and eosin (H&E) was employed to observe the tissue morphology and estimate the degree of lung damage. We used real-time quantitative polymerase chain reaction (RT-qPCR) to measure the expression level of circ_0054633. The expression levels of inflammatory cytokines IL-17A and tumor necrosis factor-α (TNF-α) were detected by ELISA. The effects of circ_0054633 on MPVECs proliferation and apoptosis were detected with the help of CCK-8 and apoptosis assay, separately. The expression level of NF-κB p65 protein was measured by Western blot. RESULTS circ_0054633, IL-17A, TNF-α and NF-κB p65 were all overexpressed in LPS-treated rat and MPVECs, and LPS enhanced the proliferation and apoptosis of MPVECs. While circ_0054633 silencing reversed the above promotion effects of LPS on IL-17A, TNF-α expression and MPVECs proliferation and apoptosis. CONCLUSIONS Quietness of circ_0054633 alleviated LPS-induced ALI via NF-κB signaling pathway, implicating circ_0054633 may be a potential biomarker for diagnose and therapy of ALI.
Collapse
|
11
|
Moffatt LT, Madrzykowski D, Gibson ALF, Powell HM, Cancio LC, Wade CE, Choudhry MA, Kovacs EJ, Finnerty CC, Majetschak M, Shupp JW. Standards in Biologic Lesions: Cutaneous Thermal Injury and Inhalation Injury Working Group 2018 Meeting Proceedings. J Burn Care Res 2020; 41:604-611. [PMID: 32011688 PMCID: PMC7195554 DOI: 10.1093/jbcr/irz207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
On August 27 and 28, 2018, the American Burn Association, in conjunction with Underwriters Laboratories, convened a group of experts on burn and inhalation injury in Washington, DC. The goal of the meeting was to identify and discuss the existing knowledge, data, and modeling gaps related to understanding cutaneous thermal injury and inhalation injury due to exposure from a fire environment, and in addition, address two more areas proposed by the American Burn Association Research Committee that are critical to burn care but may have current translational research gaps (inflammatory response and hypermetabolic response). Representatives from the Underwriters Laboratories Firefighter Safety Research Institute and the Bureau of Alcohol, Tobacco, Firearms and Explosives Fire Research Laboratory presented the state of the science in their fields, highlighting areas that required further investigation and guidance from the burn community. Four areas were discussed by the full 24 participant group and in smaller groups: Basic and Translational Understanding of Inhalation Injury, Thermal Contact and Resulting Injury, Systemic Inflammatory Response and Resuscitation, and Hypermetabolic Response and Healing. A primary finding was the need for validating historic models to develop a set of reliable data on contact time and temperature and resulting injury. The working groups identified common areas of focus across each subtopic, including gaining an understanding of individual response to injury that would allow for precision medicine approaches. Predisposed phenotype in response to insult, the effects of age and sex, and the role of microbiomes could all be studied by employing multi-omic (systems biology) approaches.
Collapse
Affiliation(s)
- Lauren T Moffatt
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC
| | | | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Heather M Powell
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Research Department, Shriners Hospitals for Children, Cincinnati, OH
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX
| | - Charles E Wade
- Center for Translational Injury Research (CeTIR), Department of Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Mashkoor A Choudhry
- Department of Surgery, Burn & Shock Trauma Research Institute, Health Sciences Division, Loyola University, Maywood, IL
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora CO
| | - Celeste C Finnerty
- Departments of Surgery and Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch and Shriners Burns Hospital, Galveston TX
| | - Matthias Majetschak
- Departments of Surgery and Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jeffrey W Shupp
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC
- The Burn Center, MedStar Washington Hospital Center, Washington DC
- Department of Surgery, Georgetown University School of Medicine, Washington, DC
| |
Collapse
|
12
|
Xu M, Xie F, Tang X, Wang T, Wang S. Insights into the role of circular RNA in macrophage activation and fibrosis disease. Pharmacol Res 2020; 156:104777. [PMID: 32244027 DOI: 10.1016/j.phrs.2020.104777] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are single-stranded RNAs which form a covalent bond structure without a 5' cap or a 3' polyadenylated tail, which is deleted through back-splicing. The expression of circRNAs in highly divergent eukaryotes is abundant. With the development of high-throughput sequencing, the mysteries of circRNAs have gradually been revealed. Increased attention has been paid to determining their biological functions and whether their changed expression profiles are linked to disease progression. Functionally, circRNAs have been shown to act as miRNA sponges or nuclear transcription factor regulators, and to play a part in RNA splicing. Various types of circRNAs have been discovered to be differentially expressed under steady physiological and pathological conditions. Recently, several studies have focused on the roles of circRNAs in macrophages on inflammatory stimulation. In this study, we review the current advances in the understanding of circRNAs in macrophages under various pathological conditions, in particular during organ fibrosis, and summarize possible directions for future circRNA applications.
Collapse
Affiliation(s)
- Mengxue Xu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Feiting Xie
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Tang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Tingting Wang
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
13
|
Ji JJ, Fan J. Discovering myeloid cell heterogeneity in the lung by means of next generation sequencing. Mil Med Res 2019; 6:33. [PMID: 31651369 PMCID: PMC6814050 DOI: 10.1186/s40779-019-0222-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
The lung plays a vital role in maintaining homeostasis, as it is responsible for the exchange of oxygen and carbon dioxide. Pulmonary homeostasis is maintained by a network of tissue-resident cells, including epithelial cells, endothelial cells and leukocytes. Myeloid cells of the innate immune system and epithelial cells form a critical barrier in the lung. Recently developed unbiased next generation sequencing (NGS) has revealed cell heterogeneity in the lung with respect to physiology and pathology and has reshaped our knowledge. New phenotypes and distinct gene signatures have been identified, and these new findings enhance the diagnosis and treatment of lung diseases. Here, we present a review of the new NGS findings on myeloid cells in lung development, homeostasis, and lung diseases, including acute lung injury (ALI), lung fibrosis, chronic obstructive pulmonary disease (COPD), and lung cancer.
Collapse
Affiliation(s)
- Jing-Jing Ji
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Pathophysiology, Southern Medical University, Guangzhou, 510515, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA. .,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
14
|
Xie X, Zhao J, Xie L, Wang H, Xiao Y, She Y, Ma L. Identification of differentially expressed proteins in the injured lung from zinc chloride smoke inhalation based on proteomics analysis. Respir Res 2019; 20:36. [PMID: 30770755 PMCID: PMC6377712 DOI: 10.1186/s12931-019-0995-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Lung injury due to zinc chloride smoke inhalation is very common in military personnel and leads to a high incidence of pulmonary complications and mortality. The aim of this study was to uncover the underlying mechanisms of lung injury due to zinc chloride smoke inhalation using a rat model. Methods: Histopathology analysis of rat lungs after zinc chloride smoke inhalation was performed by using haematoxylin and eosin (H&E) and Mallory staining. A lung injury rat model of zinc chloride smoke inhalation (smoke inhalation for 1, 2, 7 and 14 days) was developed. First, isobaric tags for relative and absolute quantization (iTRAQ) and weighted gene co-expression network analysis (WGCNA) were used to identify important differentially expressed proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to study the biological functions of differentially expressed proteins. Then, analysis of lung injury repair-related differentially expressed proteins in the early (day 1 and day 2) and middle-late stages (day 7 and day 14) of lung injury after smoke inhalation was performed, followed by the protein-protein interaction (PPI) analysis of these differentially expressed proteins. Finally, the injury repair-related proteins PARK7 and FABP5 were validated by immunohistochemistry and western blot analysis. Results Morphological changes were observed in the lung tissues after zinc chloride smoke inhalation. A total of 27 common differentially expressed proteins were obtained on days 1, 2, 7 and 14 after smoke inhalation. WGCNA showed that the turquoise module (which involved 909 proteins) was most associated with smoke inhalation time. Myl3, Ckm, Adrm1 and Igfbp7 were identified in the early stages of lung injury repair. Gapdh, Acly, Tnni2, Acta1, Actn3, Pygm, Eno3 and Tpi1 (hub proteins in the PPI network) were identified in the middle-late stages of lung injury repair. Eno3 and Tpi1 were both involved in the glycolysis/gluconeogenesis signalling pathway. The expression of PARK7 and FABP5 was validated and was consistent with the proteomics analysis. Conclusion The identified hub proteins and their related signalling pathways may play crucial roles in lung injury repair due to zinc chloride smoke inhalation.
Collapse
Affiliation(s)
- Xiaowei Xie
- Medical School of Chinese PLA, Medical School of Chinese PLA, Fuxing Road, Beijing, 100853, China
| | - Jingan Zhao
- Medical School of Chinese PLA, Medical School of Chinese PLA, Fuxing Road, Beijing, 100853, China
| | - Lixin Xie
- Medical School of Chinese PLA, Medical School of Chinese PLA, Fuxing Road, Beijing, 100853, China.
| | - Haiyan Wang
- Department of Respiratory, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Xiao
- Department of Respiratory, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yingjia She
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lingyun Ma
- Department of Respiratory, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Wang J, Zhu M, Pan J, Chen C, Xia S, Song Y. Circular RNAs: a rising star in respiratory diseases. Respir Res 2019; 20:3. [PMID: 30611252 PMCID: PMC6321672 DOI: 10.1186/s12931-018-0962-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/11/2018] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (CircRNAs), as a new class of non-coding RNA molecules that, unlike linear RNAs, have covalently closed loop structures from the ligation of exons, introns, or both. CircRNAs are widely expressed in various organisms in a specie-, tissue-, disease- and developmental stage-specific manner, and have been demonstrated to play a vital role in the pathogenesis and progression of human diseases. An increasing number of recent studies has revealed that circRNAs are intensively associated with different respiratory diseases, including lung cancer, acute respiratory distress syndrome, pulmonary hypertension, pulmonary tuberculosis, and silicosis. However, to the best of our knowledge, there has been no systematic review of studies on the role of circRNAs in respiratory diseases. In this review, we elaborate on the biogenesis, functions, and identification of circRNAs and focus particularly on the potential implications of circRNAs in respiratory diseases.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Mengchan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Department of Infectious Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jue Pan
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, 221 West Yan An Road, Shanghai, 200040, China.
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
16
|
Zhang H, Chen Z, Zhong Z, Gong W, Li J. Total saponins from the leaves of Panax notoginseng inhibit depression on mouse chronic unpredictable mild stress model by regulating circRNA expression. Brain Behav 2018; 8:e01127. [PMID: 30298999 PMCID: PMC6236231 DOI: 10.1002/brb3.1127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Total saponins from the leaves of Panax notoginseng saponins (SLPN) could inhibit development of depression, but the underlying mechanisms remains unclear. This study aimed to address the roles of circular RNAs in depression inhibition by SLPN. METHODS The mouse chronic unpredictable mild stress (CUMS) model was established, which were confirmed by mouse weight, forced swimming test (FST) and tail suspension test (TST). Effects of SLPN on depression were evaluated in CUMS through these same assays. Circular RNA profiles in mouse ventral medial prefrontal cortex (VMPC) and hippocampus of CUMS mice were determined by high-through sequencing, followed by confirmation via qRT-PCR. Overexpression of mmu_circ_0001223 was done by transfection of PC12 cell through lentiviral system. Protein abundances of cAMP response element binding protein 1(CREB1) and brain-derived neurotrophic factor (BDNF) were evaluated by western blotting. RESULTS Mouse body weight, immobility time in FST and immobility time in TST of CUMS mice were significantly recovered by SLPN treatment. A large number of circular RNAs were differentially expressed in the ventral medial prefrontal cortex (VMPC) and hippocampus tissues of CUMS mice. Among them, mmu_circ_0001223 expression was greatly decreased in CUMS mice, but significantly elevated by SLPN treatment. The protein levels of CREB1 and BDNF were also remarkably promoted in CUMS mice by treatment of SLPN. Overexpression of mmu_circ_0001223 enhanced CREB1 and BDNF protein levels in PC12 cells. CONCLUSION SLPN regulate the expression of large number circular RNAs in CUMS mice, which might be important mediators of SLPN's anti-depression effects.
Collapse
Affiliation(s)
- Hualin Zhang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Ziming Chen
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Zhiyong Zhong
- Guangdong Medical Laboratory Animal Center, Guangzhou, China
| | - Weifan Gong
- School of Pharmaceutical Sciences, South-central University for Nationalities, Wuhan, China
| | - Jun Li
- School of Pharmaceutical Sciences, South-central University for Nationalities, Wuhan, China
| |
Collapse
|