1
|
Smokovski I, Steinle N, Behnke A, Bhaskar SMM, Grech G, Richter K, Niklewski G, Birkenbihl C, Parini P, Andrews RJ, Bauchner H, Golubnitschaja O. Digital biomarkers: 3PM approach revolutionizing chronic disease management - EPMA 2024 position. EPMA J 2024; 15:149-162. [PMID: 38841615 PMCID: PMC11147994 DOI: 10.1007/s13167-024-00364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024]
Abstract
Non-communicable chronic diseases (NCDs) have become a major global health concern. They constitute the leading cause of disabilities, increased morbidity, mortality, and socio-economic disasters worldwide. Medical condition-specific digital biomarker (DB) panels have emerged as valuable tools to manage NCDs. DBs refer to the measurable and quantifiable physiological, behavioral, and environmental parameters collected for an individual through innovative digital health technologies, including wearables, smart devices, and medical sensors. By leveraging digital technologies, healthcare providers can gather real-time data and insights, enabling them to deliver more proactive and tailored interventions to individuals at risk and patients diagnosed with NCDs. Continuous monitoring of relevant health parameters through wearable devices or smartphone applications allows patients and clinicians to track the progression of NCDs in real time. With the introduction of digital biomarker monitoring (DBM), a new quality of primary and secondary healthcare is being offered with promising opportunities for health risk assessment and protection against health-to-disease transitions in vulnerable sub-populations. DBM enables healthcare providers to take the most cost-effective targeted preventive measures, to detect disease developments early, and to introduce personalized interventions. Consequently, they benefit the quality of life (QoL) of affected individuals, healthcare economy, and society at large. DBM is instrumental for the paradigm shift from reactive medical services to 3PM approach promoted by the European Association for Predictive, Preventive, and Personalized Medicine (EPMA) involving 3PM experts from 55 countries worldwide. This position manuscript consolidates multi-professional expertise in the area, demonstrating clinically relevant examples and providing the roadmap for implementing 3PM concepts facilitated through DBs.
Collapse
Affiliation(s)
- Ivica Smokovski
- University Clinic of Endocrinology, Diabetes and Metabolic Disorders, Skopje, North Macedonia
- Faculty of Medical Sciences, University Goce Delcev, Stip, North Macedonia
| | - Nanette Steinle
- Veteran Affairs Capitol Health Care Network, Linthicum, MD USA
- University of Maryland School of Medicine, Baltimore, MD USA
| | - Andrew Behnke
- Endocrinology Section, Carilion Clinic, Roanoke, VA USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA USA
| | - Sonu M. M. Bhaskar
- Department of Neurology, Division of Cerebrovascular Medicine and Neurology, National Cerebral and Cardiovascular Centre (NCVC), Suita, Osaka Japan
- Department of Neurology & Neurophysiology, Liverpool Hospital, Ingham Institute for Applied Medical Research and South Western Sydney Local Health District, Sydney, NSW Australia
- NSW Brain Clot Bank, Global Health Neurology Lab & NSW Health Pathology, Sydney, NSW Australia
| | - Godfrey Grech
- Department of Pathology, Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Kneginja Richter
- Faculty of Medical Sciences, University Goce Delcev, Stip, North Macedonia
- CuraMed Tagesklinik Nürnberg GmbH, Nuremberg, Germany
- Technische Hochschule Nürnberg GSO, Nuremberg, Germany
- University Clinic for Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Günter Niklewski
- University Clinic for Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Colin Birkenbihl
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Medicine Huddinge, and Department of Laboratory Medicine, Karolinska Institute, and Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Russell J. Andrews
- Nanotechnology & Smart Systems Groups, NASA Ames Research Center, Aerospace Medical Association, Silicon Valley, CA USA
| | - Howard Bauchner
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalized (3P) Medicine, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
2
|
Macias Alonso AK, Hirt J, Woelfle T, Janiaud P, Hemkens LG. Definitions of digital biomarkers: a systematic mapping of the biomedical literature. BMJ Health Care Inform 2024; 31:e100914. [PMID: 38589213 PMCID: PMC11015196 DOI: 10.1136/bmjhci-2023-100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Technological devices such as smartphones, wearables and virtual assistants enable health data collection, serving as digital alternatives to conventional biomarkers. We aimed to provide a systematic overview of emerging literature on 'digital biomarkers,' covering definitions, features and citations in biomedical research. METHODS We analysed all articles in PubMed that used 'digital biomarker(s)' in title or abstract, considering any study involving humans and any review, editorial, perspective or opinion-based articles up to 8 March 2023. We systematically extracted characteristics of publications and research studies, and any definitions and features of 'digital biomarkers' mentioned. We described the most influential literature on digital biomarkers and their definitions using thematic categorisations of definitions considering the Food and Drug Administration Biomarkers, EndpointS and other Tools framework (ie, data type, data collection method, purpose of biomarker), analysing structural similarity of definitions by performing text and citation analyses. RESULTS We identified 415 articles using 'digital biomarker' between 2014 and 2023 (median 2021). The majority (283 articles; 68%) were primary research. Notably, 287 articles (69%) did not provide a definition of digital biomarkers. Among the 128 articles with definitions, there were 127 different ones. Of these, 78 considered data collection, 56 data type, 50 purpose and 23 included all three components. Those 128 articles with a definition had a median of 6 citations, with the top 10 each presenting distinct definitions. CONCLUSIONS The definitions of digital biomarkers vary significantly, indicating a lack of consensus in this emerging field. Our overview highlights key defining characteristics, which could guide the development of a more harmonised accepted definition.
Collapse
Affiliation(s)
- Ana Karen Macias Alonso
- Department of Applied Natural Sciences, Technische Hochschule Lübeck, Lübeck, Germany
- Pragmatic Evidence Lab, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Julian Hirt
- Pragmatic Evidence Lab, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Health, Eastern Switzerland University of Applied Sciences, St.Gallen, Switzerland
| | - Tim Woelfle
- Pragmatic Evidence Lab, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology and MS Center, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Perrine Janiaud
- Pragmatic Evidence Lab, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lars G Hemkens
- Pragmatic Evidence Lab, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Meta-Research Innovation Center Berlin (METRIC-B), Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Erickson CM, Wexler A, Largent EA. Alzheimer's in the modern age: Ethical challenges in the use of digital monitoring to identify cognitive changes. Inform Health Soc Care 2024; 49:1-13. [PMID: 38116960 PMCID: PMC11001527 DOI: 10.1080/17538157.2023.2294203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Pushes toward earlier detection of Alzheimer's disease (AD)-related cognitive changes are creating interest in leveraging technologies, like cellphones, that are already widespread and well-equipped for data collection to facilitate digital monitoring for AD. Studies are ongoing to identify and validate potential "digital biomarkers" that might indicate someone has or is at risk of developing AD dementia. Digital biomarkers for AD have potential as a tool in aiding more timely diagnosis, though more robust research is needed to support their validity and utility. While there are grounds for optimism, leveraging digital monitoring and informatics for cognitive changes also poses ethical challenges, related to topics such as algorithmic bias, consent, and data privacy and security. As we confront the modern era of Alzheimer's disease, individuals, companies, regulators and policymakers alike must prepare for a future in which our day-to-day interactions with technology in our daily life may identify AD-related cognitive changes.
Collapse
Affiliation(s)
- Claire M Erickson
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily A Largent
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Muurling M, de Boer C, Vairavan S, Harms RL, Chadha AS, Tarnanas I, Luis EV, Religa D, Gjestsen MT, Galluzzi S, Ibarria Sala M, Koychev I, Hausner L, Gkioka M, Aarsland D, Visser PJ, Brem AK. Augmented reality versus standard tests to assess cognition and function in early Alzheimer's disease. NPJ Digit Med 2023; 6:234. [PMID: 38110486 PMCID: PMC10728213 DOI: 10.1038/s41746-023-00978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
Augmented reality (AR) apps, in which the virtual and real world are combined, can recreate instrumental activities of daily living (IADL) and are therefore promising to measure cognition needed for IADL in early Alzheimer's disease (AD) both in the clinic and in the home settings. The primary aim of this study was to distinguish and classify healthy controls (HC) from participants with AD pathology in an early AD stage using an AR app. The secondary aims were to test the association of the app with clinical cognitive and functional tests and investigate the feasibility of at-home testing using AR. We furthermore investigated the test-retest reliability and potential learning effects of the task. The digital score from the AR app could significantly distinguish HC from preclinical AD (preAD) and prodromal AD (proAD), and preAD from proAD, both with in-clinic and at-home tests. For the classification of the proAD group, the digital score (AUCclinic_visit = 0.84 [0.75-0.93], AUCat_home = 0.77 [0.61-0.93]) was as good as the cognitive score (AUC = 0.85 [0.78-0.93]), while for classifying the preAD group, the digital score (AUCclinic_visit = 0.66 [0.53-0.78], AUCat_home = 0.76 [0.61-0.91]) was superior to the cognitive score (AUC = 0.55 [0.42-0.68]). In-clinic and at-home tests moderately correlated (rho = 0.57, p < 0.001). The digital score was associated with the clinical cognitive score (rho = 0.56, p < 0.001). No learning effects were found. Here we report the AR app distinguishes HC from otherwise healthy Aβ-positive individuals, both in the outpatient setting and at home, which is currently not possible with standard cognitive tests.
Collapse
Affiliation(s)
- Marijn Muurling
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
| | - Casper de Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Srinivasan Vairavan
- Janssen Research & Development, LLC, 1125 Trenton Harbourton Road, Titusville, NJ, 08560, USA
| | | | | | - Ioannis Tarnanas
- Altoida Inc., Washington, DC, USA
- Trinity College Dublin, Global Brain Health Institute - GHBI, Dublin, Ireland
| | - Estefania Vilarino Luis
- Centre de la mémoire, Université de Genève (UNIGE), Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Dorota Religa
- Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Martha Therese Gjestsen
- Centre for Age-related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Samantha Galluzzi
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marta Ibarria Sala
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Lucrezia Hausner
- Central Institute for Mental Health, Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Mara Gkioka
- Alzheimer Hellas and Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI - AUTh), Balkan Center, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dag Aarsland
- Centre for Age-related Medicine, Stavanger University Hospital, Stavanger, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anna-Katharine Brem
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Pyper E, McKeown S, Hartmann-Boyce J, Powell J. Digital Health Technology for Real-World Clinical Outcome Measurement Using Patient-Generated Data: Systematic Scoping Review. J Med Internet Res 2023; 25:e46992. [PMID: 37819698 PMCID: PMC10600647 DOI: 10.2196/46992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Digital health technologies (DHTs) play an ever-expanding role in health care management and delivery. Beyond their use as interventions, DHTs also serve as a vehicle for real-world data collection to characterize patients, their care journeys, and their responses to other clinical interventions. There is a need to comprehensively map the evidence-across all conditions and technology types-on DHT measurement of patient outcomes in the real world. OBJECTIVE We aimed to investigate the use of DHTs to measure real-world clinical outcomes using patient-generated data. METHODS We conducted this systematic scoping review in accordance with the Joanna Briggs Institute methodology. Detailed eligibility criteria documented in a preregistered protocol informed a search strategy for the following databases: MEDLINE (Ovid), CINAHL, Cochrane (CENTRAL), Embase, PsycINFO, ClinicalTrials.gov, and the EU Clinical Trials Register. We considered studies published between 2000 and 2022 wherein digital health data were collected, passively or actively, from patients with any specified health condition outside of clinical visits. Categories for key concepts, such as DHT type and analytical applications, were established where needed. Following screening and full-text review, data were extracted and analyzed using predefined fields, and findings were reported in accordance with established guidelines. RESULTS The search strategy identified 11,015 publications, with 7308 records after duplicates and reviews were removed. After screening and full-text review, 510 studies were included for extraction. These studies encompassed 169 different conditions in over 20 therapeutic areas and 44 countries. The DHTs used for mental health and addictions research (111/510, 21.8%) were the most prevalent. The most common type of DHT, mobile apps, was observed in approximately half of the studies (250/510, 49%). Most studies used only 1 DHT (346/510, 67.8%); however, the majority of technologies used were able to collect more than 1 type of data, with the most common being physiological data (189/510, 37.1%), clinical symptoms data (188/510, 36.9%), and behavioral data (171/510, 33.5%). Overall, there has been real growth in the depth and breadth of evidence, number of DHT types, and use of artificial intelligence and advanced analytics over time. CONCLUSIONS This scoping review offers a comprehensive view of the variety of types of technology, data, collection methods, analytical approaches, and therapeutic applications within this growing body of evidence. To unlock the full potential of DHT for measuring health outcomes and capturing digital biomarkers, there is a need for more rigorous research that goes beyond technology validation to demonstrate whether robust real-world data can be reliably captured from patients in their daily life and whether its capture improves patient outcomes. This study provides a valuable repository of DHT studies to inform subsequent research by health care providers, policy makers, and the life sciences industry. TRIAL REGISTRATION Open Science Framework 5TMKY; https://osf.io/5tmky/.
Collapse
Affiliation(s)
- Evelyn Pyper
- Department for Continuing Education, University of Oxford, Oxford, United Kingdom
| | - Sarah McKeown
- Department for Continuing Education, University of Oxford, Oxford, United Kingdom
| | - Jamie Hartmann-Boyce
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
- Department of Health Promotion and Policy, University of Massachusetts Amherst, Amherst, MA, United States
| | - John Powell
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Piendel L, Vališ M, Hort J. An update on mobile applications collecting data among subjects with or at risk of Alzheimer's disease. Front Aging Neurosci 2023; 15:1134096. [PMID: 37323138 PMCID: PMC10267974 DOI: 10.3389/fnagi.2023.1134096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/02/2023] [Indexed: 06/17/2023] Open
Abstract
Smart mobile phone use is increasing worldwide, as is the ability of mobile devices to monitor daily routines, behaviors, and even cognitive changes. There is a growing opportunity for users to share the data collected with their medical providers which may serve as an accessible cognitive impairment screening tool. Data logged or tracked in an app and analyzed with machine learning (ML) could identify subtle cognitive changes and lead to more timely diagnoses on an individual and population level. This review comments on existing evidence of mobile device applications designed to passively and/or actively collect data on cognition relevant for early detection and diagnosis of Alzheimer's disease (AD). The PubMed database was searched to identify existing literature on apps related to dementia and cognitive health data collection. The initial search deadline was December 1, 2022. Additional literature published in 2023 was accounted for with a follow-up search prior to publication. Criteria for inclusion was limited to articles in English which referenced data collection via mobile app from adults 50+ concerned, at risk of, or diagnosed with AD dementia. We identified relevant literature (n = 25) which fit our criteria. Many publications were excluded because they focused on apps which fail to collect data and simply provide users with cognitive health information. We found that although data collecting cognition-related apps have existed for years, the use of these apps as screening tools remains underdeveloped; however, it may serve as proof of concept and feasibility as there is much supporting evidence on their predictive utility. Concerns about the validity of mobile apps for cognitive screening and privacy issues remain prevalent. Mobile applications and use of ML is widely considered a financially and socially viable method of compiling symptomatic data but currently this large potential dataset, screening tool, and research resource is still largely untapped.
Collapse
Affiliation(s)
- Lydia Piendel
- Augusta University/University of Georgia Medical Partnership, Medical College of Georgia, Athens, GA, United States
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Martin Vališ
- Department of Neurology, University Hospital Hradec Králové, Faculty of Medicine, Charles University, Hradec Králové, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| |
Collapse
|
7
|
Ford E, Milne R, Curlewis K. Ethical issues when using digital biomarkers and artificial intelligence for the early detection of dementia. WILEY INTERDISCIPLINARY REVIEWS. DATA MINING AND KNOWLEDGE DISCOVERY 2023; 13:e1492. [PMID: 38439952 PMCID: PMC10909482 DOI: 10.1002/widm.1492] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 03/06/2024]
Abstract
Dementia poses a growing challenge for health services but remains stigmatized and under-recognized. Digital technologies to aid the earlier detection of dementia are approaching market. These include traditional cognitive screening tools presented on mobile devices, smartphone native applications, passive data collection from wearable, in-home and in-car sensors, as well as machine learning techniques applied to clinic and imaging data. It has been suggested that earlier detection and diagnosis may help patients plan for their future, achieve a better quality of life, and access clinical trials and possible future disease modifying treatments. In this review, we explore whether digital tools for the early detection of dementia can or should be deployed, by assessing them against the principles of ethical screening programs. We conclude that while the importance of dementia as a health problem is unquestionable, significant challenges remain. There is no available treatment which improves the prognosis of diagnosed disease. Progression from early-stage disease to dementia is neither given nor currently predictable. Available technologies are generally not both minimally invasive and highly accurate. Digital deployment risks exacerbating health inequalities due to biased training data and inequity in digital access. Finally, the acceptability of early dementia detection is not established, and resources would be needed to ensure follow-up and support for those flagged by any new system. We conclude that early dementia detection deployed at scale via digital technologies does not meet standards for a screening program and we offer recommendations for moving toward an ethical mode of implementation. This article is categorized under:Application Areas > Health CareCommercial, Legal, and Ethical Issues > Ethical ConsiderationsTechnologies > Artificial Intelligence.
Collapse
Affiliation(s)
- Elizabeth Ford
- Department of Primary Care and Public HealthBrighton and Sussex Medical SchoolBrightonUK
| | - Richard Milne
- Kavli Centre for Ethics, Science and the PublicUniversity of CambridgeCambridgeUK
- Engagement and SocietyWellcome Connecting ScienceCambridgeUK
| | | |
Collapse
|
8
|
Castro-Aldrete L, Moser MV, Putignano G, Ferretti MT, Schumacher Dimech A, Santuccione Chadha A. Sex and gender considerations in Alzheimer’s disease: The Women’s Brain Project contribution. Front Aging Neurosci 2023; 15:1105620. [PMID: 37065460 PMCID: PMC10097993 DOI: 10.3389/fnagi.2023.1105620] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
The global population is expected to have about 131.5 million people living with Alzheimer’s disease (AD) and other dementias by 2050, posing a severe health crisis. Dementia is a progressive neurodegenerative condition that gradually impairs physical and cognitive functions. Dementia has a variety of causes, symptoms, and heterogeneity concerning the influence of sex on prevalence, risk factors, and outcomes. The proportion of male-to-female prevalence varies based on the type of dementia. Despite some types of dementia being more common in men, women have a greater lifetime risk of developing dementia. AD is the most common form of dementia in which approximately two-thirds of the affected persons are women. Profound sex and gender differences in physiology and pharmacokinetic and pharmacodynamic interactions have increasingly been identified. As a result, new approaches to dementia diagnosis, care, and patient journeys should be considered. In the heart of a rapidly aging worldwide population, the Women’s Brain Project (WBP) was born from the necessity to address the sex and gender gap in AD. WBP is now a well-established international non-profit organization with a global multidisciplinary team of experts studying sex and gender determinants in the brain and mental health. WBP works with different stakeholders worldwide to help change perceptions and reduce sex biases in clinical and preclinical research and policy frameworks. With its strong female leadership, WBP is an example of the importance of female professionals’ work in the field of dementia research. WBP-led peer-reviewed papers, articles, books, lectures, and various initiatives in the policy and advocacy space have profoundly impacted the community and driven global discussion. WBP is now in the initial phases of establishing the world’s first Sex and Gender Precision Medicine Institute. This review highlights the contributions of the WBP team to the field of AD. This review aims to increase awareness of potentially important aspects of basic science, clinical outcomes, digital health, policy framework and provide the research community with potential challenges and research suggestions to leverage sex and gender differences. Finally, at the end of the review, we briefly touch upon our progress and contribution toward sex and gender inclusion beyond Alzheimer’s disease.
Collapse
Affiliation(s)
- Laura Castro-Aldrete
- Women’s Brain Project, Guntershausen bei Aadorf, Switzerland
- *Correspondence: Laura Castro-Aldrete,
| | | | - Guido Putignano
- Women’s Brain Project, Guntershausen bei Aadorf, Switzerland
| | | | - Annemarie Schumacher Dimech
- Women’s Brain Project, Guntershausen bei Aadorf, Switzerland
- Faculty of Medicine and Health Sciences, University of Lucerne, Lucerne, Switzerland
| | | |
Collapse
|
9
|
Farvadi F, Hashemi F, Amini A, Alsadat Vakilinezhad M, Raee MJ. Early Diagnosis of Alzheimer's Disease with Blood Test; Tempting but Challenging. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:172-210. [PMID: 38313372 PMCID: PMC10837916 DOI: 10.22088/ijmcm.bums.12.2.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
The increasing prevalence of Alzheimer's disease (AD) has led to a health crisis. According to official statistics, more than 55 million people globally have AD or other types of dementia, making it the sixth leading cause of death. It is still difficult to diagnose AD and there is no definitive diagnosis yet; post-mortem autopsy is still the only definite method. Moreover, clinical manifestations occur very late in the course of disease progression; therefore, profound irreversible changes have already occurred when the disease manifests. Studies have shown that in the preclinical stage of AD, changes in some biomarkers are measurable prior to any neurological damage or other symptoms. Hence, creating a reliable, fast, and affordable method capable of detecting AD in early stage has attracted the most attention. Seeking clinically applicable, inexpensive, less invasive, and much more easily accessible biomarkers for early diagnosis of AD, blood-based biomarkers (BBBs) seem to be an ideal option. This review is an inclusive report of BBBs that have been shown to be altered in the course of AD progression. The aim of this report is to provide comprehensive insight into the research status of early detection of AD based on BBBs.
Collapse
Affiliation(s)
- Fakhrossadat Farvadi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hashemi
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, the University of Newcastle, Newcastle, Australia
| | - Azadeh Amini
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical sciences, Tehran, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|