1
|
Nie Z, Xiao C, Wang Y, Li R, Zhao F. Heat shock proteins (HSPs) in non-alcoholic fatty liver disease (NAFLD): from molecular mechanisms to therapeutic avenues. Biomark Res 2024; 12:120. [PMID: 39396024 PMCID: PMC11470698 DOI: 10.1186/s40364-024-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a spectrum of liver conditions characterized by fat accumulation without excessive alcohol consumption, represents a significant global health burden. The intricate molecular landscape underlying NAFLD pathogenesis involves lipid handling, inflammation, oxidative stress, and mitochondrial dysfunction, with endoplasmic reticulum (ER) stress emerging as a key contributor. ER stress triggers the unfolded protein response (UPR), impacting hepatic steatosis in NAFLD and contributing to inflammation, fibrosis, and progression to NASH and eventually hepatocellular carcinoma (HCC). Heat shock proteins (HSPs), including small HSPs such as HSP20 and HSP27, HSP60, HSP70, GRP78, and HSP90, are integral to cellular stress responses. They aid in protein folding, prevent aggregation, and facilitate degradation, thus mitigating cellular damage under stress conditions. In NAFLD, aberrant HSP expression and function contribute to disease pathogenesis. Understanding the specific roles of HSP subtypes in NAFLD offers insights into potential therapeutic interventions. This review discusses the involvement of HSPs in NAFLD pathophysiology and highlights their therapeutic potential. By elucidating the molecular mechanisms underlying HSP-mediated protection in NAFLD, this article aims to pave the way for the development of targeted therapies for this prevalent liver disorder.
Collapse
Affiliation(s)
- Zhenwang Nie
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Congshu Xiao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yingzi Wang
- International Medical Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Rongkuan Li
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fangcheng Zhao
- Infectious Disease Department, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Mogna-Peláez P, Romo-Hualde A, Riezu-Boj JI, Milagro FI, Muñoz-Prieto D, Herrero JI, Elorz M, Benito-Boillos A, Monreal JI, Tur JA, Martínez A, Abete I, Zulet MA. Isoliquiritigenin in combination with visceral adipose tissue and related markers as a predictive tool for nonalcoholic fatty liver disease. J Physiol Biochem 2024; 80:639-653. [PMID: 37996653 PMCID: PMC11502611 DOI: 10.1007/s13105-023-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world. New non-invasive diagnostic tools are needed to promptly treat this disease and avoid its complications. This study aimed to find key metabolites and related variables that could be used to predict and diagnose NAFLD. Ninety-eight subjects with NAFLD and 45 controls from the Fatty Liver in Obesity (FLiO) Study (NCT03183193) were analyzed. NAFLD was diagnosed and graded by ultrasound and classified into two groups: 0 (controls) and ≥ 1 (NAFLD). Hepatic status was additionally assessed through magnetic resonance imaging (MRI), elastography, and determination of transaminases. Anthropometry, body composition (DXA), biochemical parameters, and lifestyle factors were evaluated as well. Non-targeted metabolomics of serum was performed with high-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-TOF-MS). Isoliquiritigenin (ISO) had the strongest association with NAFLD out of the determinant metabolites. Individuals with higher concentrations of ISO had healthier metabolic and hepatic status and were less likely to have NAFLD (OR 0.13). Receiver operating characteristic (ROC) curves demonstrated the predictive power of ISO in panel combination with other NAFLD and IR-related variables, such as visceral adipose tissue (VAT) (AUROC 0.972), adiponectin (AUROC 0.917), plasmatic glucose (AUROC 0.817), and CK18-M30 (AUROC 0.810). Individuals with lower levels of ISO have from 71 to 82% more risk of presenting NAFLD compared to individuals with higher levels. Metabolites such as ISO, in combination with visceral adipose tissue, IR, and related markers, constitute a potential non-invasive tool to predict and diagnose NAFLD.
Collapse
Affiliation(s)
- Paola Mogna-Peláez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
| | - Ana Romo-Hualde
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
| | - José I Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - David Muñoz-Prieto
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
| | - José I Herrero
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Biomedical Research Centre Network in Hepatic and Digestive Diseases (CIBERehd), 28029, Madrid, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - J Ignacio Monreal
- Clinical Chemistry Department, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Josep A Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122, Palma, Spain
| | - Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - M Angeles Zulet
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Jin Z, Gao H, Fu Y, Ren R, Deng X, Chen Y, Hou X, Wang Q, Song G, Fan N, Ma H, Yin Y, Xu K. Whole-Transcriptome Analysis Sheds Light on the Biological Contexts of Intramuscular Fat Deposition in Ningxiang Pigs. Genes (Basel) 2024; 15:642. [PMID: 38790271 PMCID: PMC11121357 DOI: 10.3390/genes15050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The quality of pork is significantly impacted by intramuscular fat (IMF). However, the regulatory mechanism of IMF depositions remains unclear. We performed whole-transcriptome sequencing of the longissimus dorsi muscle (IMF) from the high (5.1 ± 0.08) and low (2.9 ± 0.51) IMF groups (%) to elucidate potential mechanisms. In summary, 285 differentially expressed genes (DEGs), 14 differentially expressed miRNAs (DEMIs), 83 differentially expressed lncRNAs (DELs), and 79 differentially expressed circRNAs (DECs) were identified. DEGs were widely associated with IMF deposition and liposome differentiation. Furthermore, competing endogenous RNA (ceRNA) regulatory networks were constructed through co-differential expression analyses, which included circRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 47 DECs) and lncRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 36 DELs) regulatory networks. The circRNAs sus-TRPM7_0005, sus-MTUS1_0004, the lncRNAs SMSTRG.4269.1, and MSTRG.7983.2 regulate the expression of six lipid metabolism-related target genes, including PLCB1, BAD, and GADD45G, through the binding sites of 2-4068, miR-7134-3p, and miR-190a. For instance, MSTRG.4269.1 regulates its targets PLCB1 and BAD via miRNA 2_4068. Meanwhile, sus-TRPM7_0005 controls its target LRP5 through ssc-miR-7134-3P. These findings indicate molecular regulatory networks that could potentially be applied for the marker-assisted selection of IMF to enhance pork quality.
Collapse
Affiliation(s)
- Zhao Jin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Yawei Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
| | - Ruimin Ren
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaoxiao Deng
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
| | - Yue Chen
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaohong Hou
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Qian Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Gang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Ningyu Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kang Xu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
4
|
Xie L, Wang H, Hu J, Liu Z, Hu F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): Connections and interactions in liver diseases. Biochem Pharmacol 2024; 222:116104. [PMID: 38428826 DOI: 10.1016/j.bcp.2024.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Adipose tissues (AT) are an important endocrine organ that secretes various functional adipokines, peptides, non-coding RNAs, and acts on AT themselves or other distant tissues or organs through autocrine, paracrine, or endocrine manners. An accumulating body of evidence has suggested that many adipokines play an important role in liver metabolism. Besides the traditional adipokines such as adiponectin and leptin, many novel adipokines have recently been identified to have regulatory effects on the liver. Additionally, AT can produce extracellular vesicles (EVs) that act on peripheral tissues. However, under pathological conditions, such as obesity and diabetes, dysregulation of adipokines is associated with functional changes in AT, which may cause liver diseases. In this review, we focus on the newly discovered adipokines and EVs secreted by AT and highlight their actions on the liver under the context of obesity, nonalcoholic fatty liver diseases (NAFLD), and some other liver diseases. Clarifying the action of adipokines and adipose tissue-derived EVs on the liver would help to identify novel therapeutic targets or biomarkers for metabolic diseases.
Collapse
Affiliation(s)
- Lijun Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huiying Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinying Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuoying Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Health Law Research Center, School of Law, Central South University, Changsha, China.
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
5
|
Fu X, Song X, Niu S, Shi S, Chang H, Qi J, Wang P, Bai W. LncRNA-mediated ceRNA network reveals the mechanism of action of Saorilao-4 decoction against pulmonary fibrosis. Front Genet 2024; 15:1339064. [PMID: 38533208 PMCID: PMC10963618 DOI: 10.3389/fgene.2024.1339064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Pulmonary fibrosis (PF), a type of interstitial pneumonia with complex etiology and high mortality, is characterized by progressive scarring of the alveolar interstitium and myofibroblastic lesions. In this study, we screened for potential biomarkers in PF and clarified the role of the lncRNA-miRNA-mRNA ceRNA network in the inhibitory effect of SRL-4 on PF. Methods: Healthy male SPF SD rats were randomly divided into three groups, namely, CON, MOD, and SRL-4. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to determine the biological functions of the target genes. A visualized lncRNA-miRNA-mRNA ceRNA network was constructed using Cytoscape, while key genes in the network were identified using the cytoNCA plugin. Results: Seventy-four differentially expressed lncRNAs and 118 differentially expressed mRNAs were identified. Gene Ontology analysis revealed that the target genes were mainly enriched in the cell membrane and in response to organic substances, while Kyoto Encyclopedia of Genes and Genomes analysis showed that the target genes were mainly enriched in the AMPK, PPAR, and cAMP signaling pathways. We elucidated a ceRNA axis, namely, Plcd3-OT1/rno-miR-150-3p/Fkbp5, with potential implications in PF. Key genes, such as AABR07051308.1-201, F2rl2-OT1, and LINC3337, may be important targets for the treatment of PF, while the AMPK, PPAR, and cAMP signaling pathways are potential key targets and important pathways through which SRL-4 mitigates PF. Conclusion: Our findings suggest that SRL-4 improves PF by regulating the lncRNA-miRNA-mRNA network.
Collapse
Affiliation(s)
- Xinyue Fu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Xinni Song
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Shufang Niu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Songli Shi
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Jun Qi
- The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Peng Wang
- The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Wanfu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| |
Collapse
|
6
|
Rehati A, Abuduaini B, Liang Z, Chen D, He F. Identification of heat shock protein family A member 5 (HSPA5) targets involved in nonalcoholic fatty liver disease. Genes Immun 2023:10.1038/s41435-023-00205-y. [PMID: 37156995 DOI: 10.1038/s41435-023-00205-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Heat shock protein family A (Hsp70) member 5 (HSPA5) is an endoplasmic reticulum chaperone, which regulates cell metabolism, particularly lipid metabolism. While HSPA5's role in regulating cell function is well described, HSPA5 binding to RNA and its biological function in nonalcoholic fatty liver disease (NAFLD) is still lacking. In the present study, the ability of HSPA5 to modulate alternative splicing (AS) of cellular genes was assessed using Real-Time PCR on 89 NAFLD-associated genes. RNA immunoprecipitation coupled to RNA sequencing (RIP-Seq) assays were also performed to identify cellular mRNAs bound by HSPA5. We obtained the HSPA5-bound RNA profile in HeLa cells and peak calling analysis revealed that HSPA5 binds to coding genes and lncRNAs. Moreover, RIP-Seq assays demonstrated that HSPA5 immunoprecipitates specific cellular mRNAs such as EGFR, NEAT1, LRP1 and TGFß1, which are important in the pathology of NAFLD. Finally, HSPA5 binding sites may be associated with splicing sites. We used the HOMER algorithm to search for motifs enriched in coding sequence (CDs) peaks, which identified over-representation of the AGAG motif in both sets of immunoprecipitated peaks. HSPA5 regulated genes at the 5'UTR alternative splicing and introns and in an AG-rich sequence-dependent manner. We propose that the HSPA5-AGAG interaction might play an important role in regulating alternative splicing of NAFLD-related genes. This report is the first to demonstrate that HSPA5 regulated pre-RNA alternative splicing, stability, or translation and affected target protein(s) via binding to lncRNA and mRNA linked to NAFLD.
Collapse
Affiliation(s)
- Aliya Rehati
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Buzukela Abuduaini
- Department of Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Urumqi, 830054, Xinjiang, China.
| | - Zhao Liang
- Department of General Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Dong Chen
- ABLife BioBigData Institute, Wuhan, 430075, Hubei, China
| | - Fangping He
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
7
|
Huang H, Guo S, Chen Y, Liu Y, Jin J, Liang Y, Fan L, Xiang R. Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway. MedComm (Beijing) 2023; 4:e226. [PMID: 36925557 PMCID: PMC10013133 DOI: 10.1002/mco2.226] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 03/16/2023] Open
Abstract
Reticulon 3 (RTN3), an endoplasmic reticulum protein, is crucial in neurodegenerative and kidney diseases. However, the role of RTN3 in liver tissues has not been described. Here, we employed public datasets, patients, and several animal models to explore the role of RTN3 in nonalcoholic fatty liver disease (NAFLD). The underlying mechanisms were studied in primary hepatocytes and L02 cells in vitro. We found an increased expression of RTN3 in NAFLD patients, high-fat diet mice, and oxidized low-density lipoprotein-treated L02 cells. The RTN3 transgenic mice exhibited the phenotypes of fatty liver and lipid accumulation. Single-cell RNA sequencing analysis indicated that increased RTN3 might induce mitochondrial dysfunction. We further showed this in primary hepatocytes, the L02 cell line, and the Caenorhabditis elegans strain. Mechanistically, RTN3 regulated these events through its interactions with glucose-regulated protein 78 (GRP78), which further inhibited the adenosine 5 monophosphate-activated protein kinase (AMPK)-isocitrate dehydrogenase 2 (IDH2) pathway. In the end, knockout of RTN3 relieved fatty liver and mitochondrial dysfunction. Our study indicated that RTN3 was important in NAFLD and lipid catabolism and that an increase in RTN3 in the liver might be a risk factor for nonalcoholic steatohepatitis and NAFLD.
Collapse
Affiliation(s)
- Hao Huang
- Department of NephrologyXiangya HospitalCentral South UniversityChangshaChina
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Animal Models for Human DiseasesSchool of Life SciencesCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Shuai Guo
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
| | - Ya‐Qin Chen
- Department of CardiologySecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Yu‐Xing Liu
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
| | - Jie‐Yuan Jin
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
| | - Yun Liang
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
| | - Liang‐Liang Fan
- Department of NephrologyXiangya HospitalCentral South UniversityChangshaChina
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Animal Models for Human DiseasesSchool of Life SciencesCentral South UniversityChangshaChina
| | - Rong Xiang
- Department of NephrologyXiangya HospitalCentral South UniversityChangshaChina
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Animal Models for Human DiseasesSchool of Life SciencesCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Department of CardiologySecond Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
8
|
Trink J, Ahmed U, O'Neil K, Li R, Gao B, Krepinsky JC. Cell surface GRP78 regulates TGFβ1-mediated profibrotic responses via TSP1 in diabetic kidney disease. Front Pharmacol 2023; 14:1098321. [PMID: 36909183 PMCID: PMC9998550 DOI: 10.3389/fphar.2023.1098321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction: Diabetic kidney disease (DKD) is the leading cause of kidney failure in North America, characterized by glomerular accumulation of extracellular matrix (ECM) proteins. High glucose (HG) induction of glomerular mesangial cell (MC) profibrotic responses plays a central role in its pathogenesis. We previously showed that the endoplasmic reticulum resident GRP78 translocates to the cell surface in response to HG, where it mediates Akt activation and downstream profibrotic responses in MC. Transforming growth factor β1 (TGFβ1) is recognized as a central mediator of HG-induced profibrotic responses, but whether its activation is regulated by cell surface GRP78 (csGRP78) is unknown. TGFβ1 is stored in the ECM in a latent form, requiring release for biological activity. The matrix glycoprotein thrombospondin 1 (TSP1), known to be increased in DKD and by HG in MC, is an important factor in TGFβ1 activation. Here we determined whether csGRP78 regulates TSP1 expression and thereby TGFβ1 activation by HG. Methods: Primary mouse MC were used. TSP1 and TGFβ1 were assessed using standard molecular biology techniques. Inhibitors of csGRP78 were: 1) vaspin, 2) the C-terminal targeting antibody C38, 3) siRNA downregulation of its transport co-chaperone MTJ-1 to prevent GRP78 translocation to the cell surface, and 4) prevention of csGRP78 activation by its ligand, active α2-macroglobulin (α2M*), with the neutralizing antibody Fα2M or an inhibitory peptide. Results: TSP1 transcript and promoter activity were increased by HG, as were cellular and ECM TSP1, and these required PI3K/Akt activity. Inhibition of csGRP78 prevented HG-induced TSP1 upregulation and deposition into the ECM. The HG-induced increase in active TGFβ1 in the medium was also inhibited, which was associated with reduced intracellular Smad3 activation and signaling. Overexpression of csGRP78 increased TSP-1, and this was further augmented in HG. Discussion: These data support an important role for csGRP78 in regulating HG-induced TSP1 transcriptional induction via PI3K/Akt signaling. Functionally, this enables TGFβ1 activation in response to HG, with consequent increase in ECM proteins. Means of inhibiting csGRP78 signaling represent a novel approach to preventing fibrosis in DKD.
Collapse
Affiliation(s)
- Jackie Trink
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Usman Ahmed
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Kian O'Neil
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Renzhong Li
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Joan C Krepinsky
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Nguyen HD, Kim MS. Effects of chemical mixtures on liver function biomarkers in the Korean adult population: thresholds and molecular mechanisms for non-alcoholic fatty liver disease involved. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78555-78587. [PMID: 35696061 DOI: 10.1007/s11356-022-21090-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
There is a scarcity of research on the effects of a mixture of chemicals on liver function biomarkers and non-alcoholic fatty liver disease (NAFLD) indices, including FSI, HIS, and FBI-4. Thus, we aimed to explore whether there is an association between chemical mixtures, including 26 chemicals found in blood and urine, liver function biomarkers, and non-alcoholic fatty liver disease (NAFLD) indices in Korean adults. The effects of exposure to chemical mixtures on liver function biomarkers and NAFLD indices were investigated using linear regression models, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) among 3669 adults. In silico toxicogenomic data-mining, we evaluated molecular mechanisms associated with NAFLD, including pathways, diseases, genes, miRNAs, and biological processes. The linear regression models showed blood or urine Hg levels were the most important factors associated with AST, ALT, GGT, FSI, and HSI levels, and significant trends were observed for these chemical quartiles (p < 0.01). The WQS index was significantly associated with ALT, GGT, FSI, and HSI. The qgcomp index also found an association between chemicals and AST, ALT, GGT, and FSI. In the BKMR model, the overall effect of the mixture was significantly related to ALT, GGT, FSI, and HSI. In silico analysis, we found mixed chemicals interacted with the CYP1A2 gene and were associated with NAFLD. Seventy-eight percent of interactions were identified as physical interactions in the CYP1A2 gene related to NAFLD. Transcription factor regulation in adipogenesis and lipid metabolic processes are fundamental molecular mechanisms that could be influenced by NAFLD-related mixed chemicals. Cutoff thresholds for chemical exposure levels associated with liver function indicators and NAFLD indices were also reported. The strongest interactions and expression of miRNAs involved in NAFLD development were also identified.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
10
|
Adipokines in Non-Alcoholic Fatty Liver Disease: Are We on the Road toward New Biomarkers and Therapeutic Targets? BIOLOGY 2022; 11:biology11081237. [PMID: 36009862 PMCID: PMC9405285 DOI: 10.3390/biology11081237] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Non-alcoholic fatty liver disease (NAFLD) is an unmet medical need due to its increasingly high incidence, severe clinical consequences, and the absence of feasible diagnostic tools and effective drugs. This review summarizes the preclinical and clinical data on adipokines, cytokine-like hormones secreted by adipose tissue, and NAFLD. The aim is to establish the potential of adipokines as diagnostic and prognostic biomarkers, as well as their potential as therapeutic targets for NAFLD. The limitations of current research are also discussed, and future perspectives are outlined. Abstract Non-alcoholic fatty liver disease (NAFLD) has become the major cause of chronic hepatic illness and the leading indication for liver transplantation in the future decades. NAFLD is also commonly associated with other high-incident non-communicable diseases, such as cardiovascular complications, type 2 diabetes, and chronic kidney disease. Aggravating the socio-economic impact of this complex pathology, routinely feasible diagnostic methodologies and effective drugs for NAFLD management are unavailable. The pathophysiology of NAFLD, recently defined as metabolic associated fatty liver disease (MAFLD), is correlated with abnormal adipose tissue–liver axis communication because obesity-associated white adipose tissue (WAT) inflammation and metabolic dysfunction prompt hepatic insulin resistance (IR), lipid accumulation (steatosis), non-alcoholic steatohepatitis (NASH), and fibrosis. Accumulating evidence links adipokines, cytokine-like hormones secreted by adipose tissue that have immunometabolic activity, with NAFLD pathogenesis and progression; however, much uncertainty still exists. Here, the current knowledge on the roles of leptin, adiponectin, ghrelin, resistin, retinol-binding protein 4 (RBP4), visfatin, chemerin, and adipocyte fatty-acid-binding protein (AFABP) in NAFLD, taken from preclinical to clinical studies, is overviewed. The effect of therapeutic interventions on adipokines’ circulating levels are also covered. Finally, future directions to address the potential of adipokines as therapeutic targets and disease biomarkers for NAFLD are discussed.
Collapse
|