1
|
Huang Y, Mo H, Yang J, Gao L, Tao T, Shu Q, Guo W, Zhao Y, Lyu J, Wang Q, Guo J, Zhai H, Zhu L, Chen H, Xu G. Mechano-regulation of GLP-1 production by Piezo1 in intestinal L cells. eLife 2024; 13:RP97854. [PMID: 39509292 PMCID: PMC11542922 DOI: 10.7554/elife.97854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone secreted by intestinal L cells and vital for postprandial glycemic control. As open-type enteroendocrine cells, whether L cells can sense mechanical stimuli caused by chyme and thus regulate GLP-1 synthesis and secretion is unexplored. Molecular biology techniques revealed the expression of Piezo1 in intestinal L cells. Its level varied in different energy status and correlates with blood glucose and GLP-1 levels. Mice with L cell-specific loss of Piezo1 (Piezo1 IntL-CKO) exhibited impaired glucose tolerance, increased body weight, reduced GLP-1 production and decreased CaMKKβ/CaMKIV-mTORC1 signaling pathway under normal chow diet or high-fat diet. Activation of the intestinal Piezo1 by its agonist Yoda1 or intestinal bead implantation increased the synthesis and secretion of GLP-1, thus alleviated glucose intolerance in diet-induced-diabetic mice. Overexpression of Piezo1, Yoda1 treatment or stretching stimulated GLP-1 production and CaMKKβ/CaMKIV-mTORC1 signaling pathway, which could be abolished by knockdown or blockage of Piezo1 in primary cultured mouse L cells and STC-1 cells. These experimental results suggest a previously unknown regulatory mechanism for GLP-1 production in L cells, which could offer new insights into diabetes treatments.
Collapse
Affiliation(s)
- Yanling Huang
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Haocong Mo
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Jie Yang
- Department of Pathology, School of Basic Medicine, Guangzhou Medical UniversityGuangdongChina
| | - Luyang Gao
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Tian Tao
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Qing Shu
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Wenying Guo
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Yawen Zhao
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Jingya Lyu
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Qimeng Wang
- Biotherapy Center, Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong KongShenzhenChina
| | - Hening Zhai
- Endoscopy Center, The First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Linyan Zhu
- Department of Pharmacology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Hui Chen
- Biotherapy Center, Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of EducationGuangzhouChina
| |
Collapse
|
2
|
Li Z, Dai F, Zhu R, Zhang Y, Chen J, Chen L, Liu H, Cheng Y. Dysregulation of CREB5 Impairs Decidualization and Maternal-Fetal Interactions by Inhibiting Autophagy in Recurrent Spontaneous Abortion. Reprod Sci 2024; 31:1983-2000. [PMID: 38424407 DOI: 10.1007/s43032-024-01474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Clinically, recurrent spontaneous abortion (RSA) is a pregnancy illness that is difficult to treat. Impaired decidualization is a documented cause of RSA, but the etiology and mechanism are still unknown. cAMP-responsive element binding protein 5 (CREB5) is a member of the ATF/CREB family. CREB5 has been reported to be related to pathological pregnancy, but there are few related studies on this topic in patients with RSA, and the underlying mechanism is unclear. METHODS We collected decidual tissues from RSA patients and healthy pregnant women to measure the expression level of CREB5, PRL, IGFBP1, ATG5, LC3B, and SQSTM/p62. Then, the changes in CREB5 expression and autophagy levels were measured in human endometrial stromal cells (hESCs) during decidualization. The expression levels of PRL and IGFBP1 were tested in sh-CREB5/ov-CREB5 hESCs after decidualization induction, and the autophagy level in sh-CREB5/ov-CREB5 hESCs was measured without decidualization induction. The decidualization ability of sh-CREB5 and ov-CREB5 hESCs treated with an autophagy inducer or inhibitor was measured. To investigate the effect of CREB5 in hESCs on the invasion and migration of HTR8/SVneo cells, we performed a coculture experiment. Finally, we examined the expression of CREB5 and autophagy key proteins in mouse decidual tissues by constructing an abortion mouse model. RESULTS In our study, we found that the expression of CREB5 was unusually elevated in the uterine decidua of RSA patients, but the expression of PRL, IGFBP1, and autophagy were decreased. During the decidualization of hESCs, the expression of CREB5 gradually decreases in a time-dependent manner with increasing autophagy. Moreover, by knocking down or overexpressing CREB5 in hESCs, it was found that CREB5 can impair decidualization and reduce autophagy in hESCs. Furthermore, the damage caused by CREB5 in terms of decidualization can be reversed by the addition of an autophagy inducer (rapamycin). In addition, CREB5 can increase the secretion of proteins (IL-1β and TGF-β1) in hESCs to inhibit trophoblast invasion and migration. CONCLUSIONS Our data support the supposition that CREB5 disturbs the decidualization of endometrial stromal cells and interactions at the maternal-fetal interface by inhibiting autophagy and that its abnormal upregulation and dysfunction may lead to RSA. It may function as a diagnostic and therapeutic target for RSA. Similarly, we found that in the spontaneous abortion mouse model, the expression of CREB5 in the decidual tissue of the abortion group was significantly increased, and autophagy was decreased.
Collapse
Affiliation(s)
- Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Ronghui Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei, 430100, People's Republic of China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
3
|
Loreto JS, Ferreira SA, de Almeida P, da Rocha JBT, Barbosa NV. Screening for Differentially Expressed Memory Genes on a Diabetes Model Induced by High-Sugar Diet in Drosophila melanogaster: Potential Markers for Memory Deficits. Mol Neurobiol 2024; 61:1225-1236. [PMID: 37698834 DOI: 10.1007/s12035-023-03598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been shown to affect a series of cognitive processes including memory, increasing the risk for dementia, particularly Alzheimer's disease (AD). Although increasing evidence has supported that both diseases share common features, the pathophysiological mechanisms connecting these two disorders remain to be fully elucidated. Herein, we used Drosophila melanogaster fed on a high-sugar diet (HSD) to mimic T2DM, and investigate its effects on memory as well as identify potential molecular players associated with the memory deficits induced by HSD. Flies hatched from and reared on HSD for 7 days had a substantial decrease in short-term memory (STM). The screening for memory-related genes using transcriptome data revealed that HSD altered the expression of 33% of memory genes in relation to the control. Among the differentially expressed genes (DEGs) with a fold change (FC) higher than two, we found five genes, related to synapse and memory trace formation, that could be considered strong candidates to underlie the STM deficits in HSD flies: Abl tyrosine kinase (Abl), bruchpilot (Brp), minibrain (Mnb), shaker (Sh), and gilgamesh (Gish). We also analyzed genes from the dopamine system, one of the most relevant signaling pathways for olfactory memory. Interestingly, the flies fed on HSD presented a decreased expression of the Tyrosine hydroxylase (Ple) and Dopa decarboxylase (Ddc) genes, signals of a possible dopamine deficiency. In this work, we present promising biomarkers to investigate molecular networks shared between T2DM and AD.
Collapse
Affiliation(s)
- Julia Sepel Loreto
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil
| | - Sabrina Antunes Ferreira
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil
| | - Pâmela de Almeida
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil
| | - João Batista Teixeira da Rocha
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil
| | - Nilda Vargas Barbosa
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil.
| |
Collapse
|
4
|
Du F, Liu M, Wang J, Hu L, Zeng D, Zhou S, Zhang L, Wang M, Xu X, Li C, Zhang J, Yu S. Metformin coordinates with mesenchymal cells to promote VEGF-mediated angiogenesis in diabetic wound healing through Akt/mTOR activation. Metabolism 2023; 140:155398. [PMID: 36627079 DOI: 10.1016/j.metabol.2023.155398] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cell therapy with mesenchymal stem cells (MSCs) and biomaterials holds great potential for the treatment of diabetic ulceration; however, the underlying mechanism as well as its compatibility with the first-line anti-diabetic drug, metformin (MTF), has not been well elucidated. METHODS MSCs derived from the umbilical cord were labeled with fluorescent proteins, followed by transplantation in a fibrin scaffold (MSCs/FG) onto the STZ-induced diabetic wound in a C57BL6/J mouse model. MTF was administered by oral gavage at a dose of 250 mg/kg/day. The wound healing rate, epithelization, angiogenesis, and underlying mechanism were evaluated in MSCs/FG- and MTF-treated diabetic wounds. Moreover, the dose-dependent effects of MTF and involvement of the Akt/mTOR pathway were analyzed in keratinocyte and fibroblast cultures. RESULTS MSCs/FG significantly promoted angiogenesis in diabetic wound healing without signs of differentiation or integration. The recruitment of fibroblasts and keratinocytes by MSCs/FG promotes migration and vascular endothelial growth factor (VEGF) expression in an Akt/mTOR-dependent manner. MTF, which is generally considered a mTOR inhibitor, displayed dose-dependent effects on MSC-unregulated Akt/mTOR and VEGF expression. Oral administration of MTF at an anti-diabetic dosage synergistically acted with MSCs/FG to promote Akt/mTOR activation, VEGF expression, and subsequent angiogenesis in diabetic wounds; however, it reduced the survival of MSCs. CONCLUSIONS Our study identifies that MTF coordinates with mesenchymal cells to promote Akt/mTOR activation and VEGF-mediated angiogenesis during diabetic wound healing. These findings offer new insights into MSCs engraftment in FG scaffolds for diabetic wound healing and provide support for the promotion of MSCs therapy in patients prescribed with MTF.
Collapse
Affiliation(s)
- Fangzhou Du
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Mengmeng Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Lvzhong Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongao Zeng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shaocong Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Lixing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Meijia Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Xi Xu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingzhong Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Zhengzhou Zhongke Academy of Biomedical Engineering and Technology, Zhengzhou, Henan, China.
| | - Shuang Yu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Autophagy Is Required to Sustain Increased Intestinal Cell Proliferation during Phenotypic Plasticity Changes in Honey Bee ( Apis mellifera). Int J Mol Sci 2023; 24:ijms24031926. [PMID: 36768248 PMCID: PMC9916008 DOI: 10.3390/ijms24031926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Tissue phenotypic plasticity facilitates rapid adaptation of organisms to biotic and/or abiotic pressure. The reproductive capacity of honey bee workers (Apis mellifera) is plastic and responsive to pheromones produced by broods and the queen. Egg laying workers (ELWs), which could reactivate their ovaries and lay haploid eggs upon queen lost, have been commonly discussed from many aspects. However, it remains unclear whether midgut homeostasis in ELWs is affected during plastic changes. Here, we found that the expression of nutrition- and autophagy-related genes was up-regulated in the midguts of ELWs, compared with that in nurse workers (NWs) by RNA-sequencing. Furthermore, the area and number of autophagosomes were increased, along with significantly increased cell death in the midguts of ELWs. Moreover, cell cycle progression in the midguts of ELWs was increased compared with that in NWs. Consistent with the up-regulation of nutrition-related genes, the body and midgut sizes, and the number of intestinal proliferation cells of larvae reared with royal jelly (RJ) obviously increased more than those reared without RJ in vitro. Finally, cell proliferation was dramatically suppressed in the midguts of ELWs when autophagy was inhibited. Altogether, our data suggested that autophagy was induced and required to sustain cell proliferation in ELWs' midguts, thereby revealing the critical role of autophagy played in the intestines during phenotypic plasticity changes.
Collapse
|
6
|
Peng Q, Liu H, Luo Z, Zhao H, Wang X, Guan X. Effect of autophagy on ferroptosis in foam cells via Nrf2. Mol Cell Biochem 2022; 477:1597-1606. [PMID: 35195807 DOI: 10.1007/s11010-021-04347-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022]
Abstract
The progression of atherosclerotic plaque is accelerated by death of foam cells during the development of the plaque. There are several forms of foam cell death, such as autophagy and ferroptosis forms of cell death together are commonly predominant. Therefore, it is particularly important to study the crosstalk between various forms of cell death in atheroscler and ferroptosis. Although there is a dominant form of cell death that plays a role in the disease, motic plaques. Nuclear factor NF-E2-related factor (Nrf2) has been considered as a major regulator of antioxidant in previous studies, but recent studies have revealed that insufficient cellular autophagy can turn off Nrf2-mediated antioxidant defense while initiating Nrf2-manipulated iron deposition and lipid peroxidation, leading to the development of iron ferroptosis. The present experiment aimed to explain the regulatory mechanism between autophagy and ferroptosis through Nrf2. In this experiment, differentiated human THP-1 macrophages were used, which were treated with ox-LDL into foam cells with the addition of the autophagy inhibitor chloroquine (CQ), the inhibitor of Nrf2 (ML385), the promoter of Nrf2 (t-BHQ), and the inhibitor of ferroptosis (Liproxstatin-1), and the expression levels of autophagy-related proteins p62 and LC3, as well as Nrf2 and ferroptosis-related proteins xCT and GPX4 by WB, foam cell survival by CCK8, and intracellular reactive oxygen levels by Flow cytometry analysis and fluorescence microscopy. The effect of autophagy through Nrf2 on ferroptosis in foam cells was determined. The results revealed that insufficient autophagy in CQ-induced foam cells could lead to foam cell death in atherosclerotic plaques, and the cause of cell death was that insufficient autophagy in foam cells turned off the positive effect of Nfr2 antioxidant, initiated the negative effect of Nrf2 to promote intracellular reactive oxygen species production, and this negative effect promoted ferroptosis in foam cells.
Collapse
Affiliation(s)
- Qi Peng
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Huihui Liu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Zhisheng Luo
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Haiyan Zhao
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Xinming Wang
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|