1
|
Hossain MN, Gao Y, Li X, Zhao L, Liu X, Marie de Avila J, Zhu MJ, Du M. Single-cell RNA transcriptomics in mice reveals embryonic origin of fibrosis due to maternal obesity. EBioMedicine 2024; 109:105421. [PMID: 39476533 PMCID: PMC11565040 DOI: 10.1016/j.ebiom.2024.105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Over 40% of pregnant women in the USA are obese which negatively affects fetal development and offspring health. Maternal obesity (MO) leads to fibrotic infiltration in multiple tissues and organs of offspring during their adulthood although the origin and mechanisms are unclear. METHODS C57BL/6J female mice were fed a control and high-fat diet to mimic MO condition. Embryonic somatic tissues were obtained at E9.5, E11.5, and E13.5 (equivalent to 6 weeks of human pregnancy) from control (CON) and MO mice for single-cell RNA-sequencing (scRNA-seq). To explore the role of AMP-activated protein kinase (AMPK), AMPK was activated by metformin and A769662, and knocked out in embryonic mesenchymal cells (EMC) using AMPKα1 floxed mice. FINDINGS Using unsupervised clustering, we identified three major cell populations with fibrogenic capacity. Compared to CON, the population of fibrogenic cells increased dramatically (by ∼125%) due to MO, supporting an embryonic origin of fibrosis in the offspring. MO induced inflammatory response and elevated expression of transforming growth factor β (TGFβ) signalling and fibrogenic genes in embryos. MO inhibited AMPK and its activation by metformin and A769662 inhibited TGFβ signalling and fibrogenesis. INTERPRETATION MO profoundly enhances embryonic fibrogenesis, explaining the origin of fibrosis in the offspring of mothers living with obesity. Our data underscore the importance of early intervention, before 5-6 weeks of pregnancy, in improving embryonic development, and AMPK is an amiable target for suppressing excessive fibrogenesis in MO embryos to assist increasing populations of obese mothers having healthy children. FUNDING This work was funded by National Institutes of Health Grant R01HD067449.
Collapse
Affiliation(s)
- Md Nazmul Hossain
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Xinrui Li
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Liang Zhao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA; College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Xiangdong Liu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA; Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Jeanene Marie de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
2
|
Chen A, Tian M, Luo Z, Cao X, Gu Y. Analysis of the evolution of placental oxidative stress research from a bibliometric perspective. Front Pharmacol 2024; 15:1475244. [PMID: 39484166 PMCID: PMC11524950 DOI: 10.3389/fphar.2024.1475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Research on placental oxidative stress is pivotal for comprehending pregnancy-related physiological changes and disease mechanisms. Despite recent advancements, a comprehensive review of current status, hotspots, and trends remains challenging. This bibliometric study systematically analyzes the evolution of placental oxidative stress research, offering a reference for future studies. Objective To conduct a comprehensive bibliometric analysis of the literature on placental oxidative stress to identify research hotspots, trends, and key contributors, thereby providing guidance for future research. Methods Relevant data were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, CiteSpace, and the bibliometrix package. An in-depth analysis of 4,796 publications was conducted, focusing on publication year, country/region, institution, author, journal, references, and keywords. Data collection concluded on 29 April 2024. Results A total of 4,796 papers were retrieved from 1,173 journals, authored by 18,835 researchers from 4,257 institutions across 103 countries/regions. From 1991 to 2023, annual publications on placental oxidative stress increased from 7 to 359. The United States (1,222 publications, 64,158 citations), the University of Cambridge (125 publications, 13,562 citations), and Graham J. Burton (73 publications, 11,182 citations) were the most productive country, institution, and author, respectively. The journal Placenta had the highest number of publications (329) and citations (17,152), followed by the International Journal of Molecular Sciences (122 publications). The most frequent keywords were "oxidative stress," "expression," "pregnancy," "preeclampsia," and "lipid peroxidation." Emerging high-frequency keywords included "gestational diabetes mellitus," "health," "autophagy," "pathophysiology," "infection," "preterm birth," "stem cell," and "inflammation." Conclusion Over the past 3 decades, research has concentrated on oxidative stress processes, antioxidant mechanisms, pregnancy-related diseases, and gene expression regulation. Current research frontiers involve exploring pathophysiology and mechanisms, assessing emerging risk factors and environmental impacts, advancing cell biology and stem cell research, and understanding the complex interactions of inflammation and immune regulation. These studies elucidate the mechanisms of placental oxidative stress, offering essential scientific evidence for future intervention strategies, therapeutic approaches, and public health policies.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Cao
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yanfang Gu
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
3
|
Jantape T, Kongwattanakul K, Arribas SM, Rodríguez-Rodríguez P, Iampanichakul M, Settheetham-Ishida W, Phuthong S. Maternal Obesity Alters Placental and Umbilical Cord Plasma Oxidative Stress, a Cross-Sectional Study. Int J Mol Sci 2024; 25:10866. [PMID: 39409195 PMCID: PMC11477106 DOI: 10.3390/ijms251910866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Maternal obesity has been shown to impair the oxidative status in the placenta and newborns, potentially leading to adverse pregnancy outcomes and long-term effects on the programming of offspring metabolic status. This study aimed to investigate the impact of maternal obesity on maternal and umbilical cord plasma oxidative status, as well as placental oxidative adaptation. Maternal obesity (n = 20), defined as a pre-pregnancy BMI ≥ 25 kg/m2, and maternal leanness (n = 20), defined as a pre-pregnancy BMI < 23 kg/m2, were the group categories used in this study. Both groups were matched according to gestational age at delivery. Maternal blood, umbilical cord blood, and placental tissue were collected to assess nutritional content (cholesterol, triglyceride, and protein), oxidative stress markers (MDA and protein carbonyl), and antioxidant activity (SOD and catalase). Placental protein expression (SOD2, catalase, UCP2, and Nrf2) was evaluated using Western blot analysis. Catalase activity in maternal plasma significantly increased in the maternal obesity group (p = 0.0200), with a trend toward increased MDA and protein carbonyl levels. In umbilical cord plasma, triglyceride, protein carbonyl, and catalase activity were significantly elevated in the maternal obesity group compared with the lean controls (p = 0.0482, 0.0291, and 0.0347, respectively). Placental protein expression analysis revealed significantly decreased SOD2 (p = 0.0011) and catalase (p < 0.0001), along with Nrf2 downregulation (p < 0.0001). An increase in mitochondrial antioxidant UCP2 expression was observed (p = 0.0117). The neonatal protein carbonyl levels positively correlated with placental protein carbonyl (r = 0.7405, p < 0.0001) and negatively correlated with maternal catalase activity (r = -0.4332, p = 0.0052). This study thus provides evidence that maternal obesity is associated with placental and fetal oxidative stress, alongside a concurrent increase in placental antioxidant UCP2 expression.
Collapse
Affiliation(s)
- Thanyawan Jantape
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.J.); (M.I.); (W.S.-I.)
| | - Kiattisak Kongwattanakul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.M.A.); (P.R.-R.)
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.M.A.); (P.R.-R.)
| | - Metee Iampanichakul
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.J.); (M.I.); (W.S.-I.)
| | - Wannapa Settheetham-Ishida
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.J.); (M.I.); (W.S.-I.)
| | - Sophida Phuthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.J.); (M.I.); (W.S.-I.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Akyildiz K, Yilmaz A, Avci U, Toraman MN, Yazici ZA. White Tea Consumption Alleviates Anthropometric and Metabolic Parameters in Obese Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1568. [PMID: 39459354 PMCID: PMC11509830 DOI: 10.3390/medicina60101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Obesity and related disorders are an increasing global health problem. Achieving and maintaining long-term weight loss through lifestyle changes and/or pharmacological interventions have not met expectations. Dietary supplements and alternative treatments have also shown limited effectiveness in this regard. The consumption of green tea in general has been shown to benefit obese patients, with effects attributed to caffeine, catechins, polyphenols and other components. However, the potential of white tea to prevent and treat the negative effects of obesity has not been addressed so far. In this study, the effect of white tea (WT) consumption in obese individuals was anthropometrically and biochemically investigated. Materials and Methods: Based on anthropometric and biochemical assessments, the patients were assigned to the control, orlistat, metformin and WT groups. Patients were given a diet and exercise program and one of either orlistat, metformin or WT for 12 weeks. At the end of the 12th week, the anthropometric and biochemical measurements were reassessed. Results: Body weight, waist circumference and BMI parameters decreased significantly in all groups. TNF-α, IL-6, IL-1β and MMP-9 levels decreased significantly in the WT group. In addition, contrary to a significant elevation in HDL-C, the serum cholesterol, LDL-C and TG levels decreased significantly. Furthermore, leptin, ghrelin and asprosin levels decreased significantly. Serum glucose levels decreased significantly in all groups except for the control. In the WT group, while there was a significant decrease in the levels of serum PL MDA and 8-OHdG, the opposite was true for GSH. Conclusions: The oral consumption of WT, its availability and its potency in obesity treatment and prevention pave the way for further delineation of the mechanisms of actions of its bioactive compounds at the cellular and endocrinological levels.
Collapse
Affiliation(s)
- Kerimali Akyildiz
- Department of Medical Services and Techniques, School of Vocational Healh Care Services, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Adnan Yilmaz
- Department of Biochemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Ugur Avci
- Department of Endocrinology and Metabolism, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Merve Nur Toraman
- Department of Nutrition and Diet, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Zihni Acar Yazici
- Department of Microbiology, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| |
Collapse
|
5
|
Bautista CJ, Reyes-Castro LA, Lomas-Soria C, Ibáñez CA, Zambrano E. Late-in-life Exercise Ameliorates the Aging Trajectory Metabolism Programmed by Maternal Obesity in Rats: It is Never Too Late. Arch Med Res 2024; 55:103002. [PMID: 38735235 DOI: 10.1016/j.arcmed.2024.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Maternal obesity (MO) has been shown to adversely affect metabolic, oxidative, reproductive, and cognitive function in offspring. However, it is unclear whether lifestyle modification can ameliorate the metabolic and organ dysfunction programmed by MO and prevent the effects of metabolic syndrome in adulthood. This study aimed to evaluate whether moderate voluntary exercise in the offspring of rats born to obese mothers can ameliorate the adverse effects of MO programming on metabolism and liver function in mid-adulthood. METHODS Offspring of control (CF1) and MOF1 mothers were fed with a control diet from weaning. Adult males and females participated in 15 min exercise sessions five days/week. Metabolic parameters were analyzed before and after the exercise intervention. Liver oxidative stress biomarkers and antioxidant enzymes were analyzed before and after the intervention. RESULTS Males showed that CF1ex ran more than MOF1ex and increased the distance covered. In contrast, females in both groups ran similar distances and remained constant but ran more distance than males. At PND 300 and 450, male and female MOF1 had higher leptin, triglycerides, insulin, and HOMA-IR levels than CF1. However, male MOF1ex had lower triglycerides, insulin, and HOMA-IR levels than MOF1. Improvements in liver fat and antioxidant enzymes were observed in CF1ex and MOF1ex males and females compared to their respective CF1 and MOF1 groups. CONCLUSION These findings suggest that moderate voluntary exercise, even when started in mid-adulthood, can improve metabolic outcomes and delay accelerated metabolic aging in MO-programmed rats in a sex-dependent manner.
Collapse
Affiliation(s)
- Claudia J Bautista
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Luis A Reyes-Castro
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Consuelo Lomas-Soria
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico; Consejo Nacional de Humanidades, Ciencias y Tecnologías, Cátedras Investigador por México, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Carlos A Ibáñez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Elena Zambrano
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
6
|
Guan L, Jia Z, Xu K, Yang M, Li X, Qiao L, Liu Y, Lin J. Npc1 gene mutation abnormally activates the classical Wnt signalling pathway in mouse kidneys and promotes renal fibrosis. Anim Genet 2024; 55:99-109. [PMID: 38087834 DOI: 10.1111/age.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/29/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2024]
Abstract
Niemann-Pick disease type C1 (NPC1) is a lysosomal lipid storage disease caused by NPC1 gene mutation. Our previous study found that, compared with wild-type (Npc1+/+ ) mice, the renal volume and weight of Npc1 gene mutant (Npc1-/- ) mice were significantly reduced. We speculate that Npc1 gene mutations may affect the basic structure of the kidneys of Npc1-/- mice, and thus affect their function. Therefore, we randomly selected postnatal Day 28 (P28) and P56 Npc1+/+ and Npc1-/- mice, and observed the renal structure and pathological changes by haematoxylin-eosin staining. The level of renal fibrosis was detected by immunofluorescence histochemical techniques, and western blotting was used to detect the expression levels of apoptosis-related proteins and canonical Wnt signalling pathway related proteins. The results showed that compared with Npc1+/+ mice, the kidneys of P28 and P56 Npc1-/- mice underwent apoptosis and fibrosis; furthermore, there were obvious vacuoles in the cytoplasm of renal tubular epithelial cells of P56 Npc1-/- mice, the cell bodies were loose and foam-like, and the canonical Wnt signalling pathway was abnormally activated. These results showed that Npc1 gene mutation can cause pathological changes in the kidneys of mice. As age increased, vacuoles developed in the cytoplasm of renal tubular epithelial cells, and apoptosis of renal cells, abnormal activation of the Wnt signalling pathway, and promotion of renal fibrosis increased.
Collapse
Affiliation(s)
- Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Noninvasive Neuromodulation, Xinxiang, Henan, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanli Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
7
|
Müller A, Lozoya M, Chen X, Weissig V, Nourbakhsh M. Farnesol Inhibits PI3 Kinase Signaling and Inflammatory Gene Expression in Primary Human Renal Epithelial Cells. Biomedicines 2023; 11:3322. [PMID: 38137543 PMCID: PMC10741437 DOI: 10.3390/biomedicines11123322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic inflammation and elevated cytokine levels are closely associated with the progression of chronic kidney disease (CKD), which is responsible for the manifestation of numerous complications and mortality. In addition to conventional CKD therapies, the possibility of using natural compounds with anti-inflammatory potential has attracted widespread attention in scientific research. This study aimed to study the potential anti-inflammatory effects of a natural oil compound, farnesol, in primary human renal proximal tubule epithelial cell (RPTEC) culture. Farnesol was encapsulated in lipid-based small unilamellar vesicles (SUVs) to overcome its insolubility in cell culture medium. The cell attachment of empty vesicles (SUVs) and farnesol-loaded vesicles (farnesol-SUVs) was examined using BODIPY, a fluorescent dye with hydrophobic properties. Next, we used multiple protein, RNA, and protein phosphorylation arrays to investigate the impact of farnesol on inflammatory signaling in RPTECs. The results indicated that farnesol inhibits TNF-α/IL-1β-induced phosphorylation of the PI3 kinase p85 subunit and subsequent transcriptional activation of the inflammatory genes TNFRSF9, CD27, TNFRSF8, DR6, FAS, IL-7, and CCL2. Therefore, farnesol may be a promising natural compound for treating CKD.
Collapse
Affiliation(s)
- Aline Müller
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (A.M.); (X.C.)
| | - Maria Lozoya
- College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA; (M.L.); (V.W.)
| | - Xiaoying Chen
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (A.M.); (X.C.)
| | - Volkmar Weissig
- College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA; (M.L.); (V.W.)
| | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (A.M.); (X.C.)
| |
Collapse
|
8
|
Zhang J, Li S, Luo X, Zhang C. Emerging role of hypothalamus in the metabolic regulation in the offspring of maternal obesity. Front Nutr 2023; 10:1094616. [PMID: 36819678 PMCID: PMC9928869 DOI: 10.3389/fnut.2023.1094616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Maternal obesity has a significant impact on the metabolism of offspring both in childhood and adulthood. The metabolic regulation of offspring is influenced by the intrauterine metabolic programming induced by maternal obesity. Nevertheless, the precise mechanisms remain unclear. The hypothalamus is the primary target of metabolic programming and the principal regulatory center of energy metabolism. Accumulating evidence has indicated the crucial role of hypothalamic regulation in the metabolism of offspring exposed to maternal obesity. This article reviews the development of hypothalamus, the role of the hypothalamic regulations in energy homeostasis, possible mechanisms underlying the developmental programming of energy metabolism in offspring, and the potential therapeutic approaches for preventing metabolic diseases later in life. Lastly, we discuss the challenges and future directions of hypothalamic regulation in the metabolism of children born to obese mothers.
Collapse
|