1
|
Flygare L, Erdogan ST, Söderkvist K. PET/MR versus PET/CT for locoregional staging of oropharyngeal squamous cell cancer. Acta Radiol 2022; 64:1865-1872. [PMID: 36464816 PMCID: PMC10160406 DOI: 10.1177/02841851221140668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Background The value of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) for TN staging in head and neck cancer (HNC) has been proven in numerous studies. A few studies have investigated the value of FDG-PET/magnetic resonance imaging (MRI) in the staging of HNC; the combined results indicate potential for FDG-PET/MRI, but the scientific evidence remains weak. Purpose To compare performance of FDG-PET/CT and FDG-PET/MRI for locoregional staging in patients with oropharyngeal carcinomas. Material and Methods Two radiologists independently of each other retrospectively reviewed primary pre-therapeutic FDG-PET/CT and FDG-PET/MRI examinations from 40 individuals with oropharyngeal carcinomas. TN stage and primary tumor size were noted. The results were compared between observers and modalities and against TN stage set at a multidisciplinary conference. Results For nodal staging, PET/MRI had slightly higher specificity and accuracy than PET/CT for the most experienced observer. Both methods demonstrated excellent sensitivity (≥ 0.97 and 1.00, respectively), as well as high negative predictive values (≥ 0.95 and 1.00, respectively). No significant differences were found for tumor staging or measurement of maximum tumor diameter. There was a weak agreement (κ = 0.35–0.49) between PET/CT and PET/MRI for T and N stages for both observers. Inter-observer agreement was higher for PET/MRI than for PET/CT, both for tumor staging (κ = 0.57 vs. 0.35) and nodal staging (κ = 0.69 vs. 0.55). The agreement between observers was comparable to the agreement between methods. Conclusion PET/MRI may be a viable alternative to PET/CT for locoregional staging (TN staging) and assessment of maximal tumor diameter in oropharyngeal squamous cell cancer.
Collapse
Affiliation(s)
- Lennart Flygare
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Secil Telli Erdogan
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Karin Söderkvist
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Moon SH, Cho YS, Choi JY. KSNM60 in Clinical Nuclear Oncology. Nucl Med Mol Imaging 2021; 55:210-224. [PMID: 34721714 DOI: 10.1007/s13139-021-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022] Open
Abstract
Since the foundation of the Korean Society of Nuclear Medicine in 1961, clinical nuclear oncology has been a major part of clinical nuclear medicine in Korea. There are several important events for the development of clinical nuclear oncology in Korea. First, a scintillating type gamma camera was adopted in 1969, which enabled to perform modern oncological gamma imaging. Second, Tc-99 m generator was imported to Korea since 1979, which promoted the wide clinical use of gamma camera imaging by using various kinds of Tc-99 m labeled radiopharmaceuticals. Third, a gamma camera with single photon emission tomography (SPECT) capability was first installed in 1980, which has been used for various kinds of tumor SPECT imaging. Fourth, in 1994, clinical positron emission tomography (PET) scanner and cyclotron with a production of F-18 fluorodeoxyglucose were first installed in Korea. Fifth, Korean Board of Nuclear Medicine was established in 1995, which contributed in the education and manpower training of dedicated nuclear medicine physicians in Korea. Finally, an integrated PET/CT scanner was first installed in 2002. Since that, PET/CT imaging has been a major imaging tool in clinical nuclear oncology in Korea. In this review, a brief history of clinical nuclear oncology in Korea is described.
Collapse
Affiliation(s)
- Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351 Seoul, Republic of Korea
| | - Young Seok Cho
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351 Seoul, Republic of Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351 Seoul, Republic of Korea
| |
Collapse
|
3
|
Serour DK, Adel KM, Osman AMA. Post-treatment benign changes versus recurrence in non-lymphoid head and neck malignancies: can diffusion-weighted magnetic resonance imaging end up the diagnostic challenge? THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [DOI: 10.1186/s43055-020-00177-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
The aim of this prospective cohort study is to substantiate the added value of diffusion-weighted magnetic resonance imaging (DW-MRI) over conventional MRI assessment in the differentiation between locoregional recurrence/residual tumour and post-treatment benign changes in patients with non-lymphoid head and neck malignancies.
Thirty adult patients, each with a suspicious lesion on post-treatment imaging scans at the primary site of a previously treated non-lymphoid head and neck malignancy, were evaluated by MRI and diffusion-weighted imaging (DWI). The apparent diffusion coefficient (ADC) values of the lesions were calculated.
Results
Diffusion-weighted MRI yielded an accuracy of 90%, a sensitivity of 88.9%, a specificity of 91.7%, a positive predictive value of 94.1% and a negative predictive value of 84.6%. The mean ADC value of the lesions was lower in the “locoregional recurrence/residual tumour” group (1.08 × 10−3 mm2/s) compared to the “post-treatment benign changes” group (1.95 × 10−3 mm2/s); P < 0.001. An ADC cutoff value of 1.43 × 10−3 mm2/s achieved the same accuracy as the visual assessment by DW-MRI.
Conclusion
Incorporating the DWI sequence into the post-treatment imaging assessment protocol brings a substantial added value to conventional MRI assessment in patients with non-lymphoid head and neck malignancies. This valuable merit of DW-MRI can help avoid or, at least, largely minimize unnecessary or unfeasible tissue sampling. An ADC cutoff value of 1.43 × 10−3 mm2/s can also be utilized to aid in the assessment process.
Collapse
|
4
|
Comparison of diagnostic accuracy between [ 18F]FDG PET/MRI and contrast-enhanced MRI in T staging for oral tongue cancer. Ann Nucl Med 2020; 34:952-959. [PMID: 33040312 DOI: 10.1007/s12149-020-01526-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Integrated PET/MRI with [18F]FDG is advantageous in that it enables simultaneous PET and MR imaging with higher soft-tissue contrast, multiplanar image acquisition, and functional imaging capability without using fat suppression and gadolinium-based contrast agents (GBCAs). The aims of this study were to demonstrate the feasibility of [18F]FDG PET/MRI for assessing the extent of the primary tumor (T) in oral tongue cancer (OTC) based on the 8th edition of American Joint Committee on Cancer (AJCC) cancer staging system, and to compare the diagnostic accuracy between [18F]FDG PET/MRI and contrast-enhanced MRI (ceMRI). METHODS 18 patients with biopsy-proven operable OTC underwent preoperative regional [18F]FDG PET/MRI and ceMRI within 2 weeks. For [18F]FDG PET/MRI, rainbow-colored PET images were overlaid on the corresponding MR images. Tumor size and the depth of invasion (DOI) were visually measured on [18F]FDG PET/MRI and ceMRI. The size, DOI, and clinical T stage were evaluated using the final surgical pathology as the reference. RESULTS Of the 18 OTCs, one was not detected by ceMRI due to metal artifacts from an artificial denture, and another due to superficial type (pathological DOI = 0 mm). Tumor sizes measured by ceMRI and [18F]FDG PET/MRI had significant positive correlations with the pathological size (r = 0.80 and r = 0.90, respectively), and DOIs measured by ceMRI and [18F]FDG PET/MRI had significant positive correlations with the pathological DOI (r = 0.74 and r = 0.64, respectively). The means ± SD of size (mm) were 20.4 ± 9.1, 22.9 ± 10.9, and 26.2 ± 10.0, and those of DOI (mm) were 7.1 ± 2.5, 6.9 ± 2.2, and 5.8 ± 3.2 for ceMRI, [18F]FDG PET/MRI, and pathology, respectively. A significant difference was observed in tumor size between ceMRI and pathology (p < 0.05), whereas no significant differences were observed between any other sizes, DOIs, or T stages. The accuracy for T status was 72% (13/18 including 2 undetectable cases) for ceMRI and 89% (16/18) for [18F]FDG PET/MRI. CONCLUSIONS Although shallow DOIs are often overestimated, regional [18F]FDG PET/MRI without fat suppression and gadolinium enhancement is comparable to and may be substituted for ceMRI in preoperative T staging for OTC patients, reducing metal artifacts and avoiding the adverse effects of GBCAs.
Collapse
|
5
|
Pyatigorskaya N, De Laroche R, Bera G, Giron A, Bertolus C, Herve G, Chambenois E, Bergeret S, Dormont D, Amor-Sahli M, Kas A. Are Gadolinium-Enhanced MR Sequences Needed in Simultaneous 18F-FDG-PET/MRI for Tumor Delineation in Head and Neck Cancer? AJNR Am J Neuroradiol 2020; 41:1888-1896. [PMID: 32972956 DOI: 10.3174/ajnr.a6764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 06/21/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE PET/MRI with 18F-FDG has demonstrated the advantages of simultaneous PET and MR imaging in head and neck cancer imaging, MRI allowing excellent soft-tissue contrast, while PET provides metabolic information. The aim of this study was to evaluate the added value of gadolinium contrast-enhanced sequences in the tumor delineation of head and neck cancers on 18F-FDG-PET/MR imaging. MATERIALS AND METHODS Consecutive patients who underwent simultaneous head and neck 18F-FDG-PET/MR imaging staging or restaging followed by surgery were retrospectively included. Local tumor invasion and lymph node extension were assessed in 45 head and neck anatomic regions using 18F-FDG-PET/MR imaging by 2 rater groups (each one including a radiologist and a nuclear medicine physician). Two reading sessions were performed, one without contrast-enhanced sequences (using only T1WI, T2WI, and PET images) and a second with additional T1WI postcontrast sequences. The results were compared with the detailed histopathologic analysis, used as reference standard. The κ concordance coefficient between the reading sessions and sensitivity and specificity for each region were calculated. RESULTS Thirty patients were included. There was excellent agreement between the contrast-free and postgadolinium reading sessions in delineating precise tumor extension in the 45 anatomic regions studied (Cohen κ = 0.96, 95% CI = [0.94-0.97], P < .001). The diagnostic accuracy did not differ between contrast-free and postgadolinium reading sessions, being 0.97 for both groups and both reading sessions. For the 2 rater groups, there was good sensitivity for both contrast-free (0.83 and 0.85) and postgadolinium reading sessions (0.88 and 0.90, respectively). Moreover, there was excellent specificity (0.98) for both groups and reading sessions. CONCLUSIONS Gadolinium chelate contrast administration showed no added value for accurate characterization of head and neck primary tumor extension and could possibly be avoided in the PET/MR imaging head and neck workflow.
Collapse
Affiliation(s)
- N Pyatigorskaya
- From Assistance Publique Hôpitaux de Paris Neuroradiology Department (N.P., E.C., D.D., M.A.-S.)
- Sorbonne University (N.P., D.D.), Pierre and Marie Faculty of Medicine, Paris, France
| | - R De Laroche
- Nuclear Medicine Department (R.D.L.), Morvan Hospital, Brest, France
| | - G Bera
- Nuclear Medicine Department (G.B., S.B., A.K.), Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - A Giron
- Sorbonne University (A.G., A.K.), Laboratoire d'Imagerie Biomédicale, Paris, France
| | - C Bertolus
- Sorbonne University, Maxillo-Facial Surgery Department (C.B.)
- CIMI Sorbonne University UPMC (C.B.), Paris, France
| | - G Herve
- Pathology Department (G.H.), Pitié Salpêtrière-Charles Foix Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - E Chambenois
- From Assistance Publique Hôpitaux de Paris Neuroradiology Department (N.P., E.C., D.D., M.A.-S.)
| | - S Bergeret
- Nuclear Medicine Department (G.B., S.B., A.K.), Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - D Dormont
- From Assistance Publique Hôpitaux de Paris Neuroradiology Department (N.P., E.C., D.D., M.A.-S.)
- Sorbonne University (N.P., D.D.), Pierre and Marie Faculty of Medicine, Paris, France
| | - M Amor-Sahli
- From Assistance Publique Hôpitaux de Paris Neuroradiology Department (N.P., E.C., D.D., M.A.-S.)
| | - A Kas
- Nuclear Medicine Department (G.B., S.B., A.K.), Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Sorbonne University (A.G., A.K.), Laboratoire d'Imagerie Biomédicale, Paris, France
| |
Collapse
|
6
|
Zero Echo Time–Based PET/MRI Attenuation Correction in Patients With Oral Cavity Cancer. Clin Nucl Med 2020; 45:501-505. [DOI: 10.1097/rlu.0000000000003091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
de Gouw DJJM, Scholte M, Gisbertz SS, Wijnhoven BPL, Rovers MM, Klarenbeek BR, Rosman C. Extent and consequences of lymphadenectomy in oesophageal cancer surgery: case vignette survey. BMJ SURGERY, INTERVENTIONS, & HEALTH TECHNOLOGIES 2020; 2:e000026. [PMID: 35047786 PMCID: PMC8749290 DOI: 10.1136/bmjsit-2019-000026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 01/03/2023] Open
Abstract
Objectives Lymph node dissection (LND) is part of the standard operating procedure in patients with resectable oesophageal cancer after neoadjuvant chemoradiotherapy regardless of lymph node (LN) status. The aims of this case vignette survey were to acquire expert opinions on the current practice of LND and to determine potential consequences of non-invasive LN staging on the extent of LND and postoperative morbidity. Design An online survey including five short clinical cases (case vignettes) was sent to 272 oesophageal surgeons worldwide. Participants 86 oesophageal surgeons (median experience in oesophageal surgery of 15 years) participated in the survey (response rate 32%). Main outcome measures Extent of standard LND, potential changes in LND based on accurate LN staging and consequences for postoperative morbidity were evaluated. Results Standard LND varied considerably between experts; for example, pulmonary ligament, splenic artery, aortopulmonary window and paratracheal LNs are routinely dissected in less than 60%. The omission of (parts of) LND is expected to decrease the number of chyle leakages, pneumonias, and laryngeal nerve pareses and to reduce operating time. In order to guide surgical treatment decisions, a diagnostic test for LN staging after neoadjuvant therapy requires a minimum sensitivity of 92% and a specificity of 90%. Conclusions This expert case vignette survey study shows that there is no consensus on the extent of standard LND. Oesophageal surgeons seem more willing to extend LND rather than omit LND, based on accurate LN staging. The majority of surgeons expect that less extensive LND can reduce postoperative morbidity.
Collapse
Affiliation(s)
| | - Mirre Scholte
- Operating Rooms, Radboudumc, Nijmegen, The Netherlands
| | - Suzanne S Gisbertz
- Surgery, Amsterdam UMC - Locatie AMC, Amsterdam, North Holland, The Netherlands
| | | | - Maroeska M Rovers
- Operating Rooms and Health Evidence, Radboud Universiteit, Nijmegen, The Netherlands
| | | | | |
Collapse
|
8
|
Ocular Biodistribution of 89Zr-Bevacizumab in New Zealand Rabbits Determined Using PET/MRI: A Feasibility Study. IRANIAN JOURNAL OF RADIOLOGY 2019. [DOI: 10.5812/iranjradiol.68697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Zaccagna F, Grist JT, Deen SS, Woitek R, Lechermann LMT, McLean MA, Basu B, Gallagher FA. Hyperpolarized carbon-13 magnetic resonance spectroscopic imaging: a clinical tool for studying tumour metabolism. Br J Radiol 2018; 91:20170688. [PMID: 29293376 PMCID: PMC6190784 DOI: 10.1259/bjr.20170688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023] Open
Abstract
Glucose metabolism in tumours is reprogrammed away from oxidative metabolism, even in the presence of oxygen. Non-invasive imaging techniques can probe these alterations in cancer metabolism providing tools to detect tumours and their response to therapy. Although Positron Emission Tomography with (18F)2-fluoro-2-deoxy-D-glucose (18F-FDG PET) is an established clinical tool to probe cancer metabolism, it has poor spatial resolution and soft tissue contrast, utilizes ionizing radiation and only probes glucose uptake and phosphorylation and not further downstream metabolism. Magnetic Resonance Spectroscopy (MRS) has the capability to non-invasively detect and distinguish molecules within tissue but has low sensitivity and can only detect selected nuclei. Dynamic Nuclear Polarization (DNP) is a technique which greatly increases the signal-to-noise ratio (SNR) achieved with MR by significantly increasing nuclear spin polarization and this method has now been translated into human imaging. This review provides a brief overview of this process, also termed Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging (HP 13C-MRSI), its applications in preclinical imaging, an outline of the current human trials that are ongoing, as well as future potential applications in oncology.
Collapse
Affiliation(s)
- Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Surrin S Deen
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
10
|
Queiroz MA, Barbosa FDG, Buchpiguel CA, Cerri GG. Positron emission tomography/magnetic resonance imaging (PET/MRI): An update and initial experience at HC-FMUSP. ACTA ACUST UNITED AC 2018; 64:71-84. [PMID: 29561945 DOI: 10.1590/1806-9282.64.01.71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 01/16/2023]
Abstract
The new technology of PET/MRI is a prototype of hybrid imaging, allowing for the combination of molecular data from PET scanning and morphofunctional information derived from MRI scanning. Recent advances regarding the technical aspects of this device, especially after the development of MRI-compatible silicon photomultipliers of PET, permitted an increase in the diagnostic performance of PET/MRI translated into dose reduction and higher imaging quality. Among several clinical applications, PET/MRI gains ground initially in oncology, where MRI per se plays an essential role in the assessment of primary tumors (which is limited in the case of PET/CT), including prostate, rectal and gynecological tumors. On the other hand, the evaluation of the lungs remains an enigma although new MRI sequences are being designed to overcome this. More clinical indications of PET/MRI are seen in the fields of neurology, cardiology and inflammatory processes, and the use of PET/MRI also opens perspectives for pediatric populations as it involves very low radiation exposure. Our review aimed to highlight the current indications of PET/MRI and discuss the challenges and perspectives of PET/MRI at HC-FMUSP.
Collapse
Affiliation(s)
- Marcelo A Queiroz
- Institute of Radiology (InRad), Hospital das Clínicas da Faculdade de Medicina da USP (HC-FMUSP), São Paulo, SP, Brazil.,Service of Medical Imaging, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | | | - Carlos Alberto Buchpiguel
- Institute of Radiology (InRad), Hospital das Clínicas da Faculdade de Medicina da USP (HC-FMUSP), São Paulo, SP, Brazil.,Service of Medical Imaging, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Giovanni Guido Cerri
- Institute of Radiology (InRad), Hospital das Clínicas da Faculdade de Medicina da USP (HC-FMUSP), São Paulo, SP, Brazil.,Service of Medical Imaging, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Role of PET/MRI in oral cavity and oropharyngeal cancers based on the 8th edition of the AJCC cancer staging system: a pictorial essay. Ann Nucl Med 2018; 32:239-249. [DOI: 10.1007/s12149-018-1244-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/19/2018] [Indexed: 10/17/2022]
|
12
|
Kim YI, Cheon GJ, Kang SY, Paeng JC, Kang KW, Lee DS, Chung JK. Prognostic value of simultaneous 18F-FDG PET/MRI using a combination of metabolo-volumetric parameters and apparent diffusion coefficient in treated head and neck cancer. EJNMMI Res 2018; 8:2. [PMID: 29322269 PMCID: PMC5762617 DOI: 10.1186/s13550-018-0357-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/04/2018] [Indexed: 01/16/2023] Open
Abstract
Background The aim of this study was to determine the usefulness of combined positron emission tomography (PET)/magnetic resonance imaging (MRI) parameters provided by simultaneous 18F-fluorodeoxyglucose (FDG) PET/MRI for the prediction of treatment failure in surgically resected head and neck cancer. We hypothesized that PET parameters corrected by tumor cellularity (combined PET/MRI parameters) could predict the prognosis. On regional PET, maximum standardized uptake value (SUVmax) was measured as metabolic parameters. In addition, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were checked as metabolo-volumetric parameters. Mean apparent diffusion coefficient (ADCmean) of tumor was evaluated as the MRI parameter on the ADC map. Ratios between metabolic/metabolo-volumetric parameters and ADC were calculated as combined PET/MRI parameters. PET, MRI, and combined PET/MRI parameters were compared with clinicopathologic parameters in terms of treatment failure. Results Seventy-two patients (mean age = 55.9 ± 14.6 year, M: F = 45: 27) who underwent simultaneous 18F-FDG PET/MRI before head and neck cancer surgery were retrospectively enrolled. Twenty-two patients (30.6%) showed tumor treatment failure after head and neck cancer surgery (mean treatment failure = 13.0 ± 7.0 months). In the univariate analysis, MTV (P = 0.044) and ratios between metabolo-volumetric parameters and ADC (MTV/ADCmean, P = 0.022; TLG/ADCmean, P = 0.044) demonstrated significance among 18F-FDG PET/MRI parameters. Lymphatic invasion (P = 0.044) and perineural invasion (P = 0.046) revealed significance among clinicopathologic parameters. In the multivariate analysis, MTV (P = 0.026), MTV/ADCmean (P = 0.011), and TLG/ADCmean (P = 0.002) with lymphatic invasion (P = 0.026, 0.026, and 0.044, respectively) showed significance. Conclusions Combined PET/MRI parameters (PET metabolo-volumetric parameters corrected by tumor cellularity) could be effective predictors of tumor treatment failure after head and neck cancer surgery in addition to MTV and clinicopathologic parameter. Electronic supplementary material The online version of this article (10.1186/s13550-018-0357-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong-Il Kim
- Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.,Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, Seoul, 03080, Korea.
| | - Seo Young Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
13
|
Ehman EC, Johnson GB, Villanueva-Meyer JE, Cha S, Leynes AP, Larson PEZ, Hope TA. PET/MRI: Where might it replace PET/CT? J Magn Reson Imaging 2017; 46:1247-1262. [PMID: 28370695 PMCID: PMC5623147 DOI: 10.1002/jmri.25711] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
Simultaneous positron emission tomography and MRI (PET/MRI) is a technology that combines the anatomic and quantitative strengths of MR imaging with physiologic information obtained from PET. PET and computed tomography (PET/CT) performed in a single scanning session is an established technology already in widespread and accepted use worldwide. Given the higher cost and complexity of operating and interpreting the studies obtained on a PET/MRI system, there has been question as to which patients would benefit most from imaging with PET/MRI versus PET/CT. In this article, we compare PET/MRI with PET/CT, detail the applications for which PET/MRI has shown promise and discuss impediments to future adoption. It is our hope that future work will prove the benefit of PET/MRI to specific groups of patients, initially those in which PET/CT and MRI are already performed, leveraging simultaneity and allowing for greater degrees of multiparametric evaluation. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:1247-1262.
Collapse
Affiliation(s)
- Eric C. Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Andrew Palmera Leynes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Peder Eric Zufall Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Thomas A. Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
14
|
Abstract
BACKGROUND The (18)F-fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG-PET/CT) procedure is a cornerstone in the diagnostics of head and neck cancers. Several years ago PET-magnetic resonance imaging (PET/MRI) also became available as an alternative hybrid multimodal imaging method. OBJECTIVE Does PET/MRI have advantages over PET/CT in the diagnostics of head and neck cancers? MATERIAL AND METHODS The diagnostic accuracy of the standard imaging methods CT, MRI and PET/CT is depicted according to currently available meta-analyses and studies concerning the use of PET/MRI for these indications are summarized. RESULTS In all studies published up to now PET/MRI did not show superiority regarding the diagnostic accuracy in head and neck cancers; however, there is some evidence that in the future PET/MRI can contribute to tumor characterization and possibly be used to predict tumor response to therapy with the use of multiparametric imaging. CONCLUSION Currently, (18)F-FDG-PET/CT is not outperformed by PET/MRI in the diagnostics of head and neck cancers. The additive value of PET/MRI due to the use of multiparametric imaging needs to be investigated in future research.
Collapse
|
15
|
Deuschl C, Nensa F, Grueneisen J, Poeppel TD, Sawicki LM, Heusch P, Gramsch C, Mönninghoff C, Quick HH, Forsting M, Umutlu L, Schlamann M. Diagnostic impact of integrated 18F-FDG PET/MRI in cerebral staging of patients with non-small cell lung cancer. Acta Radiol 2017; 58:991-996. [PMID: 28273734 DOI: 10.1177/0284185116681041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Integrated positron emission tomography/magnetic resonance imaging (PET/MRI) systems are increasingly being available and used for staging examinations. Brain metastases (BM) are frequent in patients with non-small cell lung cancer (NSCLC) and decisive for treatment strategy. Purpose To assess the diagnostic value of integrated 18F-2-fluoro-2-deoxy-D glucose (18F-FDG) PET/MRI in initial staging in patients with NSCLC for BM in comparison to MRI alone. Material and Methods Eighty-three patients were prospectively enrolled for an integrated 18F-FDG PET/MRI examination. The 3 T MRI protocol included a fluid-attenuated inversion-recovery sequence (FLAIR) and a contrast-enhanced three-dimensional magnetization prepared rapid acquisition GRE sequence (MPRAGE). Two neuroradiologists evaluated the datasets in consensus regarding: (i) present lesions; (ii) size of lesions; and (iii) number of lesions detected in MRI alone, compared to the PET component when reading the 18F-FDG PET/MRI. Results Based on MRI alone, BM were detected in 15 out of the 83 patients, comprising a total of 39 metastases. Based on PET alone, six patients out of the 83 patients were rated positive for metastatic disease, revealing a total of 15 metastases. PET detected no additional BM. The size of the BM correlated positively with sensitivity of detection in PET. Conclusion The sensitivity of PET in detection of BM depends on their size. 18F-FDG PET/MRI does not lead to an improvement in diagnostic accuracy in cerebral staging of NSCLC patients, as MRI alone remains the gold standard.
Collapse
Affiliation(s)
- Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital of Essen, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Germany
| | - Felix Nensa
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital of Essen, Essen, Germany
| | - Johannes Grueneisen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital of Essen, Essen, Germany
| | - Thorsten D Poeppel
- Clinic for Nuclear Medicine, University Hospital of Essen, Essen, Germany
| | - Lino M Sawicki
- Institute of Diagnostic and Interventional Radiology, University Hospital of Duesseldorf, Duesseldorf, Germany
| | - Philipp Heusch
- Institute of Diagnostic and Interventional Radiology, University Hospital of Duesseldorf, Duesseldorf, Germany
| | - Carolin Gramsch
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital of Essen, Essen, Germany
- Department of Neuroradiology, University Hospital of Gießen, Germany
| | - Christoph Mönninghoff
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital of Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital of Essen, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital of Essen, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital of Essen, Essen, Germany
| | - Marc Schlamann
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital of Essen, Essen, Germany
- Department of Neuroradiology, University Hospital of Gießen, Germany
| |
Collapse
|
16
|
|
17
|
Roy S, Cheong DLH, Yan J, Totman JJ, Ng T, Khor LK, Goh J, Tham IWK. Serial FDG-PET/MR Imaging for Head and Neck Cancer Radiation Therapy: A Pilot Study. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017. [DOI: 10.1109/tns.2016.2616884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Sekine T, de Galiza Barbosa F, Kuhn FP, Burger IA, Stolzmann P, Huber GF, Kollias SS, von Schulthess GK, Veit-Haibach P, Huellner MW. PET+MR versus PET/CT in the initial staging of head and neck cancer, using a trimodality PET/CT+MR system. Clin Imaging 2017; 42:232-239. [PMID: 28129606 DOI: 10.1016/j.clinimag.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/19/2016] [Accepted: 01/10/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE To compare the diagnostic accuracy of PET+MR with PET/CT in the initial staging of head and neck cancer. MATERIALS AND METHODS Contrast-enhanced PET/CT+MR was performed in 27 patients with newly diagnosed head and neck cancer. PET/CT and PET+MR were evaluated separately, and the TNM stage and factors influencing treatment were assessed. RESULTS The TNM staging by PET+MR was comparable to PET/CT (T: p=0.331, N: p=0.453, M: p=0.034). The sensitivity/specificity/accuracy of treatment-influencing factors by PET/CT and PET+MR were 0.68/0.99/0.97, and 1.00/1.00/0.99, respectively. CONCLUSIONS Whole-body staging with PET+MR yields at least equal diagnostic accuracy as PET/CT in head and neck cancer.
Collapse
Affiliation(s)
- Tetsuro Sekine
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Switzerland; Department of Radiology, Nippon Medical School, Tokyo, Japan.
| | | | - Felix P Kuhn
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Switzerland; Clinic of Neuroradiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Paul Stolzmann
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Switzerland; Clinic of Neuroradiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Gerhard F Huber
- Department of Otorhinolaryngology, University Hospital Zurich, University of Zurich, Switzerland
| | - Spyros S Kollias
- Clinic of Neuroradiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Gustav K von Schulthess
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Patrick Veit-Haibach
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Switzerland; Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
19
|
Appropriate margin thresholds for isocontour metabolic volumetry of fluorine-18 fluorodeoxyglucose PET in sarcoma. Nucl Med Commun 2016; 37:1088-94. [DOI: 10.1097/mnm.0000000000000561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Shen G, Hu S, Liu B, Kuang A. Diagnostic Performance of Whole-Body PET/MRI for Detecting Malignancies in Cancer Patients: A Meta-Analysis. PLoS One 2016; 11:e0154497. [PMID: 27124545 PMCID: PMC4849712 DOI: 10.1371/journal.pone.0154497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/14/2016] [Indexed: 02/05/2023] Open
Abstract
Background As an evolving imaging modality, PET/MRI is preliminarily applied in clinical practice. The aim of this study was to assess the diagnostic performance of PET/MRI for tumor staging in patients with various types of cancer. Methods Relevant articles about PET/MRI for cancer staging were systematically searched in PubMed, EMBASE, EBSCO and the Cochrane Library. Two researchers independently selected studies, extracted data and assessed the methodological quality using the QUADAS tool. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated per patient and per lesion. The summary receiver-operating characteristic (SROC) curves were also constructed, and the area under the curve (AUC) and Q* estimates were obtained. Results A total of 38 studies that involved 753 patients and 4234 lesions met the inclusion criteria. On a per-patient level, the pooled sensitivity and specificity with 95% confidence intervals (CIs) were 0.93 (0.90–0.95) and 0.92 (0.89–0.95), respectively. On a per-lesion level, the corresponding estimates were 0.90 (0.88–0.92) and 0.95 (0.94–0.96), respectively. The pooled PLR, NLR and DOR estimates were 6.67 (4.83–9.19), 0.12 (0.07–0.21) and 75.08 (42.10–133.91) per patient and 10.91 (6.79–17.54), 0.13 (0.08–0.19) and 102.53 (59.74–175.97) per lesion, respectively. Conclusion According to our results, PET/MRI has excellent diagnostic potential for the overall detection of malignancies in cancer patients. Large, multicenter and prospective studies with standard scanning protocols are required to evaluate the diagnostic value of PET/MRI for individual cancer types.
Collapse
Affiliation(s)
- Guohua Shen
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Shuang Hu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Bin Liu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Anren Kuang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, People’s Republic of China
- * E-mail:
| |
Collapse
|
21
|
Kwon HW, Becker AK, Goo JM, Cheon GJ. FDG Whole-Body PET/MRI in Oncology: a Systematic Review. Nucl Med Mol Imaging 2016; 51:22-31. [PMID: 28250855 DOI: 10.1007/s13139-016-0411-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/01/2016] [Accepted: 03/16/2016] [Indexed: 01/14/2023] Open
Abstract
The recent advance in hybrid imaging techniques enables offering simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) in various clinical fields. 18F-fluorodeoxyglucose (FDG) PET has been widely used for diagnosis and evaluation of oncologic patients. The growing evidence from research and clinical experiences demonstrated that PET/MRI with FDG can provide comparable or superior diagnostic performance more than conventional radiological imaging such as computed tomography (CT), MRI or PET/CT in various cancers. Combined analysis using structural information and functional/molecular information of tumors can draw additional diagnostic information based on PET/MRI. Further studies including determination of the diagnostic efficacy, optimizing the examination protocol, and analysis of the hybrid imaging results is necessary for extending the FDG PET/MRI application in clinical oncology.
Collapse
Affiliation(s)
- Hyun Woo Kwon
- Department of Nuclear Medicine, Soonchunhyang University Hospital, Cheonan, South Korea
| | | | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehang-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| |
Collapse
|
22
|
Dahiya K, Dhankhar R. Updated overview of current biomarkers in head and neck carcinoma. World J Methodol 2016; 6:77-86. [PMID: 27018324 PMCID: PMC4804254 DOI: 10.5662/wjm.v6.i1.77] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/25/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Squamous cell cancer is the most common type of malignancy arising from the epithelial cells of the head and neck region. Head and neck squamous cell carcinoma (HNSCC) is one of the predominant causes of cancer related casualties worldwide. Overall prognosis in this disease has improved to some extent with the advancements in therapeutic modalities but detection of primary tumor at its initial stage and prevention of relapse are the major targets to be achieved for further improvement in terms of survival rate of patients. Latest achievements in basic research regarding molecular characterization of the disease has helped in better perception of the molecular mechanisms involved in HNSCC progression and also in recognizing and targeting various molecular biomarkers associated with HNSCC. In the present article, we review the information regarding latest and potential biomarkers for the early detection of HNSCC. A detailed molecular characterization, ultimately, is likely to improve the development of new therapeutic strategies, potentially relevant to diagnosis and prognosis of head and neck cancers. The need for more accurate and timely disease prediction has generated enormous research interests in this field.
Collapse
|
23
|
Abstract
One early application of PET/MRI in clinical practice may be the imaging of head and neck cancers. This is because the morphologic imaging modalities, CT and MR, are recognized as similarly effective tools in cross-sectional oncological imaging of the head and neck. The addition of PET with FDG is believed to enhance the accuracy of both modalities to a similar degree. However, there are a few specific scenarios in head and neck cancer imaging where MR is thought to provide an edge over CT, including perineural spread of tumors and the infiltration of important anatomical landmarks, such as the prevertebral fascia and great vessel walls. Here, hybrid PET/MR might provide higher diagnostic certainty than PET/CT or a separate acquisition of PET/CT and MR. Another advantage of MR is the availability of several functional techniques. Although some of them might enhance the imaging of head and neck cancer with PET/MR, other functional techniques actually might prove dispensable in the presence of PET. In this overview, we discuss current trends and potential clinical applications of PET/MR in the imaging of head and neck cancers, including clinical protocols. We also discuss potential benefits of implementing functional MR techniques into hybrid PET/MRI of head and neck cancers.
Collapse
Affiliation(s)
- Marcelo A Queiroz
- Research and Education Institute, Hospital Sirio-Libanes, Sao Paulo, Brazil; Department of Radiology, Cancer Institute, Hospital das Clinicas/University of Sao Paulo, Sao Paulo, Brazil
| | - Martin W Huellner
- Research and Education Institute, Hospital Sirio-Libanes, Sao Paulo, Brazil; Department of Medical Radiology, Divisions of Nuclear Medicine and Neuroradiology,University Hospital Zurich/University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Hines JP, Howard BE, Hoxworth JM, Lal D. Positive and Negative Predictive Value of PET-CT in Skull Base Lesions: Case Series and Systematic Literature Review. J Neurol Surg Rep 2016; 77:e39-45. [PMID: 26937333 PMCID: PMC4773825 DOI: 10.1055/s-0035-1570387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objectives To study positive (PPV) and negative predictive value (NPV) of positron emission tomography with computed tomography (PET-CT) scans in determining malignancy in skull base lesions and perform a systematic literature review for optimal PET-CT interpretation. Design Retrospective case series and systematic literature review of the current English literature. Setting Tertiary referral academic medical center. Participants All patients with skull base lesions that underwent PET-CT and tissue biopsy from 2010 to 2013. Main Outcome Measures PPV and NPV of radiologist's report and standardized uptake value (SUV) cutoff of 2.5 and 3, biopsy with pathologic interpretation, clinical follow-up. Results A total of 31 PET-CT scans of 16 patients were studied; 10 PET-CT were performed upfront for diagnostic purposes and 21 were post-treatment surveillance scans. The PPV of radiologist's interpretation, SUV cutoff of 2.5, and SUV cutoff of 3.0 was 80%, 60%, and 68.4%, with a NPV of 100%, 83.3%, and 75%, respectively. Literature search yielded 500 abstracts; 7 studies met inclusion criteria for detailed review. No consensus or guidelines for optimal SUV cutoff value was found. Conclusions PET-CT based on SUV cutoff criteria alone has high NPV but low PPV in determining malignancy in skull base lesions. Interpretation by a radiologist experienced in nuclear medicine and neuroradiology, synthesizing clinical, SUV, and radiologic data are of superior value.
Collapse
Affiliation(s)
- John Peyton Hines
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Phoenix, Arizona, United States
| | - Brittany E Howard
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Phoenix, Arizona, United States
| | - Joseph M Hoxworth
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, United States
| | - Devyani Lal
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Phoenix, Arizona, United States
| |
Collapse
|
25
|
Feasibility of simultaneous 18F-FDG PET/MRI for the quantitative volumetric and metabolic measurements of abdominal fat tissues using fat segmentation. Nucl Med Commun 2016; 37:616-22. [PMID: 26836629 DOI: 10.1097/mnm.0000000000000488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Quantification of volume and inflammatory activity in the fat tissue is important because these are closely related to type 2 diabetes mellitus and cardiovascular disease. Fluorine-18 fluorodeoxyglucose (F-FDG) PET/computed tomography (CT) has been utilized to measure the metabolic activity of fat tissue. In this study, we assessed the feasibility of simultaneous PET/magnetic resonance (MR) in metabolic and volumetric measurements of fat tissue and the potential advantage over PET/CT. METHODS Twenty-four healthy individuals were enrolled, who underwent simultaneous F-FDG PET/MRI. Twenty-five F-FDG PET/CT scans were selected. Isocontour volumes of interest (VOIs) were used to segment and separate visceral fat (VF) and abdominal subcutaneous fat (SF) in using the MR image (T1 DIXON VIBE sequence) of PET/MR and the CT image of PET/CT. Volume, mean standardized uptake value of VF, and SF VOIs were calculated. RESULTS Overlap between F-FDG PET and VF VOI was better in F-FDG PET/MR than PET/CT. The mean standardized uptake value of VF was associated with the degree of intestinal uptake on F-FDG PET/CT, but not on F-FDG PET/MR. Volumetric and metabolic measurements using F-FDG PET/MR showed an excellent reproducibility, with a high intraclass correlation coefficient between different observers (0.951-0.997). The measured metabolic activity was higher in VF than SF. CONCLUSION We established a method for the quantitative measurement of volume and metabolic status of abdominal VF and SF using simultaneous F-FDG PET/MR. F-FDG PET/MR has an advantage over F-FDG PET/CT in terms of being less confounded by intestinal uptake. This method could be used to assess the inflammatory activity of fat tissue, which is a major risk factor for type 2 diabetes mellitus and cardiovascular disease.
Collapse
|
26
|
Langner S. Optimized imaging of the midface and orbits. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2016; 14:Doc05. [PMID: 26770279 PMCID: PMC4702054 DOI: 10.3205/cto000120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of imaging techniques are available for imaging the midface and orbits. This review article describes the different imaging techniques based on the recent literature and discusses their impact on clinical routine imaging. Imaging protocols are presented for different diseases and the different imaging modalities.
Collapse
Affiliation(s)
- Sönke Langner
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Germany
| |
Collapse
|
27
|
The value of fluorine-18 fluorodeoxyglucose PET/MRI in the diagnosis of head and neck carcinoma: a meta-analysis. Nucl Med Commun 2015; 36:312-8. [PMID: 25514551 DOI: 10.1097/mnm.0000000000000248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Fluorine-18 fluorodeoxyglucose (18F-FDG) PET/MRI has been used in the diagnosis of head and neck carcinoma. The aim of this study was to systematically review and perform a meta-analysis of published data on the performance of F-PET/MRI in the diagnosis of head and neck carcinoma. MATERIALS AND METHODS We conducted a comprehensive review of the literature on the role of soft-based fusion and integrated 18F-FDG PET/MRI in the diagnosis of head and neck carcinoma. Pooled sensitivity, specificity, and area under the receiver-operating characteristic curve of soft-based fusion and integrated 18F-FDG PET/MRI in the diagnosis of head and neck carcinoma were calculated. RESULTS Ten studies comprising 421 patients, which included 1879 head and neck primary carcinoma and metastatic lesions, were included in this meta-analysis. 18F-FDG PET/MRI had a pooled sensitivity of 91%, a pooled specificity of 63%, and an area under the receiver-operating characteristic curve of 0.96 on a per lesion-based analysis in detecting head and neck carcinoma lesions. Soft-based fusion and integrated 18F-FDG PET/MRI had a pooled sensitivity of 92 and 90%, a pooled specificity of 53 and 87%, and an area under the receiver-operating characteristic curve of 0.95 and 0.96, respectively, on a per lesion-based analysis in detecting head and neck carcinoma lesions. CONCLUSION 18F-FDG PET/MRI demonstrated high sensitivity and moderate specificity in the diagnosis of head and neck carcinoma lesions. 18F-FDG PET/MRI is an accurate method in the diagnosis of head and neck carcinoma.
Collapse
|
28
|
Schaarschmidt BM, Heusch P, Buchbender C, Ruhlmann M, Bergmann C, Ruhlmann V, Schlamann M, Antoch G, Forsting M, Wetter A. Locoregional tumour evaluation of squamous cell carcinoma in the head and neck area: a comparison between MRI, PET/CT and integrated PET/MRI. Eur J Nucl Med Mol Imaging 2015; 43:92-102. [PMID: 26243264 DOI: 10.1007/s00259-015-3145-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the accuracy of integrated (18)F-FDG PET/MR imaging for locoregional tumour evaluation compared to (18)F-FDG PET/CT and MR imaging in initial tumour and recurrence diagnosis in histopathologically confirmed head and neck squamous cell carcinoma (HNSCC). METHODS (18)F-FDG PET/CT and integrated (18)F-FDG PET/MR imaging were performed for initial tumour staging or recurrence diagnosis in 25 patients with HNSCC. MR, fused (18)F-FDG PET/CT and fused (18)F-FDG PET/MR images were analysed by two independent readers in separate sessions in random order. In initial tumour staging, T and N staging was performed while individual lesions were analysed in patients with suspected cancer recurrence. In T and N staging, histopathological results after tumour resection served as the reference standard while histopathological sampling as well as cross-sectional and clinical follow-up were accepted in cancer recurrence diagnosis. The diagnostic accuracy of each modality was calculated separately for T and N staging as well as for tumour recurrence, and compared using McNemar's test. Values of p <0.017 were considered statistically significant after Bonferroni correction. RESULTS In 12 patients undergoing (18)F-FDG PET/CT and (18)F-FDG PET/MR for initial tumour staging, T staging was accurate in 50 % with MRI, in 59 % with PET/CT and in 75 % with PET/MR while N staging was accurate in 75 % with MRI, in 77 % with PET/CT and in 71 % with PET/MR in relation to the reference standard. No significant differences were observed in T and N staging among the three modalities (p > 0.017). In 13 patients undergoing hybrid imaging for cancer recurrence diagnosis, diagnostic accuracy was 57 % with MRI and in 72 % with (18)F-FDG PET/CT and (18)F-FDG PET/MR, respectively. Again, no significant differences were found among the three modalities (p > 0.017). CONCLUSION In this initial study, no significant differences were found among (18)F-FDG PET/MR, (18)F-FDG PET/CT and MRI in local tumour staging and cancer recurrence diagnosis.
Collapse
Affiliation(s)
- Benedikt Michael Schaarschmidt
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany. .,Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, University Duisburg-Essen, 45147, Essen, Germany.
| | - Philipp Heusch
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Christian Buchbender
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Marcus Ruhlmann
- Medical Faculty, Department of Nuclear Medicine, University Duisburg-Essen, 45147, Essen, Germany
| | - Christoph Bergmann
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Essen, 45147, Essen, Germany
| | - Verena Ruhlmann
- Medical Faculty, Department of Nuclear Medicine, University Duisburg-Essen, 45147, Essen, Germany
| | - Marc Schlamann
- Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, University Duisburg-Essen, 45147, Essen, Germany.,Department of Neuroradiology, University Hospital Giessen, Marburg, Germany
| | - Gerald Antoch
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Michael Forsting
- Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, University Duisburg-Essen, 45147, Essen, Germany
| | - Axel Wetter
- Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, University Duisburg-Essen, 45147, Essen, Germany
| |
Collapse
|
29
|
Bashir U, Mallia A, Stirling J, Joemon J, MacKewn J, Charles-Edwards G, Goh V, Cook GJ. PET/MRI in Oncological Imaging: State of the Art. Diagnostics (Basel) 2015; 5:333-57. [PMID: 26854157 PMCID: PMC4665605 DOI: 10.3390/diagnostics5030333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 02/08/2023] Open
Abstract
Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging.
Collapse
Affiliation(s)
- Usman Bashir
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - Andrew Mallia
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - James Stirling
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
- PET Imaging Centre and the Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - John Joemon
- PET Imaging Centre and the Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - Jane MacKewn
- PET Imaging Centre and the Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - Geoff Charles-Edwards
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
- Medical Physics, Guy's & St Thomas' Hospitals NHS Foundation Trust, London, SE1 7EH, UK.
| | - Vicky Goh
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
- Department of Radiology, Guy's & St Thomas' Hospitals NHS Foundation Trust, London, SE1 7EH, UK.
| | - Gary J Cook
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
- PET Imaging Centre and the Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
30
|
|
31
|
Usefulness of MRI-assisted metabolic volumetric parameters provided by simultaneous 18F-fluorocholine PET/MRI for primary prostate cancer characterization. Eur J Nucl Med Mol Imaging 2015; 42:1247-56. [DOI: 10.1007/s00259-015-3026-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/19/2015] [Indexed: 12/24/2022]
|
32
|
Wang SJ. Surveillance radiologic imaging after treatment of oropharyngeal cancer: a review. World J Surg Oncol 2015; 13:94. [PMID: 25889162 PMCID: PMC4358873 DOI: 10.1186/s12957-015-0481-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/22/2015] [Indexed: 01/31/2023] Open
Abstract
The increasing proportion of human papilloma virus-related oropharynx cancers has led to improved success in the treatment of this disease. However, the current low recurrence rate after treatment of oropharyngeal cancer highlights the continued need for, as well as the challenges of, designing an effective follow-up surveillance program. There are frequently multiple modalities used in the treatment of oropharyngeal cancer, resulting in short- and long-term tissue changes to the head and neck that challenge clinical distinction of recurrence versus treatment-related changes. The oropharynx subsite is characterized by complex anatomy not always accessible to physical exam, making radiologic imaging a potentially useful supplement for effective follow-up assessment. In this manuscript, the literature regarding the type of radiologic imaging modality and the frequency of obtaining imaging studies in the surveillance follow-up after treatment of oropharyngeal cancer is reviewed. While ultrasound and MRI have useful characteristics that deserve further study, PET/CT appears to have the best sensitivity and specificity for imaging surveillance follow-up of head and neck cancers including oropharyngeal cancer. A negative PET/CT is particularly useful as a predictor of prognosis and can guide the clinician as to when to stop obtaining additional imaging studies in the absence of clinical signs of recurrence. However, there is scant evidence that imaging surveillance can improve survival outcomes. Suggestions to guide future imaging surveillance research studies are provided.
Collapse
Affiliation(s)
- Steven J Wang
- Department of Otolaryngology-Head and Neck Surgery, University of California, 2233 Post St, 3rd Floor, San Francisco, CA, 94115, USA.
| |
Collapse
|