1
|
Arbizu J, Morbelli S, Minoshima S, Barthel H, Kuo P, Van Weehaeghe D, Horner N, Colletti PM, Guedj E. SNMMI Procedure Standard/EANM Practice Guideline for Brain [ 18F]FDG PET Imaging, Version 2.0. J Nucl Med 2024:jnumed.124.268754. [PMID: 39419552 DOI: 10.2967/jnumed.124.268754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
PREAMBLEThe Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The EANM was founded in 1985. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine.The SNMMI and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.Each practice guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized.These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, both the SNMMI and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines.The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment.Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain;
| | - Silvia Morbelli
- Nuclear Medicine Unit, Citta'della Scenza e della Salute di Torino, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | | | | | - Neil Horner
- Atlantic Health System, Morristown, New Jersey, and Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patrick M Colletti
- Department of Radiology and Nuclear Medicine, University of Southern California, Los Angeles, California; and
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille University, Marseille, France
| |
Collapse
|
2
|
Wang M, Peng M, Yang X, Zhang Y, Wu T, Wang Z, Wang K. Preoperative prediction of microsatellite instability status: development and validation of a pan-cancer PET/CT-based radiomics model. Nucl Med Commun 2024; 45:372-380. [PMID: 38312051 DOI: 10.1097/mnm.0000000000001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
OBJECTIVE The purpose of this study is to verify the feasibility of preoperative prediction of patients' microsatellite instability status by applying a PET/CT-based radiation model. METHODS This retrospective study ultimately included 142 patients. Three prediction models have been developed. The predictive performance of all models was evaluated by the receiver operating characteristic curve and area under the curve values. The PET/CT radiological histology score (Radscore) was calculated to evaluate the microsatellite instability status, and the corresponding nomogram was established. The correlation between clinical factors and radiological characteristics was analyzed to verify the value of radiological characteristics in predicting microsatellite instability status. RESULTS Twelve features were retained to establish a comprehensive prediction model of radiological and clinical features. M phase of the tumor has been proven to be an independent predictor of microsatellite instability status. The receiver operating characteristic results showed that the area under the curve values of the training set and the validation set of the radiomics model were 0.82 and 0.75, respectively. The sensitivity, specificity, positive predictive value and negative predictive value of the training set were 0.72, 0.78, 0.83 and 0.66, respectively. The sensitivity, specificity, positive predictive value and negative predictive value of the validation set were 1.00, 0.50, 0.76 and 1.00, respectively. The risk of patients with microsatellite instability was calculated by Radscore and nomograph, and the cutoff value was -0.4385. The validity of the results was confirmed by the decision and calibration curves. CONCLUSION Radiological models based on PET/CT can provide clinical and practical noninvasive prediction of microsatellite instability status of several different cancer types, reducing or avoiding unnecessary biopsy to a certain extent.
Collapse
Affiliation(s)
- Menglu Wang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Mengye Peng
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Xinyue Yang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Ying Zhang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Tingting Wu
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Zeyu Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kezheng Wang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| |
Collapse
|
3
|
Genc M, Yildirim N, Coskun N, Ozdemir E, Turkolmez S. The variation of quantitative parameters and Deauville scores with different reconstruction algorithms in FDG PET/CT imaging of lymphoma patients. Rev Esp Med Nucl Imagen Mol 2023; 42:388-392. [PMID: 37524200 DOI: 10.1016/j.remnie.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
INTRODUCTION AND OBJECTIVES 18F-FDG PET with the Deauville score (DS) is a unique semiquantitative method for lymphoma. However, type of standard uptake values (max, mean, and peak) reconstruction algorithms could affect DS. We compared the Bayesian Penalized Likelihood reconstruction algorithm (BPL) with Ordered Subsets Expectation Maximization (OSEM) on quantitative parameters and DS in lymphoma. We investigated the effect of the size of the lymph node on quantitative variation. PATIENTS AND METHODS Raw PET data of 255 lymphoma patients were reconstructed separately with Q.Clear (GE Healthcare), a BPL, and SharpIR (GE Healthcare), an OSEM algorithm. In both images, each patient's liver, mediastinal blood pool, and SUVs (SUVmax, SUVmean, and SUVpeak) of a total of 487 lesions selected from the patients were performed. DSmax, DSmean, and DSpeak were compared. RESULTS In our study, DS increased significantly with BPL (p < 0.001), and the DS increased to 4-5 in thirty patients evaluated as 1-2-3 with OSEM. It was found that the quantitative values of the lymph nodes increased statistically with BPL (p < 0.001), and the liver from the reference regions were significantly decreased (p < 0.001). In addition, difference in lymph node was independently associated with size of lesion and was significantly more pronounced in small lesions (p < 0.001). The effects of BPL algorithm were more pronounced in SUVmax than in SUVmean and SUVpeak. DS-mean and DS-peak scores were less changed by BPL than DS-max. CONCLUSION Different reconstruction algorithms in FDG PET/CT affect the quantitative evaluation. That variation may affect the change in DS in lymphoma patients, thus affecting patient management.
Collapse
Affiliation(s)
- Mustafa Genc
- Sivas Numune Hospital, Department of Nuclear Medicine, Sivas, Turkey.
| | - Nilufer Yildirim
- Ankara Yildirim Beyazit University, Department of Nuclear Medicine, Ankara, Turkey; Ankara City Hospital, Department of Nuclear Medicine, Ankara, Turkey
| | - Nazim Coskun
- Ankara Yildirim Beyazit University, Department of Nuclear Medicine, Ankara, Turkey; Ankara City Hospital, Department of Nuclear Medicine, Ankara, Turkey
| | - Elif Ozdemir
- Ankara Yildirim Beyazit University, Department of Nuclear Medicine, Ankara, Turkey; Ankara City Hospital, Department of Nuclear Medicine, Ankara, Turkey
| | - Seyda Turkolmez
- Ankara Yildirim Beyazit University, Department of Nuclear Medicine, Ankara, Turkey; Ankara City Hospital, Department of Nuclear Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Siekkinen R, Han C, Maaniitty T, Teräs M, Knuuti J, Saraste A, Teuho J. A retrospective evaluation of Bayesian-penalized likelihood reconstruction for [ 15O]H 2O myocardial perfusion imaging. J Nucl Cardiol 2023; 30:1602-1612. [PMID: 36656496 PMCID: PMC10371909 DOI: 10.1007/s12350-022-03164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/05/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND New Block-Sequential-Regularized-Expectation-Maximization (BSREM) image reconstruction technique has been introduced for clinical use mainly for oncologic use. Accurate and quantitative image reconstruction is essential in myocardial perfusion imaging with positron emission tomography (PET) as it utilizes absolute quantitation of myocardial blood flow (MBF). The aim of the study was to evaluate BSREM reconstruction for quantitation in patients with suspected coronary artery disease (CAD). METHODS AND RESULTS We analyzed cardiac [15O]H2O PET studies of 177 patients evaluated for CAD. Differences between BSREM and Ordered-Subset-Expectation-Maximization with Time-Of-Flight (TOF) and Point-Spread-Function (PSF) modeling (OSEM-TOF-PSF) in terms of MBF, perfusable tissue fraction, and vascular volume fraction were measured. Classification of ischemia was assessed between the algorithms. OSEM-TOF-PSF and BSREM provided similar global stress MBF in patients with ischemia (1.84 ± 0.21 g⋅ml-1⋅min-1 vs 1.86 ± 0.21 g⋅ml-1⋅min-1) and no ischemia (3.26 ± 0.34 g⋅ml-1⋅min-1 vs 3.28 ± 0.34 g⋅ml-1⋅min-1). Global resting MBF was also similar (0.97 ± 0.12 g⋅ml-1⋅min-1 and 1.12 ± 0.06 g⋅ml-1⋅min-1). The largest mean relative difference in MBF values was 7%. Presence of myocardial ischemia was classified concordantly in 99% of patients using OSEM-TOF-PSF and BSREM reconstructions CONCLUSION: OSEM-TOF-PSF and BSREM image reconstructions produce similar MBF values and diagnosis of myocardial ischemia in patients undergoing [15O]H2O PET due to suspected obstructive coronary artery disease.
Collapse
Affiliation(s)
- Reetta Siekkinen
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Chunlei Han
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Mika Teräs
- Department of Medical Physics, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Centre, Turku University Hospital, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Tang CYL, Lim GKY, Chua WM, Ng CWQ, Koo SX, Goh CXY, Thang SP, Zaheer S, Lam WWC, Huang HL. Optimization of Bayesian penalized likelihood reconstruction for 68 Ga-prostate-specific membrane antigen-11 PET/computed tomography. Nucl Med Commun 2023; 44:480-487. [PMID: 36917459 DOI: 10.1097/mnm.0000000000001687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
OBJECTIVE The objective of this study is to determine the optimal β value for clinical use in digital 68 Ga-prostate-specific membrane antigen (PSMA-11) PET/computed tomography (CT) imaging. METHODS 68 Ga PSMA PET/CT of 21 patients with prostate cancer were reconstructed using block-sequential regularized expectation maximization ( β value of 400-1600) and ordered subsets expectation maximization. Nine independent blinded readers evaluated each reconstruction for overall image quality, noise level and lesion detectability. Maximum standardized uptake value (SUVmax) of the most intense lesion, liver SUVmean and liver SUV SD were recorded. Lesions were then subdivided according to uptake and size; the SUVmax of these lesions were analyzed. RESULTS There is a statistically significant correlation between improvement in image quality and β value, with the best being β 1400. This trend was also seen in image noise ( P < 0.001), with the least image noise reported with β 1400. Lesion detectability was not significantly different between the different β values ( P = 0.6452). There was no statistically significant difference in SUVmax of the most intense lesion ( P = 0.9966) and SUVmean of liver background between the different β values ( P = 0.9999); however, the SUV SD of the liver background showed a clear trend, with the lowest with β 1400 ( P = 0.0008). There was a decreasing trend observed in SUVmax when β values increased from 800 to 1400 for all four subgroups, and this decrease was greatest in small and low uptake lesions. CONCLUSION Bayesian penalized likelihood reconstruction algorithms improve image quality without affecting lesion detectability. A β value of 1400 is optimal.
Collapse
Affiliation(s)
- Charlene Yu Lin Tang
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Gabriel K Y Lim
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
| | - Wei Ming Chua
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
| | - Cherie Wei Qi Ng
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
| | - Si Xuan Koo
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
| | - Charles Xian-Yang Goh
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Sue Ping Thang
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Sumbul Zaheer
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Winnie Wing Chuen Lam
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Hian Liang Huang
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
- Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
6
|
Inukai JI, Nogami M, Tachibana M, Zeng F, Nishitani T, Kubo K, Murakami T. Rapid Whole-Body FDG PET/MRI in Oncology Patients: Utility of Combining Bayesian Penalised Likelihood PET Reconstruction and Abbreviated MRI. Diagnostics (Basel) 2023; 13:diagnostics13111871. [PMID: 37296723 DOI: 10.3390/diagnostics13111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
This study evaluated the diagnostic value of a rapid whole-body fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance imaging (MRI) approach, combining Bayesian penalised likelihood (BPL) PET with an optimised β value and abbreviated MRI (abb-MRI). The study compares the diagnostic performance of this approach with the standard PET/MRI that utilises ordered subsets expectation maximisation (OSEM) PET and standard MRI (std-MRI). The optimal β value was determined by evaluating the noise-equivalent count (NEC) phantom, background variability, contrast recovery, recovery coefficient, and visual scores (VS) for OSEM and BPL with β100-1000 at 2.5-, 1.5-, and 1.0-min scans, respectively. Clinical evaluations were conducted for NECpatient, NECdensity, liver signal-to-noise ratio (SNR), lesion maximum standardised uptake value, lesion signal-to-background ratio, lesion SNR, and VS in 49 patients. The diagnostic performance of BPL/abb-MRI was retrospectively assessed for lesion detection and differentiation in 156 patients using VS. The optimal β values were β600 for a 1.5-min scan and β700 for a 1.0-min scan. BPL/abb-MRI at these β values was equivalent to OSEM/std-MRI for a 2.5-min scan. By combining BPL with optimal β and abb-MRI, rapid whole-body PET/MRI could be achieved in ≤1.5 min per bed position, while maintaining comparable diagnostic performance to standard PET/MRI.
Collapse
Affiliation(s)
- Junko Inoue Inukai
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan
| | - Munenobu Nogami
- Department of Radiology, Kobe University Hospital, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan
- Division of Medical Imaging, Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji, Yoshida 910-1193, Fukui, Japan
| | - Miho Tachibana
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan
| | - Feibi Zeng
- Department of Radiology, Kobe University Hospital, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan
| | - Tatsuya Nishitani
- Department of Radiology, Kobe University Hospital, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan
| | - Kazuhiro Kubo
- Department of Radiology, Kobe University Hospital, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan
| |
Collapse
|
7
|
Young JR, Mugu VK, Johnson GB, Ehman EC, Packard AT, Homb AC, Nathan MA, Thanarajasingam G, Kemp BJ. Bayesian penalized likelihood PET reconstruction impact on quantitative metrics in diffuse large B-cell lymphoma. Medicine (Baltimore) 2023; 102:e32665. [PMID: 36820562 PMCID: PMC9907923 DOI: 10.1097/md.0000000000032665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Evaluate the quantitative, subjective (Deauville score [DS]) and reader agreement differences between standard ordered subset expectation maximization (OSEM) and Bayesian penalized likelihood (BPL) positron emission tomography (PET) reconstruction methods. A retrospective review of 104 F-18 fluorodeoxyglucose PET/computed tomography (CT) exams among 52 patients with diffuse large B-cell lymphoma. An unblinded radiologist moderator reviewed both BPL and OSEM PET/CT exams. Four blinded radiologists then reviewed the annotated cases to provide a visual DS for each annotated lesion. Significant (P < .001) differences in BPL and OSEM PET methods were identified with greater standard uptake value (SUV) maximum and SUV mean for BPL. The DS was altered in 25% of cases when BPL and OSEM were reviewed by the same radiologist. Interobserver DS agreement was higher for OSEM (>1 cm lesion = 0.89 and ≤1 cm lesion = 0.84) compared to BPL (>1 cm lesion = 0.85 and ≤1 cm lesion = 0.81). Among the 4 readers, average intraobserver visual DS agreement between OSEM and BPL was 0.67 for lesions >1cm and 0.4 for lesions ≤1 cm. F-18 Fluorodeoxyglucose PET/CT of diffuse large B-cell lymphoma reconstructed with BPL has higher SUV values, altered DSs and reader agreement when compared to OSEM. This report finds volumetric PET measurements such as metabolic tumor volume to be similar between BPL and OSEM PET reconstructions. Efforts such as adoption of European Association Research Ltd accreditation should be made to harmonize PET data with an aim at balancing the need for harmonization and sensitivity for lesion detection.
Collapse
Affiliation(s)
- Jason R. Young
- Department of Radiology, Mayo Clinic, Rochester MN
- * Correspondence: Jason R Young, Department of Radiology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224 (e-mail: )
| | | | - Geoffrey B. Johnson
- Department of Radiology, Mayo Clinic, Rochester MN
- Department of Immunology, Mayo Clinic, Rochester MN
| | | | | | | | | | | | | |
Collapse
|
8
|
Subesinghe M, Ilyas H, Dunn JT, Mir N, Duran A, Mikhaeel NG, Barrington SF. The frequency of change in five-point scale score with a Bayesian penalised likelihood PET reconstruction algorithm on interim FDG PET-CT and its potential implications for therapy decisions in Hodgkin's lymphoma. Clin Radiol 2023; 78:e89-e98. [PMID: 36333130 DOI: 10.1016/j.crad.2022.09.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
AIM To assess the effect of a Bayesian penalised likelihood (BPL) reconstruction algorithm on the five-point scale (5-PS) score, response categorisation, and potential implications for therapy decisions after interim 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET)-computed tomography (CT) (iPET-CT) to guide treatment in classical Hodgkin's lymphoma (HL). MATERIALS AND METHODS The present study included new patients with HL undergoing iPET-CT from 2014-2019 after two cycles of doxorubicin (Adriamycin), bleomycin, vincristine, and dacarbazine (ABVD). Two reporters categorised response using the 5-PS and measured maximum standardised uptake values (SUVmax) of the most avid tumour residuum, mediastinal blood pool, and normal liver with ordered subset expected maximisation (OSEM) and BPL reconstructions. RESULTS Eighty-one iPET-CT examinations were reviewed. Compared with OSEM, BPL increased the 5-PS score by a single score in 18/81 (22.2%) patients. The frequency of potential treatment intensification by changing a score of 3-4 was 13.6% (11/81) and represented 25% (11/44) of patients with a score of 3 on OSEM. All 11 patients remained in remission without a change in therapy (mean 63 months) except one who required second-line treatment for refractory disease. Median SUVmax of tumour residuum was significantly higher with BPL compared with OSEM (2.7 versus 2.4, p<<0.0001), whilst liver SUVmax was significantly lower for both reporters (up to 6.6%, p<0.0001). CONCLUSION BPL PET reconstruction increased the 5-PS score on iPET-CT in 22% of HL patients and can potentially result in unnecessary treatment escalation in over half of these patients.
Collapse
Affiliation(s)
- M Subesinghe
- King's College London & Guy's and St Thomas' PET Centre, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - H Ilyas
- Department of Nuclear Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - J T Dunn
- King's College London & Guy's and St Thomas' PET Centre, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - N Mir
- Department of Haematology, Lewisham and Greenwich NHS Trust, London, UK
| | - A Duran
- Department of Haematology, Lewisham and Greenwich NHS Trust, London, UK
| | - N G Mikhaeel
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - S F Barrington
- King's College London & Guy's and St Thomas' PET Centre, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
9
|
Enhancement of 18F-Fluorodeoxyglucose PET Image Quality by Deep-Learning-Based Image Reconstruction Using Advanced Intelligent Clear-IQ Engine in Semiconductor-Based PET/CT Scanners. Diagnostics (Basel) 2022; 12:diagnostics12102500. [PMID: 36292189 PMCID: PMC9599974 DOI: 10.3390/diagnostics12102500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
Deep learning (DL) image quality improvement has been studied for application to 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). It is unclear, however, whether DL can increase the quality of images obtained with semiconductor-based PET/CT scanners. This study aimed to compare the quality of semiconductor-based PET/CT scanner images obtained by DL-based technology and conventional OSEM image with Gaussian postfilter. For DL-based data processing implementation, we used Advanced Intelligent Clear-IQ Engine (AiCE, Canon Medical Systems, Tochigi, Japan) and for OSEM images, Gaussian postfilter of 3 mm FWHM is used. Thirty patients who underwent semiconductor-based PET/CT scanner imaging between May 6, 2021, and May 19, 2021, were enrolled. We compared AiCE images and OSEM images and scored them for delineation, image noise, and overall image quality. We also measured standardized uptake values (SUVs) in tumors and healthy tissues and compared them between AiCE and OSEM. AiCE images scored significantly higher than OSEM images for delineation, image noise, and overall image quality. The Fleiss kappa value for the interobserver agreement was 0.57. Among the 21 SUV measurements in healthy organs, 11 (52.4%) measurements were significantly different between AiCE and OSEM images. More pathological lesions were detected in AiCE images as compared with OSEM images, with AiCE images showing higher SUVs for pathological lesions than OSEM images. AiCE can improve the quality of images acquired with semiconductor-based PET/CT scanners, including the noise level, contrast, and tumor detection capability.
Collapse
|
10
|
Yang L, Xu P, Li M, Wang M, Peng M, Zhang Y, Wu T, Chu W, Wang K, Meng H, Zhang L. PET/CT Radiomic Features: A Potential Biomarker for EGFR Mutation Status and Survival Outcome Prediction in NSCLC Patients Treated With TKIs. Front Oncol 2022; 12:894323. [PMID: 35800046 PMCID: PMC9253544 DOI: 10.3389/fonc.2022.894323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Backgrounds Epidermal growth factor receptor (EGFR) mutation profiles play a vital role in treatment strategy decisions for non–small cell lung cancer (NSCLC). The purpose of this study was to evaluate the predictive efficacy of baseline 18F-FDG PET/CT-based radiomics analysis for EGFR mutation status, mutation site, and the survival benefit of targeted therapy. Methods A sum of 313 NSCLC patients with pre-treatment 18F-FDG PET/CT scans and genetic mutations detection were retrospectively studied. Clinical and PET metabolic parameters were incorporated into independent predictors of determining mutation status and mutation site. The dataset was randomly allocated into the training and the validation sets in a 7:3 ratio. Three-dimensional (3D) radiomics features were extracted from each PET- and CT-volume of interests (VOI) singularly, and then a radiomics signature (RS) associated with EGFR mutation profiles is built by feature selection. Three different prediction models based on support vector machine (SVM), decision tree (DT), and random forest (RF) classifiers were established. Furthermore, nomograms for estimation of overall survival (OS) and progression-free survival (PFS) were established by integrating PET/CT radiomics score (Rad-score), metabolic parameters, and clinical factors. Predictive performance was assessed by the receiver operating characteristic (ROC) analysis and the calibration curve analysis. The decision curve analysis (DCA) was applied to estimate and compare the clinical usefulness of nomograms. Results Three hundred thirteen NSCLC patients were classified into a training set (n=218) and a validation set (n=95). Multivariate analysis demonstrated that SUVmax and sex were independent indicators of EGFR mutation status and mutation site. Eight CT-derived RS, six PET-derived RS, and two clinical factors were retained to develop integrated models, which exhibited excellent ability to distinguish between EGFR wild type (EGFR-WT), EGFR 19 mutation type (EGFR-19-MT), and EGFR 21 mutation type (EGFR-21-MT). The SVM model outperformed the RF model and the DT model, yielding training area under the curves (AUC) of EGFR-WT, EGFR-19-WT, and EGFR-21-WT, with 0.881, 0.851, and 0.849, respectively, and validation AUCs of 0.926, 0.805 and 0.859, respectively. For prediction of OS, the integrated nomogram is superior to the clinical nomogram and the radiomics nomogram, with C-indexes of 0.80 in the training set and 0.83 in the validation set, respectively. Conclusions The PET/CT-based radiomics analysis might provide a novel approach to predict EGFR mutation status and mutation site in NSCLC patients and could serve as useful predictors for the patients’ survival outcome of targeted therapy in clinical practice.
Collapse
Affiliation(s)
- Liping Yang
- Positron Emission Tomography/Computed Tomography (PET-CT)/MR Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Panpan Xu
- Positron Emission Tomography/Computed Tomography (PET-CT)/MR Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Menglu Wang
- Positron Emission Tomography/Computed Tomography (PET-CT)/MR Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengye Peng
- Positron Emission Tomography/Computed Tomography (PET-CT)/MR Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Zhang
- Positron Emission Tomography/Computed Tomography (PET-CT)/MR Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tingting Wu
- Positron Emission Tomography/Computed Tomography (PET-CT)/MR Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenjie Chu
- Positron Emission Tomography/Computed Tomography (PET-CT)/MR Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kezheng Wang
- Positron Emission Tomography/Computed Tomography (PET-CT)/MR Department, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Lingbo Zhang, ; Kezheng Wang, ; Hongxue Meng,
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Lingbo Zhang, ; Kezheng Wang, ; Hongxue Meng,
| | - Lingbo Zhang
- Oral Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lingbo Zhang, ; Kezheng Wang, ; Hongxue Meng,
| |
Collapse
|
11
|
Yang L, Chu W, Li M, Xu P, Wang M, Peng M, Wang K, Zhang L. Radiomics in Gastric Cancer: First Clinical Investigation to Predict Lymph Vascular Invasion and Survival Outcome Using 18F-FDG PET/CT Images. Front Oncol 2022; 12:836098. [PMID: 35433451 PMCID: PMC9005810 DOI: 10.3389/fonc.2022.836098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background Lymph vascular invasion (LVI) is an unfavorable prognostic indicator in gastric cancer (GC). However, there are no reliable clinical techniques for preoperative predictions of LVI. The aim of this study was to develop and validate PET/CT-based radiomics signatures for predicting LVI of GC preoperatively. Radiomics nomograms were also established to predict patient survival outcomes. Methods This retrospective study registered 148 GC patients with histopathological confirmation for LVI status, who underwent pre-operative PET/CT scans (Discovery VCT 64 PET/CT system) from December 2014 to June 2019. Clinic-pathological factors (age, gender, and tumor grade, etc.) and metabolic PET data (maximum and mean standardized uptake value, total lesion glycolysis and metabolic tumor volume) were analyzed to identify independent LVI predictors. The dataset was randomly assigned to either the training set or test set in a 7:3 ratios. Three-dimensional (3D) radiomics features were extracted from each PET- and CT-volume of interests (VOI) singularly, and then a radiomics signature (RS) associated with LVI status is built by feature selection. Four models with different modalities (PET-RS: only PET radiomics features; CT-RS: only CT radiomics features; PET/CT-RS: both PET and CT radiomics features; PET/CT-RS plus clinical data) were developed to predict LVI. Patients were postoperatively followed up with PET/CT every 6-12 months for the first two years and then annually up to five years after surgery. The PET/CT radiomics score (Rad-scores) was calculated to assess survival outcome, and corresponding nomograms with radiomics (NWR) or without radiomics (NWOR) were established. Results Tumor grade and maximum standardized uptake value (SUVmax) were the independent LVI predictor. 1037 CT and PET 3D radiomics features were extracted separately and reduced to 4 and 5 features to build CT-RS and PET-RS, respectively. PET/CT-RS and PET/CT-RS plus clinical data (tumor grade and SUVmax) were also developed. The ROC analysis demonstrated clinical usefulness of PET/CT-RS plus clinical data (AUC values for training and validation, respectively 0.936 and 0.914) and PET/CT-RS (AUC values for training and validation, respectively 0.881 and 0.854), which both are superior to CT-RS (0.838 and 0.824) and PET-RS (0.821 and 0.812). SUVmax and LVI were independent prognostic indicators of both OS and PFS. Decision curve analysis (DCA) demonstrated NWR outperformed NWOR and was established to assess survival outcomes. For estimation of OS and PFS, the C-indexes of the NWR were 0. 88 and 0.88 in the training set, respectively, while the C-indexes of the NWOR were 0. 82 and 0.85 in the training set, respectively. Conclusions The PET/CT-based radiomics analysis might serve as a non-invasive approach to predict LVI status in GC patients and provide effective predictors of patient survival outcomes.
Collapse
Affiliation(s)
- Liping Yang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenjie Chu
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Panpan Xu
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin, China
| | - Menglu Wang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengye Peng
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kezheng Wang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lingbo Zhang
- Oral Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction. EJNMMI Phys 2022; 9:23. [PMID: 35348926 PMCID: PMC8964871 DOI: 10.1186/s40658-022-00451-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 mm3. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The SUVmax, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the SUVmax, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00451-5.
Collapse
|
13
|
Can Q.Clear reconstruction be used to improve [68 Ga]Ga-DOTANOC PET/CT image quality in overweight NEN patients? Eur J Nucl Med Mol Imaging 2021; 49:1607-1612. [PMID: 34693467 DOI: 10.1007/s00259-021-05592-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
AIM/INTRODUCTION Digital PET/CT allows Q.Clear image reconstruction with different Beta (β) levels. However, no definitive standard β level for [68 Ga]Ga-DOTANOC PET/CT has been established yet. As patient's body mass index (BMI) can affect image quality, the aim of the study was to visually and semi-quantitatively assess different β levels compared to standard OSEM in overweight patients. MATERIALS AND METHODS Inclusion criteria: (1) patients with NEN included in a prospective CE-approved electronic archive; (2) [68 Ga]Ga-DOTANOC PET/CT performed on a digital tomograph between September2019/March2021; (3) BMI ≥ 25. Images were acquired following EANM guidelines and reconstructed with OSEM and Q.Clear with three β levels (800, 1000, 1600). Scans were independently reviewed by three expert readers, unaware of clinical data, who independently chose the preferred β level reconstruction for visual overall image quality. Semi-quantitative analysis was performed on each scan: SUVmax of the highest uptake lesion (SUVmax-T), liver background SUVmean (SUVmean-L), SUVmax-T/SUVmean-L, Signal-to-noise ratio for both liver (LSNR) and the highest uptake lesion (SNR-T), Contrast-to-noise ratio (CNR). RESULTS Overall, 75 patients (median age: 63 years old [23-87]) were included: pre-obesity sub-group (25 ≤ BMI < 30, n = 50) and obesity sub-group (BMI ≥ 30, n = 25). PET/CT was positive for disease in 45/75 (60.0%) cases (14 obese and 31 pre-obese patients). Agreement among readers' visual rating was high (Fleiss κ = 0.88) and the β1600 was preferred in most cases (in 96% of obese patients and in 53.3% of pre-obese cases). OSEM was considered visually equal to β1600 in 44.7% of pre-obese cases and in 4% of obese patients. In a minority of pre-obese cases, OSEM was preferred (2%). In the whole population, CNR, SNR-T and LSNR were significantly different (p < 0.001) between OSEM and β1600, conversely to SUVmean-L (not significant). These results were also confirmed when calculated separately for the pre-obesity and obesity sub-groups β800 and β1000 were always rated inferior. CONCLUSIONS Q.Clear is a new technology for PET/CT image reconstruction that can be used to increase CNR and SNR-T, to subsequently optimise overall image quality as compared to standard OSEM. Our preliminary data on [68 Ga]Ga-DOTANOC PET/CT demonstrate that in overweight NEN patients, β1600 is preferable over β800 and β1000. Further studies are warranted to validate these results in lesions of different anatomical region and size; moreover, currently employed interpretative PET positivity criteria should be adjusted to the new reconstruction method.
Collapse
|
14
|
Liu Y, Gao MJ, Zhou J, Du F, Chen L, Huang ZK, Hu JB, Lou C. Changes of [ 18F]FDG-PET/CT quantitative parameters in tumor lesions by the Bayesian penalized-likelihood PET reconstruction algorithm and its influencing factors. BMC Med Imaging 2021; 21:133. [PMID: 34530768 PMCID: PMC8444406 DOI: 10.1186/s12880-021-00664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/05/2021] [Indexed: 11/10/2022] Open
Abstract
Background To compare the changes in quantitative parameters and the size and degree of 18F-fluorodeoxyglucose ([18F]FDG) uptake of malignant tumor lesions between Bayesian penalized-likelihood (BPL) and non-BPL reconstruction algorithms. Methods Positron emission tomography/computed tomography images of 86 malignant tumor lesions were reconstructed using the algorithms of ordered subset expectation maximization (OSEM), OSEM + time of flight (TOF), OSEM + TOF + point spread function (PSF), and BPL. [18F]FDG parameters of maximum standardized uptake value (SUVmax), SUVmean, metabolic tumor volume (MTV), total lesion glycolysis (TLG), and signal-to-background ratio (SBR) of these lesions were measured. Quantitative parameters between the different reconstruction algorithms were compared, and correlations between parameter variation and lesion size or the degree of [18F]FDG uptake were analyzed. Results After BPL reconstruction, SUVmax, SUVmean, and SBR were significantly increased, MTV was significantly decreased. The difference values of %ΔSUVmax, %ΔSUVmean, %ΔSBR, and the absolute value of %ΔMTV between BPL and OSEM + TOF were 40.00%, 38.50%, 33.60%, and 33.20%, respectively, which were significantly higher than those between BPL and OSEM + TOF + PSF. Similar results were observed in the comparison of OSEM and OSEM + TOF + PSF with BPL. The %ΔSUVmax, %ΔSUVmean, and %ΔSBR were all significantly negatively correlated with the size and degree of [18F]FDG uptake in the lesions, whereas significant positive correlations were observed for %ΔMTV and %ΔTLG. Conclusion The BPL reconstruction algorithm significantly increased SUVmax, SUVmean, and SBR and decreased MTV of tumor lesions, especially in small or relatively hypometabolic lesions.
Collapse
Affiliation(s)
- Yao Liu
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Rd, Jianggan District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Mei-Jia Gao
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Rd, Jianggan District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jie Zhou
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Rd, Jianggan District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Fan Du
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Rd, Jianggan District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Liang Chen
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Rd, Jianggan District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Zhong-Ke Huang
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Rd, Jianggan District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Ji-Bo Hu
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Rd, Jianggan District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Cen Lou
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Rd, Jianggan District, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Oddstig J, Brolin G, Trägårdh E, Minarik D. Head-to-head comparison of a Si-photomultiplier-based and a conventional photomultiplier-based PET-CT system. EJNMMI Phys 2021; 8:19. [PMID: 33630173 PMCID: PMC7907292 DOI: 10.1186/s40658-021-00366-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/09/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND A novel generation of PET scanners based on silicon (Si)-photomultiplier (PM) technology has recently been introduced. Concurrently, there has been development of new reconstruction methods aimed at increasing the detectability of small lesions without increasing image noise. The combination of new detector technologies and new reconstruction algorithms has been found to increase image quality. However, it is unknown to what extent the demonstrated improvement of image quality is due to scanner hardware development or improved reconstruction algorithms. To isolate the contribution of the hardware, this study aimed to compare the ability to detect small hotspots in phantoms using the latest generation SiPM-based PET/CT scanner (GE Discovery MI) relative to conventional PM-based PET/CT scanner (GE Discovery 690), using identical reconstruction protocols. MATERIALS AND METHODS Two different phantoms (NEMA body and Jasczcak) with fillable spheres (31 μl to 26.5 ml) and varying sphere-to-background-ratios (SBR) were scanned in one bed position for 15-600 s on both scanners. The data were reconstructed using identical reconstruction parameters on both scanners. The recovery-coefficient (RC), noise level, contrast (spherepeak/backgroundpeak-value), and detectability of each sphere were calculated and compared between the scanners at each acquisition time. RESULTS The RC-curves for the NEMA phantom were near-identical for both scanners at SBR 10:1. For smaller spheres in the Jaszczak phantom, the contrast was 1.22 higher for the DMI scanner at SBR 15:1. The ratio decreased for lower SBR, with a ratio of 1.03 at SBR 3.85:1. Regarding the detectability of spheres, the sensitivity was 98% and 88% for the DMI and D690, respectively, for SBR 15:1. For SBR 7.5, the sensitivity was 75% and 83% for the DMI and D690, respectively. For SBR 3.85:1, the sensitivity was 43% and 30% for the DMI and D690, respectively. CONCLUSION Marginally higher contrast in small spheres was seen for the SiPM-based scanner but there was no significant difference in detectability between the scanners. It was difficult to detect differences between the scanners, suggesting that the SiPM-based detectors are not the primary reason for improved image quality.
Collapse
Affiliation(s)
- Jenny Oddstig
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, 221 85, Lund, Sweden.
| | - Gustav Brolin
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, 221 85, Lund, Sweden
| | - Elin Trägårdh
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital and Lund University, Carl Bertil Laurells gata 9, Skåne University Hospital, 205 02, Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Carl Bertil Laurells gata 9, Skåne University Hospital, 205 02, Malmö, Sweden
| | - David Minarik
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, 221 85, Lund, Sweden
| |
Collapse
|
16
|
Chicheportiche A, Goshen E, Godefroy J, Grozinsky-Glasberg S, Oleinikov K, Meirovitz A, Gross DJ, Ben-Haim S. Can a penalized-likelihood estimation algorithm be used to reduce the injected dose or the acquisition time in 68Ga-DOTATATE PET/CT studies? EJNMMI Phys 2021; 8:13. [PMID: 33580359 PMCID: PMC7881076 DOI: 10.1186/s40658-021-00359-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background Image quality and quantitative accuracy of positron emission tomography (PET) depend on several factors such as uptake time, scanner characteristics and image reconstruction methods. Ordered subset expectation maximization (OSEM) is considered the gold standard for image reconstruction. Penalized-likelihood estimation (PL) algorithms have been recently developed for PET reconstruction to improve quantitation accuracy while maintaining or even improving image quality. In PL algorithms, a regularization parameter β controls the penalization of relative differences between neighboring pixels and determines image characteristics. In the present study, we aim to compare the performance of Q.Clear (PL algorithm, GE Healthcare) and OSEM (3 iterations, 8 subsets, 6-mm post-processing filter) for 68Ga-DOTATATE (68Ga-DOTA) PET studies, both visually and quantitatively. Thirty consecutive whole-body 68Ga-DOTA studies were included. The data were acquired in list mode and were reconstructed using 3D OSEM and Q.Clear with various values of β and various acquisition times per bed position (bp), thus generating images with reduced injected dose (1.5 min/bp: β = 300–1100; 1.0 min/bp: β = 600–1400 and 0.5 min/bp: β = 800–2200). An additional analysis adding β values up to 1500, 1700 and 3000 for 1.5, 1.0 and 0.5 min/bp, respectively, was performed for a random sample of 8 studies. Evaluation was performed using a phantom and clinical data. Two experienced nuclear medicine physicians blinded to the variables assessed the image quality visually. Results Clinical images reconstructed with Q.Clear, set at 1.5, 1.0 and 0.5 min/bp using β = 1100, 1300 and 3000, respectively, resulted in images with noise equivalence to 3D OSEM (1.5 min/bp) with a mean increase in SUVmax of 14%, 13% and 4%, an increase in SNR of 30%, 24% and 10%, and an increase in SBR of 13%, 13% and 2%. Visual assessment yielded similar results for β values of 1100–1400 and 1300–1600 for 1.5 and 1.0 min/bp, respectively, although for 0.5 min/bp there was no significant improvement compared to OSEM. Conclusion 68Ga-DOTA reconstructions with Q.Clear, 1.5 and 1.0 min/bp, resulted in increased tumor SUVmax and in improved SNR and SBR at a similar level of noise compared to 3D OSEM. Q.Clear with β = 1300–1600 enables one-third reduction of acquisition time or injected dose, with similar image quality compared to 3D OSEM.
Collapse
Affiliation(s)
- Alexandre Chicheportiche
- Department of Nuclear Medicine & Biophysics, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel.
| | - Elinor Goshen
- Department of Nuclear Medicine, Wolfson Medical Center, 58100, Holon, Israel
| | - Jeremy Godefroy
- Department of Nuclear Medicine & Biophysics, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Simona Grozinsky-Glasberg
- Neuroendocrine Tumor Unit, ENETS Center of Excellence, Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Kira Oleinikov
- Neuroendocrine Tumor Unit, ENETS Center of Excellence, Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Amichay Meirovitz
- Oncology Department and Radiation Therapy Unit, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - David J Gross
- Neuroendocrine Tumor Unit, ENETS Center of Excellence, Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - Simona Ben-Haim
- Department of Nuclear Medicine & Biophysics, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, 91120, Jerusalem, Israel.,Institute of Nuclear Medicine, University College London and UCL Hospitals NHS Trust, London, UK
| |
Collapse
|
17
|
Wyrzykowski M, Siminiak N, Kaźmierczak M, Ruchała M, Czepczyński R. Impact of the Q.Clear reconstruction algorithm on the interpretation of PET/CT images in patients with lymphoma. EJNMMI Res 2020; 10:99. [PMID: 32845406 PMCID: PMC7450027 DOI: 10.1186/s13550-020-00690-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Background Q.Clear is a new Bayesian penalized-likelihood PET reconstruction algorithm. It has been documented that Q.Clear increases the SUVmax values of different malignant lesions. Purpose SUVmax values are crucial for the interpretation of PET/CT images in patients with lymphoma, particularly when the early and final responses to treatment are evaluated. The aim of the study was to systematically analyse the impact of the use of Q.Clear on the interpretation of PET/CT in patients with lymphoma. Methods A total of 280 18F-FDG PET/CT scans in patients with lymphoma were performed for staging (sPET), for early treatment response (iPET), after the end of treatment (ePET) and when a relapse of lymphoma was suspected (rPET). Scans were separately reconstructed with two algorithms, Q.Clear and OSEM, and further compared. Results The stage of lymphoma was concordantly diagnosed in 69/70 patients with both algorithms on sPET. Discordant assessment of the Deauville score (p < 0.001) was found in 11 cases (15.7%) of 70 iPET scans and in 11 cases of 70 ePET scans. An upgrade from a negative to a positive scan by Q.Clear occurred in 3 cases (4.3%) of iPET scans and 7 cases (10.0%) of ePET scans. The results of all 70 rPET scans were concordant. The SUVmax values of the target lymphoma lesions measured with Q.Clear were higher than those measured with OSEM in 88.8% of scans. Conclusion Although the Q.Clear algorithm may alter the interpretations of PET/CT in only a small proportion of patients, we recommend using standard OSEM reconstruction for the assessment of treatment response.
Collapse
Affiliation(s)
| | - Natalia Siminiak
- Department of Endocrinology and Metabolism, Poznan University of Medical Sciences, Poznań, Poland
| | - Maciej Kaźmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| | - Marek Ruchała
- Department of Endocrinology and Metabolism, Poznan University of Medical Sciences, Poznań, Poland
| | - Rafał Czepczyński
- Department of Nuclear Medicine, Affidea Poznań, Poznań, Poland.,Department of Endocrinology and Metabolism, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
18
|
Witkowska-Patena E, Budzyńska A, Giżewska A, Dziuk M, Walęcka-Mazur A. Ordered subset expectation maximisation vs Bayesian penalised likelihood reconstruction algorithm in 18F-PSMA-1007 PET/CT. Ann Nucl Med 2020; 34:192-199. [PMID: 31902120 PMCID: PMC7033087 DOI: 10.1007/s12149-019-01433-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023]
Abstract
Background The aim of the study was to compare widely used ordered subset expectation maximisation (OSEM) algorithm with a new Bayesian penalised likelihood (BPL) Q.Clear algorithm in 18F-PSMA-1007 PET/CT. Methods We retrospectively assessed 25 18F-PSMA-1007 PET/CT scans with both OSEM and Q.Clear reconstructions available. Each scan was independently reported by two physicians both in OSEM and Q.Clear. SUVmax, SUVmean and tumour-to-background ratio (TBR) of each lesion were measured. Reports were also compared for their final conclusions and the number and localisation of lesions. Results In both reconstructions the same 87 lesions were reported. Mean SUVmax, SUVmean and TBR were higher for Q.Clear than OSEM (7.01 vs 6.53 [p = 0.052], 4.16 vs 3.84 [p = 0.036] and 20.2 vs 16.8 [p < 0.00001], respectively). Small lesions (< 10 mm) had statistically significant higher SUVmax, SUVmean and TBR in Q.Clear than OSEM (5.37 vs 4.79 [p = 0.032], 3.08 vs 2.70 [p = 0.04] and 15.5 vs 12.5 [p = 0.00214], respectively). For lesions ≥ 10 mm, no significant differences were observed. Findings with higher tracer avidity (SUVmax ≥ 5) tended to have higher SUVmax, SUVmean and TBR values in Q.Clear (11.6 vs 10.3 [p = 0.00278], 7.0 vs 6.7 [p = 0.077] and 33.9 vs 26.7 [p < 0.00001, respectively). Mean background uptake did not differ significantly between Q.Clear and OSEM (0.42 vs 0.39, p = 0.07). Conclusions In 18F-PSMA-1007 PET/CT, Q.Clear SUVs and TBR tend to be higher (regardless of lesion localisation), especially for small and highly avid lesions. Increase in SUVs is also higher for lesions with high tracer uptake. Still, Q.Clear does not affect 18F-PSMA-1007 PET/CT specificity and sensitivity.
Collapse
Affiliation(s)
- Ewa Witkowska-Patena
- Department of Nuclear Medicine, Military Institute of Medicine, 128 Szaserów St, 04-141, Warsaw, Poland. .,Affidea Mazovian PET/CT Medical Centre, 128 Szaserów St, 04-349, Warsaw, Poland.
| | - Anna Budzyńska
- Department of Nuclear Medicine, Military Institute of Medicine, 128 Szaserów St, 04-141, Warsaw, Poland.,Affidea Mazovian PET/CT Medical Centre, 128 Szaserów St, 04-349, Warsaw, Poland
| | - Agnieszka Giżewska
- Department of Nuclear Medicine, Military Institute of Medicine, 128 Szaserów St, 04-141, Warsaw, Poland.,Affidea Mazovian PET/CT Medical Centre, 128 Szaserów St, 04-349, Warsaw, Poland
| | - Mirosław Dziuk
- Department of Nuclear Medicine, Military Institute of Medicine, 128 Szaserów St, 04-141, Warsaw, Poland.,Affidea Mazovian PET/CT Medical Centre, 128 Szaserów St, 04-349, Warsaw, Poland
| | | |
Collapse
|