1
|
Jiang Y, Li Y. Nutrition Intervention and Microbiome Modulation in the Management of Breast Cancer. Nutrients 2024; 16:2644. [PMID: 39203781 PMCID: PMC11356826 DOI: 10.3390/nu16162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Breast cancer (BC) is one of the most common cancers worldwide and a leading cause of cancer-related deaths among women. The escalating incidence of BC underscores the necessity of multi-level treatment. BC is a complex and heterogeneous disease involving many genetic, lifestyle, and environmental factors. Growing evidence suggests that nutrition intervention is an evolving effective prevention and treatment strategy for BC. In addition, the human microbiota, particularly the gut microbiota, is now widely recognized as a significant player contributing to health or disease status. It is also associated with the risk and development of BC. This review will focus on nutrition intervention in BC, including dietary patterns, bioactive compounds, and nutrients that affect BC prevention and therapeutic responses in both animal and human studies. Additionally, this paper examines the impacts of these nutrition interventions on modulating the composition and functionality of the gut microbiome, highlighting the microbiome-mediated mechanisms in BC. The combination treatment of nutrition factors and microbes is also discussed. Insights from this review paper emphasize the necessity of comprehensive BC management that focuses on the nutrition-microbiome axis.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
2
|
Perazhi Pulikkal A, K M. Immunohistochemical Expression of Cyclooxygenase 2 (COX-2) as a Prognostic Marker and Its Correlation With Clinicopathological Parameters in Breast Cancer. Cureus 2024; 16:e65550. [PMID: 39192935 PMCID: PMC11349250 DOI: 10.7759/cureus.65550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Breast cancer is considered the most common cancer among women. According to the literature, cyclooxygenase-2 (COX-2) expression in breast carcinoma is associated with aggressive tumor biology and acts as an independent prognostic marker. As COX-2 is a newly identified marker, studies are required to understand its immunoexpression and correlation with hormone receptor status and other prognostic factors, which helps in the therapeutic management of patients. Hence, this study evaluates the expression of COX-2 in breast carcinoma. Methods A hospital-based cross-sectional study was done on 55 mastectomy specimens collected at the Histopathology and Surgical Pathology Section of the Department of Pathology. The patient's age, histological type, tumor size, lymph node status, histological grade, and vascular invasion were noted. Immunohistochemical staining for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2/neu protooncogene (HER2/neu), and COX-2 markers was performed, and its results were compared with these clinicopathological and prognostic parameters. Results were subjected to statistical analysis. Results COX-2 expression was seen in 37 out of 55 cases (67.2%). Expression of COX-2 showed a statistically significant correlation with vascular invasion, ER-negative status, and PR-negative status. No statistical association was found between other parameters like age, tumor size, histological type, histological grade, lymph node status, and HER2/neu status. Conclusion The expression of COX-2 correlated strongly with well-established poor prognostic markers, such as vascular invasion, ER-negative status, and PR-negative status. Thus, expression of COX-2 suggests aggressive tumor biology, and it can be used as an independent prognostic marker.
Collapse
Affiliation(s)
- Archana Perazhi Pulikkal
- Pathology, Shri B. M. Patil Medical College Hospital and Research Centre, Bijapur Lingayat District Education (BLDE) (Deemed to be University), Vijayapura, IND
| | - Mamatha K
- Pathology, Shri B. M. Patil Medical College Hospital and Research Centre, Bijapur Lingayat District Education (BLDE) (Deemed to be University), Vijayapura, IND
| |
Collapse
|
3
|
Yang J, Li Y, Han X, Li T, Li D, Liu Q, Yan L, Li F, Pei X, Feng Y, Lin Z, Fu Z, Wang C, Sun Q, Li C. Targeting estrogen mediated CYP4F2/CYP4F11-20-HETE metabolic disorder decelerates tumorigenesis in ER+ breast cancer. Biochem Biophys Rep 2024; 38:101706. [PMID: 38646426 PMCID: PMC11033080 DOI: 10.1016/j.bbrep.2024.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose As the most common subset of breast cancer (BC), estrogen receptor positive (ER+) BC accounting for 80% of cases, has become a global public health concern. The female hormone estrogen (E2) unequivocally drives ER + breast malignancies. The reasons that estrogen affects BC development has long been considered, yet further study remains to be conducted of the molecular events in the E2-estrogen receptor α (ERα) signaling pathway in ER + BC progression, especially lipid metabolism, so providing more options for tailored and individualized therapy. Our aim is to find out new targets and clinical biomarkers for ER + breast cancer treatment from the perspective of lipid metabolism. Methods Lipid metabolomics profiling was used to examine the membrane phospholipid stimulated by E2. Clinical BC samples were used to assess the association of CYP4F2, CYP4F11 expression with clinicopathological characteristics and patient outcomes. Some inhibitors of main enzymes in AA metabolism were used combined with E2 to assess roles of CYP4F2/CYP4F11 in the progression of ER + BC. CYP4F2, CYP4F11 overexpression and knockdown BC cell lines were employed to examine the effects of CYP4F2, CYP4F11 on cellular proliferation, apoptosis and tumor growth. Western blotting, qPCR, Immunohistochemical staining and flow cytometry were also conducted to determine the underlying mechanisms related to CYP4F2, CYP4F11 function. Results The activation of the CYP450 signaling pathway in arachidonic acid metabolism contributed to ER + BC tumorigenesis. In ER + BC, CYP4F2 and CYP4F11 overexpression induced by E2 could promote cancer cell proliferation and resistance to apoptosis by producing the metabolite 20-HETE and activating the antiapoptotic protein Bcl-2. CYP4F2 and CYP4F11 elevation correlates with poorer overall survival and disease-free survival in ER + BC patients. Conclusion CYP4F2, CYP4F11 and their metabolite 20-HETE could serve as effective prognostic markers and attractive therapeutic targets for novel anticancer drug development about ER + BC.
Collapse
Affiliation(s)
- Juan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Qiao Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Lizhong Yan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Fei Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Zhenkun Fu
- Department of Immunology & Wu Lien-Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, Harbin, 150081, PR China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, 100730, PR China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, 100730, PR China
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
4
|
Robert S, Roman Ortiz NI, LaRocca CJ, Ostrander JH, Davydova J. Oncolytic Adenovirus for the Targeting of Paclitaxel-Resistant Breast Cancer Stem Cells. Viruses 2024; 16:567. [PMID: 38675909 PMCID: PMC11054319 DOI: 10.3390/v16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Adjuvant systemic therapies effectively reduce the risk of breast cancer recurrence and metastasis, but therapy resistance can develop in some patients due to breast cancer stem cells (BCSCs). Oncolytic adenovirus (OAd) represents a promising therapeutic approach as it can specifically target cancer cells. However, its potential to target BCSCs remains unclear. Here, we evaluated a Cox-2 promoter-controlled, Ad5/3 fiber-modified OAd designed to encode the human sodium iodide symporter (hNIS) in breast cancer models. To confirm the potential of OAds to target BCSCs, we employed BCSC-enriched estrogen receptor-positive (ER+) paclitaxel-resistant (TaxR) cells and tumorsphere assays. OAd-hNIS demonstrated significantly enhanced binding and superior oncolysis in breast cancer cells, including ER+ cells, while exhibiting no activity in normal mammary epithelial cells. We observed improved NIS expression as the result of adenovirus death protein deletion. OAd-hNIS demonstrated efficacy in targeting TaxR BCSCs, exhibiting superior killing and hNIS expression compared to the parental cells. Our vector was capable of inhibiting tumorsphere formation upon early infection and reversing paclitaxel resistance in TaxR cells. Importantly, OAd-hNIS also destroyed already formed tumorspheres seven days after their initiation. Overall, our findings highlight the promise of OAd-hNIS as a potential tool for studying and targeting ER+ breast cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Sacha Robert
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Christopher J. LaRocca
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Julie Hanson Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Shams A, Alzahrani AA, Ayash TA, Tamur S, Al-Mourgi M. The Multifaceted Roles of Myrrha in the Treatment of Breast Cancer: Potential Therapeutic Targets and Promises. Integr Cancer Ther 2024; 23:15347354241309659. [PMID: 39707884 DOI: 10.1177/15347354241309659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Breast cancer is a critical threat to human health, and effective targeted agents showing lower systemic toxicity are still lacking. Therefore, exploring new potent therapeutic candidates with a broader safety margin is warranted. Alternative medicine, which has historically been used in traditional Chinese medicine, has played an increasingly prominent role in this area of research. This study introduces Commiphora myrrha (or myrrh) as a potential therapeutic candidate for treating breast cancer patients. Myrrh bioactive extracts have been used traditionally for decades to treat numerous medical disorders, including cancers, specifically breast cancer. Nonetheless, myrrh's precise rudimentary mechanisms of action in regulating genes involved in breast cancer evolution and progression remain elusive. PURPOSE Herein, we use a network pharmacology platform to identify the potential genes targeted by myrrh-active molecules in breast cancer. METHOD The identified targets' expression profiles were determined at the mRNA and protein levels using The Breast Cancer Gene-Expression Miner v5.0 (bcGen-ExMiner v5.0) and The Human Protein Atlas datasets, respectively. A gene signature composed of the specifically designated genes was constructed, and its association with different breast cancer molecular subtypes was investigated through the Gene expression-based Outcome for Breast Cancer (GOBO) online tool. The protein mapping relationship between potential myrrh targets and their partner proteins during breast cancer development was screened and constructed through the STRING and ShinyGO databases. In addition, the Kaplan-Meier plots (KM-plot) prognostic tool was applied to assess the survival rate associated with the expression of the current gene signature in different human cancers, including breast cancer. RESULTS Combining the results of network pharmacology with other bioinformatics databases suggests that myrrh's active components exert anti-cancer effects by regulating genes involved in breast cancer pathogenesis, particularly PTGS2, EGFR, ESR2, MMP2, and JUN. An individual evaluation of the expression profiles of these genes at both mRNA and protein levels reveals that a high expression profile of each gene is associated with breast cancer advancement. Moreover, the GOBO analysis shows an elevated expression profile of the PTGS2/ESR2/EGFR/JUN/MMP2 genes' signature in the most aggressive breast cancer subtype (Basal) in breast tumor samples and breast cancer cell lines. Furthermore, the STRING protein interaction network and the KEGG analyses indicate that myrrh exerts therapeutic effects on breast cancer by regulating several biological processes such as cell proliferation, cell migration, apoptosis, and various signaling pathways, including TNF, PI3K-Akt, NF-κB, and MAPK. Consistently, breast cancer patients with high expression of this genes' signature display poor survival outcomes. CONCLUSIONS The present study is the first attempt to explore the biological involvement of myrrh-targeted genes during breast cancer development. Therefore, suppressing the effects of the intended genes' signature using myrrh extracts would provide encouraging results in blocking breast cancer tumorigenesis. Thus, our findings provide conclusive evidence and deepen the current understanding of the molecular role of myrrh in the treatment of breast cancer, further supporting its clinical application.
Collapse
Affiliation(s)
- Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
| | | | - Taghreed A Ayash
- Department of General Science, Ibnsina International Medical College, Jeddah, Saudi Arabia
- Research and Innovation Central lab, Chair of Research and Innovation Central Lab, Ibnsina International Medical College, Jeddah, Saudi Arabia
| | - Shadi Tamur
- Department of Pediatric, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Majed Al-Mourgi
- Department of Surgery, College of Medicine, Taif University, Taif, Saudi Arabia
| |
Collapse
|
6
|
Roy P. Breast cancer in young Indian women: factors, challenges in screening, and upcoming diagnostics. J Cancer Res Clin Oncol 2023; 149:14409-14427. [PMID: 37552309 DOI: 10.1007/s00432-023-05215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Breast cancer management for young Indian women are full of challenges. The National Cancer Registry Programme (NCRP) has predicted that nearly 2,30,000 cases of breast cancer will be reported annually by 2025; with a steady increase in cases of young women (< 45 years of age) with breast cancer. In this review, the available literature is evaluated to understand the various risk factors contributing to the rise in cases of breast cancer in young women in India. Further, the challenges that are faced by the technicians in early diagnosis (e.g., physiology of young breasts, limited trained professionals, and awareness among patients, and cost of the treatment) of breast cancer. This review also focuses on the upcoming diagnostics like serum biomarkers and nanosensors for the early identification of the disease. For better prognosis and to reduce the chances of disease reoccurrence and metastasis, it is important that the disease has to be identified at an early stage.
Collapse
Affiliation(s)
- Pragyan Roy
- College of Basic Sciences and Humanities, OUAT, Bhubaneswar, India.
| |
Collapse
|
7
|
Moisand A, Madéry M, Boyer T, Domblides C, Blaye C, Larmonier N. Hormone Receptor Signaling and Breast Cancer Resistance to Anti-Tumor Immunity. Int J Mol Sci 2023; 24:15048. [PMID: 37894728 PMCID: PMC10606577 DOI: 10.3390/ijms242015048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancers regroup many heterogeneous diseases unevenly responding to currently available therapies. Approximately 70-80% of breast cancers express hormone (estrogen or progesterone) receptors. Patients with these hormone-dependent breast malignancies benefit from therapies targeting endocrine pathways. Nevertheless, metastatic disease remains a major challenge despite available treatments, and relapses frequently ensue. By improving patient survival and quality of life, cancer immunotherapies have sparked considerable enthusiasm and hope in the last decade but have led to only limited success in breast cancers. In addition, only patients with hormone-independent breast cancers seem to benefit from these immune-based approaches. The present review examines and discusses the current literature related to the role of hormone receptor signaling (specifically, an estrogen receptor) and the impact of its modulation on the sensitivity of breast cancer cells to the effector mechanisms of anti-tumor immune responses and on the capability of breast cancers to escape from protective anti-cancer immunity. Future research prospects related to the possibility of promoting the efficacy of immune-based interventions using hormone therapy agents are considered.
Collapse
Affiliation(s)
- Alexandra Moisand
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Mathilde Madéry
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Thomas Boyer
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Charlotte Domblides
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Department of Medical Oncology, University Hospital of Bordeaux, 33000 Bordeaux, France
| | - Céline Blaye
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
| | - Nicolas Larmonier
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
8
|
Kandjani BZ, Hesari FS, Babaei E. Gemini curcumin inhibits 4T1 cancer cell proliferation and modulates the expression of apoptotic and metastatic genes in Balb/c mice model. Pathol Res Pract 2023; 243:154344. [PMID: 36738519 DOI: 10.1016/j.prp.2023.154344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Despite the attractive anti-cancer effects, poor solubility and low bioavailability have restricted the clinical application of Curcumin. Recent findings show that Gemini nano-curcumin (Gemini-Cur) significantly improves the cellular uptake of Curcumin and its anti-cancer effect in tumor cells. Here, we aimed to assess the suppressive effect of Gemini-Cur on 4T1 breast cancer cells in vitro and, subsequently, in BALB/c mouse models. MATERIALS AND METHODS Fluorescence microscopy was employed to visualize cellular uptake and morphological changes of 4T1 cells during treatment with Gemini-Cur and void curcumin. MTT and annexin V/FITC assays were performed to study the toxic effect of Gemini-Cur on mouse cancer cells. For in vivo studies, BALB/c tumor-bearing mice were used to evaluate the inhibitory effect of Gemini-Cur in comparison with mice receiving free Curcumin and nanoparticles. RESULTS Our data showed that Gemini-Cur enters the cells and inhibits proliferation in a time- and dose-dependent manner. Annexin V/FITC confirmed apoptotic effect on 4T1 cells. In vivo studies also illustrated that tumor growth is suppressed in Gemini-Cur treated mice rather than controls. Expression studies demonstrated the modulation of apoptotic and metastatic genes, including Bax, Bcl-2, MMP-9, VEGF, and COX-2 in treated mice. CONCLUSION In conclusion, these data demonstrate the promising anti-cancer properties of Gemini-Cur on mice models. However, further studies at molecular and cellular levels are required to conclude this therapeutic advantage.
Collapse
Affiliation(s)
- Behzad Zaker Kandjani
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Esmaeil Babaei
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
Mahboubi-Rabbani M, Abbasi M, Zarghi A. Natural-Derived COX-2 Inhibitors as Anticancer Drugs: A Review of their Structural Diversity and Mechanism of Action. Anticancer Agents Med Chem 2023; 23:15-36. [PMID: 35638275 DOI: 10.2174/1389450123666220516153915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a key-type enzyme playing a crucial role in cancer development, making it a target of high interest for drug designers. In the last two decades, numerous selective COX-2 inhibitors have been approved for various clinical conditions. However, data from clinical trials propose that the prolonged use of COX-2 inhibitors is associated with life-threatening cardiovascular side effects. The data indicate that a slight structural modification can help develop COX-2 selective inhibitors with comparative efficacy and limited side effects. In this regard, secondary metabolites from natural sources offer great hope for developing novel COX-2 inhibitors with potential anticancer activity. In recent years, various nature-derived organic scaffolds are being explored as leads for developing new COX-2 inhibitors. The current review attempts to highlight the COX-2 inhibition activity of some naturally occurring secondary metabolites, concerning their capacity to inhibit COX-1 and COX-2 enzymes and inhibit cancer development, aiming to establish a structure-activity relationship.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Immunoregulatory signal networks and tumor immune evasion mechanisms: insights into therapeutic targets and agents in clinical development. Biochem J 2022; 479:2219-2260. [DOI: 10.1042/bcj20210233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
Through activation of immune cells, the immune system is responsible for identifying and destroying infected or otherwise damaged cells including tumorigenic cells that can be recognized as foreign, thus maintaining homeostasis. However, tumor cells have evolved several mechanisms to avoid immune cell detection and killing, resulting in tumor growth and progression. In the tumor microenvironment, tumor infiltrating immune cells are inactivated by soluble factors or tumor promoting conditions and lose their effects on tumor cells. Analysis of signaling and crosstalk between immune cells and tumor cells have helped us to understand in more detail the mechanisms of tumor immune evasion and this forms basis for drug development strategies in the area of cancer immunotherapy. In this review, we will summarize the dominant signaling networks involved in immune escape and describe the status of development of therapeutic strategies to target tumor immune evasion mechanisms with focus on how the tumor microenvironment interacts with T cells.
Collapse
|
11
|
Vieira TC, Oliveira EA, dos Santos BJ, Souza FR, Veloso ES, Nunes CB, Del Puerto HL, Cassali GD. COX-2 expression in mammary invasive micropapillary carcinoma is associated with prognostic factors and acts as a potential therapeutic target in comparative oncology. Front Vet Sci 2022; 9:983110. [PMID: 36172611 PMCID: PMC9510711 DOI: 10.3389/fvets.2022.983110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Pure human and canine mammary invasive micropapillary carcinoma is a rare malignant epithelial tumor accounting for 0.9 to 2% of all invasive mammary carcinomas and present a high rate of lymphatic invasion and metastasis, with unfavorable prognosis. Surgery and chemotherapy are standard treatments for almost all mammary cancer in both species, as well as hormonal and target therapies available for human patients. However, depending on the patient's clinical staging, satisfactory therapeutic results for invasive micropapillary carcinoma are a challenge due to its high capacity of invasion and metastasis. Cyclooxygenase-2 (COX-2) isoform is an important enzyme stimulated by cytokines, growth factors and oncogenes activation to synthetizes prostaglandins in inflammatory process. COX-2 overexpression is associated with angiogenesis and invasion and contributes to cancer development, disease progression, tumor recurrence and regional lymph node metastasis in human and canine mammary carcinomas. This enzyme can be targeted by non-steroidal anti-inflammatory drugs and its inhibition can reduce tumor growth and metastasis in several cancer types. Given the similarity between both species, the present study aims to elucidate the involvement of COX-2 mRNA and protein expression in canine (cIMPC) and human (hIMPC) pure invasive mammary micropapillary carcinoma, with clinicopathological and survival data. Twenty-nine cases of cIMPC and 17 cases of hIMPC were analyzed regarding histologic type, grade, age, tumor size, lymph node condition, extracapsular extension, inflammatory infiltrate and immunophenotype. When available, information on adjuvant treatment, recurrence, metastasis and overall survival were collected. The present study demonstrated COX-2 protein expression in 65.5% of cIMPC and 92.3% of hIMPC, and an association with more advanced histological grades in bitches and higher Ki67 in women. COX-2 mRNA expression was significantly higher in cIMPC than in hIMPC, and its expression was not associated with COX-2 protein expression in both species. COX-2 mRNA expression was associated with negative-ER hIMPC as well as higher Ki67. cIMPC demonstrated proportional early development, more regional metastasis, and a prevalence of negative estrogen receptor, than hIMPC. This is the first time COX-2 expression is associated with negative prognostic factors in both cIMPC and hIMPC, besides the overexpression of COX-2 protein in such unfavorable histological type, which suggests that COX-2 can act as a potential target in IMPC.
Collapse
Affiliation(s)
- Thaynan Cunha Vieira
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Evelyn Ane Oliveira
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bárbara Jaime dos Santos
- Laboratory of Breast Pathology, Medical School, Department of Pathological Anatomy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Rezende Souza
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Emerson Soares Veloso
- Laboratory of Cellular Behavior, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana Buzelin Nunes
- Laboratory of Breast Pathology, Medical School, Department of Pathological Anatomy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helen Lima Del Puerto
- Laboratory of Cellular Behavior, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Geovanni Dantas Cassali
| |
Collapse
|
12
|
Al-Maghrabi J, Khabaz MN. Cyclooxygenase-2 immunohistochemical expression is associated with worse prognosis in breast cancer: Retrospective study and literature review. Saudi Med J 2022; 43:687-693. [PMID: 35830999 PMCID: PMC9749694 DOI: 10.15537/smj.2022.43.7.20220052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To assess the immunohistochemistry phenotype of cyclooxygenase-2 (COX-2) in breast cancer (BC) and to correlate it with histological and clinical prognostic factors. METHODS This retrospective study utilized COX-2 monoclonal antibody in an immunohistochemistry staining of tissue microarrays slides of 570 cases of previously diagnosed BC and with 52 of normal breast tissues from breast specimens resected for benign lesions or reconstruction (fibroadenoma and normal breast epithelium). This project was carried out in the Laboratory of pathology, King Abdulaziz University, Jeddah, Saudi Arabia, between September 2019 and September 2021. RESULTS The present data showed an important connection between the COX-2 expression phenotype and BC compared to benign breast tissues (p=0.034). The expression pattern of COX-2 was allied significantly with some factors which distinguished aggressive subtypes of BC, such as stage, distant metastases, lymphovascular invasion, and poor survival. CONCLUSION Cyclooxygenase-2 is a valuable marker that could facilitate BC diagnosis and prognosis.
Collapse
Affiliation(s)
- Jaudah Al-Maghrabi
- From the Department of Pathology (Al-Maghrabi), Faculty of Medicine; from the Department of Pathology (Khabaz), Rabigh Faculty of Medicine, King Abdulaziz University, and from the Department of Pathology (Al-Maghrabi), King Faisal Specialist Hospital and Research Centre, Jeddah, Kingdom of Saudi Arabia.
- Address correspondence and reprint request to: Dr. Mohamad N. Khabaz, Department of Pathology, Rabigh Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. E-mail: ORCID ID: https://orcid.org/0000-0002-5298-7690
| | - Mohamad N. Khabaz
- From the Department of Pathology (Al-Maghrabi), Faculty of Medicine; from the Department of Pathology (Khabaz), Rabigh Faculty of Medicine, King Abdulaziz University, and from the Department of Pathology (Al-Maghrabi), King Faisal Specialist Hospital and Research Centre, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
13
|
Ortega MA, Fraile-Martinez O, García-Montero C, Borja-Vergel S, Torres-Carranza D, Pekarek L, Arribas CB, De León-Luis JA, Sánchez-Rojo C, Alvarez-Mon MA, García-Honduvilla N, Buján J, Coca S, Alvarez-Mon M, Saez MA, Guijarro LG. Patients with Invasive Lobular Carcinoma Show a Significant Increase in IRS-4 Expression Compared to Infiltrative Ductal Carcinoma—A Histopathological Study. Medicina (B Aires) 2022; 58:medicina58060722. [PMID: 35743985 PMCID: PMC9229273 DOI: 10.3390/medicina58060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives: Breast cancer (BC) is the first diagnosed type of cancer and the second leading cause of cancer-related mortality in women. In addition, despite the improvement in treatment and survival in these patients, the global prevalence and incidence of this cancer are rising, and its mortality may be different according to the histological subtype. Invasive lobular carcinoma (ILC) is less common but entails a poorer prognosis than infiltrative ductal carcinoma (IDC), exhibiting a different clinical and histopathological profile. Deepening study on the molecular profile of both types of cancer may be of great aid to understand the carcinogenesis and progression of BC. In this sense, the aim of the present study was to explore the histological expression of Insulin receptor substrate 4 (IRS-4), cyclooxygenase 2 (COX-2), Cyclin D1 and retinoblastoma protein 1 (Rb1) in patients with ILC and IDC. Patients and Methods: Thus, breast tissue samples from 45 patients with ILC and from 45 subjects with IDC were analyzed in our study. Results: Interestingly, we observed that IRS-4, COX-2, Rb1 and Cyclin D1 were overexpressed in patients with ILC in comparison to IDC. Conclusions: These results may indicate a differential molecular profile between both types of tumors, which may explain the clinical differences among ILC and IDC. Further studies are warranted in order to shed light onto the molecular and translational implications of these components, also aiding to develop a possible targeted therapy to improve the clinical management of these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
- Correspondence: (M.A.O.); (M.A.S.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Sandra Borja-Vergel
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Coral Bravo Arribas
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain; (C.B.A.); (J.A.D.L.-L.)
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Juan A. De León-Luis
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain; (C.B.A.); (J.A.D.L.-L.)
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Cristina Sánchez-Rojo
- Department of Obstetrics and Gynecology, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain;
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
- Correspondence: (M.A.O.); (M.A.S.)
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
14
|
Valproic Acid Prodrug Affects Selective Markers, Augments Doxorubicin Anticancer Activity and Attenuates Its Toxicity in a Murine Model of Aggressive Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14121244. [PMID: 34959644 PMCID: PMC8706415 DOI: 10.3390/ph14121244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
We studied the unique inhibitor of the histone deacetylases (HDAC) valproate-valpromide of acyclovir (AN446) that upon metabolic degradation release the HDAC inhibitor (HDACI) valproic acid (VPA). Among the HDAC inhibitors that we have tested, only AN446, and to a lesser extent VPA, synergized with doxorubicin (Dox) anti-cancer activity. Romidepsin (Rom) was additive and the other HDACIs tested were antagonistic. These findings led us to test and compare the anticancer activities of AN446, VPA, and Rom with and without Dox in the 4T1 triple-negative breast cancer murine model. A dose of 4 mg/kg once a week of Dox had no significant effect on tumor growth. Rom was toxic, and when added to Dox the toxicity intensified. AN446, AN446 + Dox, and VPA + Dox suppressed tumor growth. AN446 and AN446 + Dox were the best inhibitory treatments for tumor fibrosis, which promotes tumor growth and metastasis. Dox increased fibrosis in the heart and kidneys, disrupting their function. AN446 most effectively suppressed Dox-induced fibrosis in these organs and protected their function. AN446 and AN446 + Dox treatments were the most effective inhibitors of metastasis to the lungs, as measured by the gap area. Genes that control and regulate tumor growth, DNA damage and repair, reactive oxygen production, and generation of inflammation were examined as potential therapeutic targets. AN446 affected their expression in a tissue-dependent manner, resulting in augmenting the anticancer effect of Dox while reducing its toxicity. The specific therapeutic targets that emerged from this study are discussed.
Collapse
|
15
|
Li D, Lai W, Fan D, Fang Q. Protein biomarkers in breast cancer-derived extracellular vesicles for use in liquid biopsies. Am J Physiol Cell Physiol 2021; 321:C779-C797. [PMID: 34495763 DOI: 10.1152/ajpcell.00048.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most common malignant disease in women worldwide. Early diagnosis and treatment can greatly improve the management of breast cancer. Liquid biopsies are becoming convenient detection methods for diagnosing and monitoring breast cancer due to their noninvasiveness and ability to provide real-time feedback. A range of liquid biopsy markers, including circulating tumor proteins, circulating tumor cells, and circulating tumor nucleic acids, have been implemented for breast cancer diagnosis and prognosis, with each having its own advantages and limitations. Circulating extracellular vesicles are messengers of intercellular communication that are packed with information from mother cells and are found in a wide variety of bodily fluids; thus, they are emerging as ideal candidates for liquid biopsy biomarkers. In this review, we summarize extracellular vesicle protein markers that can be potentially used for the early diagnosis and prognosis of breast cancer or determining its specific subtypes.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenjia Lai
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Di Fan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Sino-Danish Center for Education and Research, Beijing, People's Republic of China
| |
Collapse
|
16
|
Cokluk E, Ozman Z, Eskiler GG, Ozkan AD, Sekeroglu MR. Comparison of the effects of rutaecarpine on molecular subtypes of breast cancer. J Cancer Res Ther 2021; 17:988-993. [PMID: 34528553 DOI: 10.4103/jcrt.jcrt_1182_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective Natural compounds have gained considerable attention in recent years due to disadvantages and properties of current chemotherapy drugs in cancer therapy. In addition, the impact of these compounds is specific for each type and/or subtypes of cancer due to different treatment response. Rutaecarpine, an alkaloid obtained from Evodia Rutaecarpa Chinese herb, has anticancer activity by inhibiting topoisomerase and/or cyclo-oxygenase-2 levels. However, the effectiveness of rutaecarpine has not been well known in breast cancer in terms of subtype. Therefore, we investigated the potential therapeutic effects of rutaecarpine on two different subtypes of breast cancer cells. Materials and Methods The cytotoxic and apoptotic effects of rutaecarpine on MCF-7 and MDA-MB-231 cells were analyzed by WST-1, Annexin V, cell cycle, and acridine orange staining. Results WST-1 results indicated that rutaecarpine significantly inhibited the growth of both cancer cells for 48 h (P < 0.05). In addition, rutaecarpine treatment caused apoptotic cell death through chromatin condensation and nuclear blebbing and G0/G1 arrest in both breast cancer cells. However, the efficacy of rutaecarpine was more profound in MCF-7 cells than MDA-MB-231 cells. Conclusions Consequently, rutaecarpine has a potential therapeutic effect on breast cancer. However, the effectiveness of rutaecarpine is dependent on the subtype of breast cancer.
Collapse
Affiliation(s)
- Erdem Cokluk
- Department of Medical Biochemistry, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Zeynep Ozman
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | | |
Collapse
|
17
|
Prieto Santamaría L, Ugarte Carro E, Díaz Uzquiano M, Menasalvas Ruiz E, Pérez Gallardo Y, Rodríguez-González A. A data-driven methodology towards evaluating the potential of drug repurposing hypotheses. Comput Struct Biotechnol J 2021; 19:4559-4573. [PMID: 34471499 PMCID: PMC8387760 DOI: 10.1016/j.csbj.2021.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses.
Collapse
Key Words
- ACE, Angiotensin I Converting Enzyme
- AHR, Aryl Hydrocarbon Receptor
- ALK, Anaplastic Lymphoma Kinase
- API, Application Programming Interface
- CMap, Connectivity Map
- COX-2, Cyclooxygenase 2
- CUI, Concept Unique Identifier
- DISNET knowledge base
- DR, Drug Repurposing or Drug Repositioning
- DRD3, Dopamine Receptor D3
- Data integration
- Disease understanding
- Drug repositioning
- Drug repurposing
- Drug-disease validation
- ESR1, Estrogen Receptor 1
- ESR2, Estrogen Receptor 2
- FCGR2A, Fc Fragment Of IgG Receptor IIa
- FCGR3A, Fc Fragment Of IgG Receptor IIIa
- FCGR3B, Fc Fragment Of IgG Receptor IIIb
- GDA, Gene Disease Association
- ICD-10-CM, International Classification of Diseases, 10th revision, Clinical Modification
- ID, Identifier
- KDR, Kinase insert Domain Receptor
- LTα, Lymphotoxin alpha
- MeSH-PA, Medical Subject Headings – Pharmacological Action
- ND, New Disease
- NLM, National Library of Medicine
- OD, Original Disease
- PTGS2, Prostaglandin-endoperoxidase synthase 2
- SM, Supplementary Material
- SRD5A1, Steroid 5 Alpha-Reductase 1
- SRD5A2, Steroid 5 Alpha-Reductase 2
- TNFα, Tumour Necrosis Factor alpha
- UMLS, Unified Medical Language System
Collapse
Affiliation(s)
- Lucía Prieto Santamaría
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.,ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.,Ezeris Networks Global Services S.L., 28028 Madrid, Spain
| | - Esther Ugarte Carro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain
| | - Marina Díaz Uzquiano
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain
| | - Ernestina Menasalvas Ruiz
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.,ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain
| | | | - Alejandro Rodríguez-González
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.,ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain
| |
Collapse
|
18
|
Suryanti S, Agustina H, Aziz A, Yulianti H, Suryawathy B, Putri L. High Immunoexpression of COX-2 as a Metastatic Risk Factor in ccRCC without PD-L1 Involvement. Res Rep Urol 2021; 13:623-630. [PMID: 34466408 PMCID: PMC8403071 DOI: 10.2147/rru.s324510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Clear cell renal cell carcinoma (ccRCC) is the most lethal type of malignancy of the urinary tract system as it is resistant to chemotherapy and radiation and has a survival rate of less than 5% in cases of metastasis. Inflammation plays an essential role in the metastasis of ccRCC. Cyclooxygenase-2 (COX-2) is an inflammatory protein that affects the processes of carcinogenesis, invasion, migration, metastasis, and angiogenesis. COX-2 can modulate programmed death ligand-1 (PD-L1) expression and play a role in immune evasion, meaning that tumor cells are able to escape the body’s immune response and more easily metastasize. Purpose This study aims to determine the role of COX-2 and PD-L1 in the occurrence of ccRCC metastases. Materials and Methods This study is an observational analytical study, which employed a cross-sectional approach to examine the paraffin block samples of 40 ccRCC cases from Dr. Hasan Sadikin Hospital Bandung, Indonesia, between 2014 and 2021. Immunoexpression was measured using immunohistochemical staining for COX-2 in tumor cells and for PD-L1 in immune cells. PD-L1 calculation was measured using Qupath 0.2.3. digital software. Metastatic data were obtained using radiological imaging and pathological examinations. Meanwhile, the data were analyzed using the chi-square test for COX-2 and Fischer’s exact test for PD-L1. Results The research results revealed a significant association between COX-2 and the occurrence of metastases in ccRCC (p=0.001) with a prevalence odds ratio of 10.28. Positive PD-L1 immunoexpression of the immune cells (≥1%) was found in 14% (3/21) of the metastatic group and 5% (1/19) of the non-metastatic group (p=0.607). There was no association between COX-2 and PD-L1 immunoexpression (p=0.278). Conclusion This study shows that metastases in ccRCC patients are ten times as likely to be associated with high COX-2 immunoexpression than low COX-2 immunoexpression. COX-2 plays a role in the process of ccRCC metastasis without PD-L1 involvement.
Collapse
Affiliation(s)
- Sri Suryanti
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Hasrayati Agustina
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Afiati Aziz
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Herry Yulianti
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Bethy Suryawathy
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Lestari Putri
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| |
Collapse
|
19
|
Mongiovi JM, Hong CC, Zirpoli GR, Khoury T, Omilian AR, Qin B, Bandera EV, Yao S, Ambrosone CB, Gong Z. Genetic Variants in COX2 and ALOX Genes and Breast Cancer Risk in White and Black Women. Front Oncol 2021; 11:679998. [PMID: 34249719 PMCID: PMC8263909 DOI: 10.3389/fonc.2021.679998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
COX and ALOX genes are involved in inflammatory processes and that may be related to breast cancer risk differentially between White and Black women. We evaluated distributions of genetic variants involved in COX2 and ALOX-related pathways and examined their associations with breast cancer risk among 1,275 White and 1,299 Black cases and controls who participated in the Women's Circle of Health Study. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable-adjusted logistic regression models. Our results showed differential associations of certain genetic variants with breast cancer according to menopausal and ER status in either White or Black women. In White women, an increased risk of breast cancer was observed for COX2-rs689470 (OR: 2.02, P = 0.01) in the dominant model, and was strongest among postmenopausal women (OR: 2.72, P = 0.02) and for estrogen receptor positive (ER+) breast cancers (OR: 2.60, P = 0.001). A reduced risk was observed for ALOX5-rs7099874 (OR: 0.75, P = 0.01) in the dominant model, and was stronger among postmenopausal women (OR: 0.68, P = 0.03) and for ER+ cancer (OR: 0.66, P = 0.001). Four SNPs (rs3840880, rs1126667, rs434473, rs1042357) in the ALOX12 gene were found in high LD (r2 >0.98) in White women and were similarly associated with reduced risk of breast cancer, with a stronger association among postmenopausal women and for ER- cancer. Among Black women, increased risk was observed for ALOX5-rs1369214 (OR: 1.44, P = 0.003) in the recessive model and was stronger among premenopausal women (OR: 1.57, P = 0.03) and for ER+ cancer (OR: 1.53, P = 0.003). Our study suggests that genetic variants of COX2 and ALOX genes are associated with breast cancer, and that these associations and genotype distributions differ in subgroups defined by menopausal and ER status between White and Black women. Findings may provide insights into the etiology of breast cancer and areas for further research into reasons for breast cancer differences between races.
Collapse
Affiliation(s)
- Jennifer M. Mongiovi
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, United States
| | - Chi-Chen Hong
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Gary R. Zirpoli
- Slone Epidemiology Center, Boston University, Boston, NY, United States
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Angela R. Omilian
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bo Qin
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Elisa V. Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Song Yao
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Christine B. Ambrosone
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Zhihong Gong
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
20
|
Gipsyianti N, Aziz A, Hernowo BS, Usman HA. High Expression of COX-2 Associated with the Depth of Invasion on Acral Melanoma by Increasing TGF-β1. Clin Cosmet Investig Dermatol 2021; 14:209-216. [PMID: 33688233 PMCID: PMC7937396 DOI: 10.2147/ccid.s285564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/26/2020] [Indexed: 11/23/2022]
Abstract
Introduction Acral melanoma (AM) has a poor prognosis since it is easily metastatic and resistant to chemo and immunotherapy. Cyclooxygenase-2 (COX-2) is an enzyme that plays a role in the carcinogenesis process. The increased expression of COX-2 has an impact on increasing levels of Myeloid-Derived Suppressor Cell (MDSC), which is a key regulator of immune. The increase in MDSC produces Transforming Growth Factor β1 (TGF-β1), which will suppress Natural Killer (NK) cells and Dendritic Cells (DC) function so that tumor cells are spared from the immune systems and are easier to invade surrounding tissues. Purpose This study aimed to determine the role of COX-2 and TGF-β1 on the depth of invasion on AM. Materials and Methods This study was a cross-sectional observational study on 40 paraffin blocks of AM cases during 2014-2019 in the Department of Pathology Anatomy, Faculty of Medicine, Dr. Hasan Sadikin General Hospital, Bandung. The depth of invasion of all samples was measured by dotSlide imaging software and the immunohistochemical staining of COX-2 and TGF-β1 was performed. The association between COX-2 and TGF-β1 expression and AM depth of invasion were analyzed using Mann Whitney. Results The result showed a significant association between COX-2 and TGF-β1 expression and depth of invasion on AM. COX-2 expression had a significant association with TGF-β1 expression (0.0001). Through multivariate analysis, it was found that COX-2 had the greatest association with the depth of invasion (p=0.0001). Conclusion The findings showed that increasing expression of COX-2 in AM is associated with the depth of invasion by increasing TGF-β1 and it might play important roles during the invasion process of AM.
Collapse
Affiliation(s)
- Nastassa Gipsyianti
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Afiati Aziz
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Bethy S Hernowo
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Hermin A Usman
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
21
|
Oliver TE, Piantavigna S, Andrews PC, Holt SA, Dillon CT. Interactions of Non-steroidal Anti-inflammatory Drugs and Their Bismuth Analogues (BiNSAIDs) with Biological Membrane Mimics at Physiological pH. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1337-1352. [PMID: 33478220 DOI: 10.1021/acs.langmuir.0c02212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Previous studies have demonstrated the potential for non-steroidal anti-inflammatory drugs (NSAIDs), in particular aspirin, to be used as chemopreventives for colorectal cancer; however, a range of unwanted gastrointestinal side effects limit their effectiveness. Due to the role of bismuth in the treatment of gastrointestinal disorders, it is hypothesized that bismuth-coordinated NSAIDs (BiNSAIDs) could be used to combat the gastrointestinal side effects of NSAIDs while still maintaining their chemopreventive potential. To further understand the biological activity of these compounds, the present study examined four NSAIDs, namely, tolfenamic acid (tolfH), aspirin (aspH), indomethacin (indoH), and mefenamic acid (mefH) and their analogous homoleptic BiNSAIDs ([Bi(L)3]n), to determine how these compounds interact with biological membrane mimics composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or a mixture of POPC and cholesterol. Electrical impedance spectroscopy studies revealed that each of the NSAIDs and BiNSAIDs influenced membrane conductance, suggesting that temporary pore formation may play a key role in the previously observed cytotoxicity of tolfH and Bi(tolf)3. Quartz crystal microbalance with dissipation monitoring showed that all the compounds were able to interact with membrane mimics composed of solely POPC or POPC/cholesterol. Finally, neutron reflectometry studies showed changes in membrane thickness and composition. The location of the compounds within the bilayer could not be determined with certainty; however, a complex interplay of interactions governs the location of small molecules, such as NSAIDs, within lipid membranes. The charged nature of the parent NSAIDs means that interactions with the polar headgroup region are most likely with larger hydrophobic sections, potentially leading to deeper penetration.
Collapse
Affiliation(s)
- Tara E Oliver
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Stefania Piantavigna
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Stephen A Holt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Carolyn T Dillon
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
22
|
Saindane M, Rallabandi HR, Park KS, Heil A, Nam SE, Yoo YB, Yang JH, Yun IJ. Prognostic Significance of Prostaglandin-Endoperoxide Synthase-2 Expressions in Human Breast Carcinoma: A Multiomic Approach. Cancer Inform 2020; 19:1176935120969696. [PMID: 33223820 PMCID: PMC7656875 DOI: 10.1177/1176935120969696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 01/24/2023] Open
Abstract
Prostaglandin-endoperoxide synthase-2 (PTGS2) plays a pivotal role in inflammation and carcinogenesis in human breast cancer. Our aim of the study is to find the prognostic value of PTGS2 in breast cancer. We conducted a multiomic analysis to determine whether PTGS2 functions as a prognostic biomarker in human breast cancer. We explored PTGS2 mRNA expressions using different public bioinformatics portals. Oncomine, Serial Analysis of Gene Expression (SAGE), GEPIA, ULCAN, PrognoScan database, Kaplan-Meier Plotter, bc-GenExMiner, USC XENA, and Cytoscape/STRING DB were used to identify the prognostic roles of PTGS2 in breast cancer. Based on the clinicopathological analysis, decreased PTGS2 expressions correlated positively with older age, lymph node status, the human epidermal growth factor receptor 2 (HER2) status (P < .0001), estrogen receptor (ER+) expression (P < .0001) Luminal A (P < .0001), and Luminal B (P < .0001). Interestingly, progesterone receptor (PR) (P < .0001) negative showed a high expression of PTGS2. Prostaglandin-endoperoxide synthase-2 was downregulated in breast cancer tissues than in normal tissues. In the PrognoScan database and, Kaplan-Meier Scanner, downregulated expressions of PTGS2 associated with poor overall survival (OS), relapse-free survival (RFS), and distant metastasis-free survival. The methylation levels were significantly higher in the Luminal B subtype. Through oncomine coexpressed gene analysis, we found a positive correlation between PTGS2 and interleukin-6 (IL-6) expression in breast cancer tissues. These results indicate that downregulated expressions of PTGS2 can be used as a promising prognostic biomarker and Luminal B hyper methylation may play an important role in the development of breast cancers. However, to clarify our results, extensive study is required.
Collapse
Affiliation(s)
| | | | - Kyoung Sik Park
- Konkuk University, School of Medicine, Seoul, South Korea.,Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul, South Korea
| | - Alexander Heil
- Institute of Botany and Molecular Genetics, RWTH Aachen University, Aachen, Germany
| | - Sang Eun Nam
- Konkuk University, School of Medicine, Seoul, South Korea.,Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul, South Korea
| | - Young Bum Yoo
- Konkuk University, School of Medicine, Seoul, South Korea.,Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul, South Korea
| | - Jung-Hyun Yang
- Konkuk University, School of Medicine, Seoul, South Korea.,Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul, South Korea
| | - Ik Jin Yun
- Konkuk University, School of Medicine, Seoul, South Korea.,Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
23
|
Vinik Y, Ortega FG, Mills GB, Lu Y, Jurkowicz M, Halperin S, Aharoni M, Gutman M, Lev S. Proteomic analysis of circulating extracellular vesicles identifies potential markers of breast cancer progression, recurrence, and response. SCIENCE ADVANCES 2020; 6:6/40/eaba5714. [PMID: 33008904 PMCID: PMC7852393 DOI: 10.1126/sciadv.aba5714] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 08/21/2020] [Indexed: 05/03/2023]
Abstract
Proteomic profiling of circulating small extracellular vesicles (sEVs) represents a promising, noninvasive approach for early detection and therapeutic monitoring of breast cancer (BC). We describe a relatively low-cost, fast, and reliable method to isolate sEVs from plasma of BC patients and analyze their protein content by semiquantitative proteomics. sEV-enriched fractions were isolated from plasma of healthy controls and BC patients at different disease stages before and after surgery. Proteomic analysis of sEV-enriched fractions using reverse phase protein array revealed a signature of seven proteins that differentiated BC patients from healthy individuals, of which FAK and fibronectin displayed high diagnostic accuracy. The size of sEVs was significantly reduced in advanced disease stage, concomitant with a stage-specific protein signature. Furthermore, we observed protein-based distinct clusters of healthy controls, chemotherapy-treated and untreated postsurgery samples, as well as a predictor of high risk of cancer relapse, suggesting that the applied methods warrant development for advanced diagnostics.
Collapse
Affiliation(s)
- Yaron Vinik
- Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Yilling Lu
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | - Sima Lev
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
24
|
Anisiewicz A, Pawlik A, Filip-Psurska B, Wietrzyk J. Differential Impact of Calcitriol and Its Analogs on Tumor Stroma in Young and Aged Ovariectomized Mice Bearing 4T1 Mammary Gland Cancer. Int J Mol Sci 2020; 21:E6359. [PMID: 32887237 PMCID: PMC7503326 DOI: 10.3390/ijms21176359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Vitamin D compounds (VDC) are extensively studied in the field of anticancer properties, including breast cancer. Previously, we showed that calcitriol and its analogs (PRI-2191 and PRI-2205) stimulate metastasis in 4T1 murine mammary gland cancer models in young mice, whereas the reverse effect was observed in aged ovariectomized (OVX) mice; (2) Methods: We determined the phenotype of monocytes/macrophages using FACS and examined the expression of selected genes and proteins by Real-Time PCR and ELISA; (3) Results: Activities of VDC are accompanied by an increase in the percentage of Ly6Clow anti-inflammatory monocytes in the spleen of young and a decrease in aged OVX mice. Treatment of young mice with VDC resulted in an increase of CCL2 plasma and tumor concentration and Arg1 in tumor. In later stage of tumor progression the expression of genes related to metastasis in lung tissue was decreased or increased, in old OVX or young mice, respectively; (4) Conclusions: Pro- or anti-metastatic effects of calcitriol and its analogs in young or aged OVX mice, respectively, can be attributed to the differences in the effects of VDC on the tumor microenvironment, as a consequence of differences in the immunity status of young and aged mice.
Collapse
Affiliation(s)
- Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.P.); (B.F.-P.); (J.W.)
| | | | | | | |
Collapse
|
25
|
Bayraktar S, Baghaki S, Wu J, Liu DD, Gutierrez-Barrera AM, Bevers TB, Valero V, Sneige N, Arun BK. Biomarker Modulation Study of Celecoxib for Chemoprevention in Women at Increased Risk for Breast Cancer: A Phase II Pilot Study. Cancer Prev Res (Phila) 2020; 13:795-802. [PMID: 32513785 DOI: 10.1158/1940-6207.capr-20-0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022]
Abstract
In preclinical studies, celecoxib has been associated with reduced risk of breast cancer. In this study, the aim was to assess the biomodulatory effect of celecoxib on blood and benign breast tissue biomarkers in women at increased risk for breast cancer. Women at increased risk for breast cancer [5-year Gail risk score of >1.67%, history of atypical hyperplasia, lobular carcinoma in situ, or previous estrogen receptor (ER)-negative breast cancer] were treated with celecoxib at 400 mg orally twice daily for 6 months. Participants underwent random periareolar fine needle aspiration and blood draw at baseline and at 6 months for analysis of biomarkers: serum levels of insulin-like growth factor 1 (IGF-1), IGF-binding protein 1 (IGFBP-1), and IGFBP-3; tissue expression of Ki-67 and ER; as well as cytology. Forty-nine patients were eligible for analysis. Median IGFBP-1 levels increased significantly from 6.05 ng/mL at baseline to 6.93 ng/mL at 6 months (P = 0.04), and median IGFBP-3 levels decreased significantly from 3,593 ng/mL to 3,420 ng/mL (P = 0.01). We also detected favorable changes in cytology of 52% of tested sites after 6 months of celecoxib therapy. No changes in tissue Ki-67 and ER expression levels were observed. No grade 3 or 4 toxicity was recorded. Celecoxib was well tolerated and induced favorable changes in serum biomarkers as well as cytology in this pilot phase II trial. A phase IIb placebo-controlled study with celecoxib could be considered for women at increased risk for breast cancer.
Collapse
Affiliation(s)
- Soley Bayraktar
- Division of Medical Oncology and Hematology, Department of Medicine, Biruni University School of Medicine, Istanbul, Turkey
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sema Baghaki
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jimin Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Diane D Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Therese B Bevers
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nour Sneige
- Department of Cytopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Banu K Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
26
|
de Souza CP, Alves B, Waisberg J, Fonseca F, Carmo ADO, Gehrke F. Detection of COX-2 in liquid biopsy in patients with breast cancer. J Clin Pathol 2020; 73:826-829. [DOI: 10.1136/jclinpath-2020-206576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/04/2022]
Abstract
AimsTo determine the expression of the cyclooxygenase-2 (COX-2) gene in patients with breast cancer attended at the Centro Universitário Saúde ABC/Faculdade de Medicina do ABC (CUS-ABC/FMABC) outpatient clinic. Breast cancer is the most common cancer in women worldwide. More than two million new cases are reported annually. An overexpression of COX-2 has been observed in many cancers. COX-2 is related to parameters of cancer aggressiveness, including tumour size, positive nodal state and lower survival, and to angiogenesis and resistance to apoptosis.Methods15 mL of peripheral blood was obtained from 34 patients and 21 healthy women. The extracellular RNA of QIAamp RNA was submitted to an RNA sequestration kit for RNA reverse transcriptase. Quantitative real-time PCR was performed using COX-2-specific oligonucleotides and the endogenous Glyceraldehyde-3-Phosphate Dehydrogenase gene.ResultsThe mean remission time was 53 years. The mean progression time was 33 months. The difference observed between the patient and control groups in median COX-2 expression (p<0.001) was significant.ConclusionsPatients with breast cancer showed a higher mean COX-2 expression in peripheral blood samples at diagnosis than the control group. Since this information could prove important in the diagnosis and prognosis of breast cancer, further research is required on larger patient samples.
Collapse
|
27
|
Forcados GE, Sallau AB, Muhammad A, Erukainure OL, James DB. Vitex doniana Leaves Extract Ameliorates Alterations Associated with 7, 12-Dimethyl Benz[a]Anthracene-Induced Mammary Damage in Female Wistar Rats. Nutr Cancer 2020; 73:98-112. [PMID: 32223342 DOI: 10.1080/01635581.2020.1743866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vitex doniana leaves are used traditionally in West Africa for the treatment of swellings and cancer. We investigated if Vitex doniana leaves extract could ameliorate 7, 12-dimethylbenz[a]anthracene (DMBA)-induced mammary damage. Female Wistar rats aged 52 ± 2 day were administered 80 mg/kg DMBA. After monitoring for 150 day, rats were administered 0, 50, 100, 200 mg/kg Vitex doniana and 20 mg/kg Tamoxifen for 14 day. Serum estrogen receptor-α, IL-1β and TNF -α levels were determined using ELISA kits. Oxidative stress markers in mammary tissue homogenates were determined using standard spectrophotometric methods. Histopathological examination was done using hematoxylin and eosin staining and cyclooxygenase-2 (COX-2) expression using immunohistochemistry. Liquid chromatography-mass spectrometry was used to determine components present in the extract. Although tumors were not observed, significantly (p < 0.05) lower estrogen receptor-α, malondialdehyde, IL-1β and TNF -α levels, significantly (p < 0.05) higher glutathione and catalase activity, attenuation of malignant epithelial hyperplasia and mild COX-2 expression were observed in rats administered Vitex doniana when compared to DMBA-induced untreated control. Liquid chromatography-mass spectrometry analysis of the V. doniana extract revealed the presence of 4,5-dihydroxy-7-methoxy-6-methylflavone and vanillylamine, which are compounds with reported antioxidant and anti-inflammatory effects. Collectively, treatment with Vitex doniana ameliorated some derangement observed in DMBA-induced rats.
Collapse
Affiliation(s)
| | | | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Ochuko Lucky Erukainure
- Nutrition and Toxicology Division, Federal Institute of Industrial Research, Oshodi, Lagos, Nigeria.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Dorcas Bolanle James
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
28
|
Senthil Kumar KJ, Gokila Vani M, Hsieh HW, Lin CC, Liao JW, Chueh PJ, Wang SY. MicroRNA-708 activation by glucocorticoid receptor agonists regulate breast cancer tumorigenesis and metastasis via downregulation of NF-κB signaling. Carcinogenesis 2019; 40:335-348. [PMID: 30726934 DOI: 10.1093/carcin/bgz011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/06/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Therapeutic administration of glucocorticoids (GCs) is frequently used as add-on chemotherapy for palliative purposes during breast cancer treatment. Recent studies have shown that GC treatment induces microRNA-708 in ovarian cancer cells, resulting in impaired tumor cell proliferation and metastasis. However, the regulatory functions of GCs on miR-708 and its downstream target genes in human breast cancer cells (BCCs) are poorly understood. In this study, we found that treatment with either the synthetic GC dexamethasone (DEX) or the natural GC mimic, antcin A (ATA) significantly increased miR-708 expression by transactivation of glucocorticoid receptor alpha (GRα) in MCF-7 and MDA-MB-231 human BCCs. Induction of miR-708 by GR agonists resulted in inhibition of cell proliferation, cell-cycle progression, cancer stem cell (CSC)-like phenotype and metastasis of BCCs. In addition, GR agonist treatment or miR-708 mimic transfection remarkably inhibited IKKβ expression and suppressed nuclear factor-kappaB (NF-κB) activity and its downstream target genes, including COX-2, cMYC, cyclin D1, Matrix metalloproteinase (MMP)-2, MMP-9, CD24, CD44 and increased p21CIP1 and p27KIP1 that are known to be involved in proliferation, cell-cycle progression, metastasis and CSC marker protein. BCCs xenograft models indicate that treatment with GR agonists significantly reduced tumor growth, weight and volume. Overall, our data strongly suggest that GR agonists induced miR-708 and downstream suppression of NF-κB signaling, which may be applicable as a novel therapeutic intervention in breast cancer treatment.
Collapse
Affiliation(s)
- K J Senthil Kumar
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan.,National Chung Hsing University/University of California at Davis, Plant and Food Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - M Gokila Vani
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan.,National Chung Hsing University/University of California at Davis, Plant and Food Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | | | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Pin-Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan.,National Chung Hsing University/University of California at Davis, Plant and Food Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
29
|
Dhanjal NI, Sharma S, Skalny AV, Skalnaya MG, Ajsuvakova OP, Tinkov AA, Zhang F, Guo X, Prabhu KS, Tejo Prakash N. Selenium-rich maize modulates the expression of prostaglandin genes in lipopolysaccharide-stimulated RAW264.7 macrophages. Food Funct 2019; 10:2839-2846. [PMID: 31062009 DOI: 10.1039/c9fo00186g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cell signaling is necessary for the organs to co-ordinate with the whole body and it includes response to external stimuli, inflammation, hormonal secretions and other various metabolic functions. In the present study, we have focused on the inflammatory signals modulated by the reactive oxygen and nitrogen species (RONS). Under homeostatic conditions, these species turn on the COX-1-dependent arachidonic acid (AA) pathway towards the release of anti-inflammatory enzymes. However, the excess release of these ions induces negative effects in the form of inflammation by turning on the COX-2-dependent AA pathway to release pro-inflammatory enzymes. In the present study, we observed the shunting of the COX-2-dependent AA pathway towards the release of anti-inflammatory enzymes with the supplementation of organic dietary selenium in the form of seleniferous maize extracts. We observed that 500 nM selenium concentration in Se-maize extracts downregulated the COX-2 and mPGES-1 expressions by 3.8- and 3.2-fold and upregulated the GPx-1 and H-PGDS expressions by 5.0- and 5.4-fold, respectively. To facilitate more availability of Se from the dietary matrices, Se-maize extracts were incubated with rMETase. It was observed that the enzyme-treated cells increased the downregulation of COX-2 and mPGES-1 expressions by 24.8- and 21.0-fold and the upregulation of GPx-1 and H-PGDS expressions by 13.2- and 16.5-fold, respectively.
Collapse
|
30
|
Malecki KMC. Epigenetics and differential effects of aspirin on breast cancer survival: Opportunities for understanding human susceptibility and risk. Cancer 2019; 125:3709-3713. [DOI: 10.1002/cncr.32365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Kristen M. C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health University of Wisconsin Madison Madison Wisconsin
| |
Collapse
|
31
|
Chen Y, Liu J. The prognostic roles of cyclooxygenase-2 for patients with basal cell carcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3053-3057. [PMID: 31334675 DOI: 10.1080/21691401.2019.1643731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background: Cyclooxygenase-2 (Cox-2) is critical for tumor invasion, angiogenesis, and poor prognosis in many human cancers. It was reported to be an abnormal expression in many human malignancies, including basal cell carcinoma (BCC). However, the prognostic significance of cox-2 in BCC was still unclear. The aim of this study was to investigate the prognostic roles of cox-2 for patients with BCC. Methods: We detected the expression of cox-2 both at mRNA and protein level in tumor tissue and adjacent normal tissues from 180 patients with BCC by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. Results: Cox-2 expression was significantly increased in BCC tissues compared with the adjacent normal cohorts (p < .001). Its expression was significantly associated with angiogenesis (p < .001) and depth of invasion (p < .001). Kaplan-Meier analysis suggested patients with high expression of cox-2 had a shorter overall survival rate than those with low expression (log rank test, p < .001). Conclusions: The expression of cox-2 was up-regulated in BCC and it could be used as a bio-marker for the prognosis of BCC patients with a high risk of recurrence.
Collapse
Affiliation(s)
- Yang Chen
- a Department of Oncology, Chuiyangliu Hospital affiliated to Tsinghua University , Beijing , China
| | - Jilong Liu
- a Department of Oncology, Chuiyangliu Hospital affiliated to Tsinghua University , Beijing , China
| |
Collapse
|
32
|
Pons DG, Vilanova-Llompart J, Gaya-Bover A, Alorda-Clara M, Oliver J, Roca P, Sastre-Serra J. The phytoestrogen genistein affects inflammatory-related genes expression depending on the ERα/ERβ ratio in breast cancer cells. Int J Food Sci Nutr 2019; 70:941-949. [DOI: 10.1080/09637486.2019.1597025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional Institut, Universitari d´Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, Spain
| | - Joana Vilanova-Llompart
- Grupo Multidisciplinar de Oncología Traslacional Institut, Universitari d´Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Auba Gaya-Bover
- Grupo Multidisciplinar de Oncología Traslacional Institut, Universitari d´Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, Spain
| | - Marina Alorda-Clara
- Grupo Multidisciplinar de Oncología Traslacional Institut, Universitari d´Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional Institut, Universitari d´Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, Madrid, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional Institut, Universitari d´Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, Madrid, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional Institut, Universitari d´Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
33
|
Izuegbuna O, Otunola G, Bradley G. Chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. PLoS One 2019; 14:e0209682. [PMID: 30695064 PMCID: PMC6350967 DOI: 10.1371/journal.pone.0209682] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023] Open
Abstract
Background The Opuntia spp. have been used in traditional medicine for many centuries. It is used in the management of diseases that involves oxidative stress, especially diabetes, obesity and cancer. Opuntia stricta (Haw) is one of the relatively unknown species in South Africa where it is regarded more as a weed. Because of this, not much is known about its chemical composition. Aim To determine the chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. Methods The phytochemical composition of acetone, aqueous and ethanol extract of cladodes of Opuntia stricta (Haw), as well as the vitamins A, C and E of its dried weight cladodes and the antioxidant activities, were evaluated using standard in vitro methods. The anti-inflammatory and cytotoxic activities were evaluated using cell-based assays. The phytochemical composition and vitamins were determined spectrophotometrically, while the antioxidant activities were determined by DPPH, nitric oxide, hydrogen peroxide scavenging activity and phosphomolybdenum (total) antioxidant activity. Anti-inflammatory activity was determined using RAW 264.7 cells, while cytotoxicity was determined using U937 cells. Results The phytochemical composition showed a significant difference in the various extracts. The total phenolics were higher than other phytochemicals in all the extracts used. All the extracts displayed antioxidant activity, while most of the extracts showed anti-inflammatory activity. Only one extract showed cytotoxicity, and it was mild. Conclusion The results show that the Opuntia stricta is rich in polyphenolic compounds and has good antioxidant activity as well as anti-inflammatory activities.
Collapse
Affiliation(s)
- Ogochukwu Izuegbuna
- Department of Biochemistry, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
| | - Gloria Otunola
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
| | - Graeme Bradley
- Department of Biochemistry, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
- * E-mail:
| |
Collapse
|
34
|
Perioperative Stress, Inflammation, and Cancer Progression:
Opportunities for Intervention in Breast and Colorectal Cancer Surgery Utilizing
Beta-Adrenergic Blockade and COX-2 Inhibition. CURRENT ANESTHESIOLOGY REPORTS 2018. [DOI: 10.1007/s40140-018-0295-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Malik DES, David RM, Gooderham NJ. Mechanistic evidence that benzo[a]pyrene promotes an inflammatory microenvironment that drives the metastatic potential of human mammary cells. Arch Toxicol 2018; 92:3223-3239. [PMID: 30155724 PMCID: PMC6132703 DOI: 10.1007/s00204-018-2291-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
Abstract
Benzo[a]pyrene (B(a)P) is a major cancer-causing contaminant present in food such as cooked meats and cereals, and is ubiquitous in the environment in smoke derived from the combustion of organic material. Exposure to B(a)P is epidemiologically linked with the incidence of breast cancer. Although B(a)P is recognized as a complete genotoxic carcinogen, thought to act primarily via CYP-mediated metabolic activation to DNA-damaging species, there is also evidence that B(a)P exposure elicits other biological responses that promote development of the cancer phenotype. Here in mechanistic studies using human mammary cells MCF-7 and MDA-MB-231, we have explored mechanisms whereby B(a)P (10- 8 to 10- 5M) promotes inflammation pathways via TNF-α and NFκB leading to IL-6 upregulation, microRNA (Let7a, miR21 and miR29b) dysregulation and activation of VEGF. The miRNA dysregulation is associated with altered expression of inflammation mediators and increased migration and invasive potential of human mammary cancer cells. Our data suggest that mammary cell exposure to B(a)P results in perturbation of inflammation mediators and dysregulation of tumorigenic miRNAs, leading to an inflammation microenvironment that facilitates migration and invasion of mammary epithelial cells. These properties of B(a)P, together with its well-established metabolic activation to DNA-damaging species, offer mechanistic insights into its carcinogenic mode of action.
Collapse
Affiliation(s)
- Durr-E-Shahwar Malik
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Rhiannon M David
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK
- Genetic Toxicology, Drug Safety and Metabolism, MSAS Unit, AstraZeneca, Cambridge, UK
| | - Nigel J Gooderham
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
36
|
Lee WH, Loo CY, Ghadiri M, Leong CR, Young PM, Traini D. The potential to treat lung cancer via inhalation of repurposed drugs. Adv Drug Deliv Rev 2018; 133:107-130. [PMID: 30189271 DOI: 10.1016/j.addr.2018.08.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023]
Abstract
Lung cancer is a highly invasive and prevalent disease with ineffective first-line treatment and remains the leading cause of cancer death in men and women. Despite the improvements in diagnosis and therapy, the prognosis and outcome of lung cancer patients is still poor. This could be associated with the lack of effective first-line oncology drugs, formation of resistant tumors and non-optimal administration route. Therefore, the repurposing of existing drugs currently used for different indications and the introduction of a different method of drug administration could be investigated as an alternative to improve lung cancer therapy. This review describes the rationale and development of repositioning of drugs for lung cancer treatment with emphasis on inhalation. The review includes the current progress of repurposing non-cancer drugs, as well as current chemotherapeutics for lung malignancies via inhalation. Several potential non-cancer drugs such as statins, itraconazole and clarithromycin, that have demonstrated preclinical anti-cancer activity, are also presented. Furthermore, the potential challenges and limitations that might hamper the clinical translation of repurposed oncology drugs are described.
Collapse
Affiliation(s)
- Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh, Perak, Malaysia; Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia.
| | - Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh, Perak, Malaysia; Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Maliheh Ghadiri
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Chean-Ring Leong
- Section of Bioengineering Technology, Universiti Kuala Lumpur (UniKL) MICET, Alor Gajah, Melaka, Malaysia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| |
Collapse
|
37
|
Solanki R, Agrawal N, Ansari M, Jain S, Jindal A. COX-2 Expression in Breast Carcinoma with Correlation to Clinicopathological Parameters. Asian Pac J Cancer Prev 2018; 19:1971-1975. [PMID: 30051683 PMCID: PMC6165637 DOI: 10.22034/apjcp.2018.19.7.1971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/13/2018] [Indexed: 11/27/2022] Open
Abstract
Objective: Breast carcinoma is the most common malignant tumor and the leading cause of carcinoma deaths in women. Its etiology is multifactorial, implicating reproductive factors, hormonal imbalances and genetic predispositions. Studies have shown that Cycloxygenase-2 (COX-2) plays an important role in the carcinogenesis and increased expression has been regarded as a poor prognostic factor. The objective of our study is 1. To study COX-2 expression in normal breast tissue, DCIS and invasive breast cancer. 2. To determine COX-2 expression with clinicopathological prognostic parameters. Methods: Radical mastectomy specimens were studied for COX-2 expression by immunohistochemistry in 50 patients diagnosed as breast carcinoma. COX-2 expression is quantified as IHS Score and separately calculated for normal breast epithelium near the tumor, DCIS and invasive areas. Relationship between COX-2 expression with various clinicopathological parameters was evaluated. Result: The results of our study suggest an association of the expression of COX-2 to the factors associated with poor prognosis in breast cancer, such as larger tumor size, positive lymph node status, higher T stage and N stage and lymphovascular invasion. There was a higher COX-2 expression in the DCIS component as compared to the invasive ductal carcinoma component and the adjoining breast epithelium. Conclusion: Our study established the role of COX-2 in carcinogenesis and its association with adverse prognostic factors.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cyclooxygenase 2/metabolism
- Female
- Follow-Up Studies
- Humans
- Middle Aged
- Prognosis
Collapse
|
38
|
Gérard C, Brown KA. Obesity and breast cancer - Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol 2018; 466:15-30. [PMID: 28919302 DOI: 10.1016/j.mce.2017.09.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
One in eight women will develop breast cancer over their lifetime making it the most common female cancer. The cause of breast cancer is multifactorial and includes hormonal, genetic and environmental cues. Obesity is now an accepted risk factor for breast cancer in postmenopausal women, particularly for the hormone-dependent subtype of breast cancer. Obesity, which is characterized by an excess accumulation of body fat, is at the origin of chronic inflammation of white adipose tissue and is associated with dramatic changes in the biology of adipocytes leading to their dysfunction. Inflammatory factors found in the breast of obese women considerably impact estrogen signaling, mainly by driving changes in aromatase expression the enzyme responsible for estrogen production, and therefore promote tumor formation and progression. There is thus a strong link between adipose inflammation and estrogen biosynthesis and their signaling pathways converge in obese patients. This review describes how obesity-related factors can affect the risk of hormone-dependent breast cancer, highlighting the different molecular mechanisms and metabolic pathways involved in aromatase regulation, estrogen production and breast malignancy in the context of obesity.
Collapse
Affiliation(s)
- Céline Gérard
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kristy A Brown
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
39
|
Smeda M, Kieronska A, Proniewski B, Jasztal A, Selmi A, Wandzel K, Zakrzewska A, Wojcik T, Przyborowski K, Derszniak K, Stojak M, Kaczor D, Buczek E, Watala C, Wietrzyk J, Chlopicki S. Dual antiplatelet therapy with clopidogrel and aspirin increases mortality in 4T1 metastatic breast cancer-bearing mice by inducing vascular mimicry in primary tumour. Oncotarget 2018; 9:17810-17824. [PMID: 29707148 PMCID: PMC5915156 DOI: 10.18632/oncotarget.24891] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
Platelet inhibition has been considered an effective strategy for combating cancer metastasis and compromising disease malignancy although recent clinical data provided evidence that long-term platelet inhibition might increase incidence of cancer deaths in initially cancer-free patients. In the present study we demonstrated that dual anti-platelet therapy based on aspirin and clopidogrel (ASA+Cl), a routine regiment in cardiovascular patients, when given to cancer-bearing mice injected orthotopically with 4T1 breast cancer cells, promoted progression of the disease and reduced mice survival in association with induction of vascular mimicry (VM) in primary tumour. In contrast, treatment with ASA+Cl or platelet depletion did reduce pulmonary metastasis in mice, if 4T1 cells were injected intravenously. In conclusion, distinct platelet-dependent mechanisms inhibited by ASA+Cl treatment promoted cancer malignancy and VM in the presence of primary tumour and afforded protection against pulmonary metastasis in the absence of primary tumour. In view of our data, long-term inhibition of platelet function by dual anti-platelet therapy (ASA+Cl) might pose a hazard when applied to a patient with undiagnosed and untreated malignant cancer prone to undergo VM.
Collapse
Affiliation(s)
- Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Anna Kieronska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Anna Selmi
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Krystyna Wandzel
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Tomasz Wojcik
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Katarzyna Derszniak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Dawid Kaczor
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Kosciuszki 4, Lodz 90-419, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Oncology, Rudolfa Weigla 4, Wroclaw 53-114, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
- Chair of Pharmacology, Jagiellonian University, Medical College, Grzegorzecka 16, Krakow 31-531, Poland
| |
Collapse
|
40
|
Agrawal U, Kumari N, Vasudeva P, Mohanty NK, Saxena S. Overexpression of COX2 indicates poor survival in urothelial bladder cancer. Ann Diagn Pathol 2018; 34:50-55. [PMID: 29661728 DOI: 10.1016/j.anndiagpath.2018.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/30/2017] [Accepted: 01/13/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND COX2 is a cyclo-oxygenase enzyme expressed in the tumor cells, inflammatory cells, stromal and non-epithelial cells. The study was conducted to evaluate the expression of COX2 in Urothelial carcinoma and find the association with progression and recurrence. METHODS The expression of COX2 was evaluated by real-time PCR and immunohistochemistry. RESULTS Gene expression of COX2 was found to be upregulated >28-fold in urothelial cancer compared to adjacent normal bladder mucosa. Inflammatory cell expression of COX2 was found in 92% cases whereas only 37% cases showed COX2 overexpression in tumor cells. Tumor cell COX2 overexpression was significantly associated with invasion and recurrence. CONCLUSION COX2 expression is a marker of invasion, recurrence and poor survival and may have a role in predicting the cases which will benefit from additional treatment with COX2 inhibitors in urothelial carcinoma.
Collapse
Affiliation(s)
- Usha Agrawal
- National Institute of Pathology, Indian Council of Medical Research, New Delhi-110029, India; Faculty of Health and Biomedical Sciences, Symbiosis International University, Lavale, Pune- 412115, India.
| | - Nitu Kumari
- National Institute of Pathology, Indian Council of Medical Research, New Delhi-110029, India; BITS, Pilani, Rajasthan, India
| | - Pawan Vasudeva
- Deptt of Urology, VMMC and Safdarjung Hospital, New Delhi-110029, India
| | | | - Sunita Saxena
- National Institute of Pathology, Indian Council of Medical Research, New Delhi-110029, India.
| |
Collapse
|
41
|
Sano Y, Kogashiwa Y, Araki R, Enoki Y, Ikeda T, Yoda T, Nakahira M, Sugasawa M. Correlation of Inflammatory Markers, Survival, and COX2 Expression in Oral Cancer and Implications for Prognosis. Otolaryngol Head Neck Surg 2018; 158:667-676. [PMID: 29359615 DOI: 10.1177/0194599817745284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective Peripheral blood-derived inflammation-based scores, such as the neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and the combination of platelet count and NLR, have recently been proposed as prognostic markers in solid tumors. The purpose of this study was to investigate the validity of inflammatory markers as predictive prognostic factors for locally advanced oral squamous cell carcinoma (OSCC). In addition, we evaluated the potential correlation between systemic inflammation and local expression of COX2. Study Design Retrospective chart review and histologic analysis. Setting Tertiary referral academic center. Subjects and Methods We conducted a retrospective analysis of 94 patients with advanced OSCC treated with surgery at our hospital between 2007 and 2015. The relationship among patient survival, systemic inflammatory markers, and local COX2 expression was evaluated. Local COX2 expression in surgical specimens was measured by immunohistochemistry. Results High NLR and high PLR were associated with significantly shorter overall survival and cancer-specific survival. Multivariate analysis revealed that cN stage, NLR, and postoperative radiation/chemoradiation were significantly associated with overall survival and cancer-specific survival. PLR and combination of platelet count and NLR were significantly correlated with tumor expression of COX2. Finally, patients with cN2 stage disease and high local COX2 expression had a significantly worse prognosis than other patient groups. Conclusion Pretreatment inflammatory markers are useful as prognostic factors in advanced OSCC. Our study suggests that local COX2 may be affected by systemic inflammation and that the prognostic impact of COX2 expression depends on host factors and tumor characteristics.
Collapse
Affiliation(s)
- Yoshie Sano
- 1 Department of Head and Neck Surgery-Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Japan.,2 Department of Oral and Maxillofacial Surgery, Saitama Medical University, Moroyama, Japan
| | - Yasunao Kogashiwa
- 1 Department of Head and Neck Surgery-Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Ryuichiro Araki
- 3 Community Health Science Center, Saitama Medical University, Moroyama, Japan
| | - Yuichiro Enoki
- 1 Department of Head and Neck Surgery-Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Tetsuya Ikeda
- 4 Department of Oral Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Tetsuya Yoda
- 2 Department of Oral and Maxillofacial Surgery, Saitama Medical University, Moroyama, Japan
| | - Mitsuhiko Nakahira
- 1 Department of Head and Neck Surgery-Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Masashi Sugasawa
- 1 Department of Head and Neck Surgery-Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Japan
| |
Collapse
|
42
|
Chen ZG, Zheng CY, Cai WQ, Li DW, Ye FY, Zhou J, Wu R, Yang K. miR-26b Mimic Inhibits Glioma Proliferation In Vitro and In Vivo Suppressing COX-2 Expression. Oncol Res 2017; 27:147-155. [PMID: 28800785 PMCID: PMC7848412 DOI: 10.3727/096504017x15021536183517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioma is the most common malignant tumor of the nervous system. Studies have shown the microRNA-26b (miR-26b)/cyclooxygenase-2 (COX-2) axis in the development and progression in many tumor cells. Our study aims to investigate the effect and mechanism of the miR-26b/COX-2 axis in glioma. Decreased expression of miR-26b with increased levels of COX-2 was found in glioma tissues compared with matched normal tissues. A strong negative correlation was observed between the level of miR-26b and COX-2 in 30 glioma tissues. The miR-26b was then overexpressed by transfecting a miR-26b mimic into U-373 cells. The invasive cell number and wound closing rate were reduced in U-373 cells transfected with miR-26b mimic. In addition, COX-2 siRNA enhanced the effect of miR-26b mimic in suppressing the expression of p-ERK1 and p-JNK. Finally, the in vivo experiment revealed that miR-26b mimic transfection strongly reduced the tumor growth, tumor volume, and expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. Taken together, our research indicated a miR-26b/COX-2/ERK/JNK axis in regulating the motility of glioma in vitro and in vivo, providing a new sight for the treatment of glioma.
Collapse
Affiliation(s)
- Zheng-Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Chuan-Yi Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Wang-Qing Cai
- Department of Neurosurgery, The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Da-Wei Li
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Fu-Yue Ye
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Jian Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Ran Wu
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Kun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| |
Collapse
|
43
|
Kispert S, Schwartz T, McHowat J. Cigarette Smoke Regulates Calcium-Independent Phospholipase A2 Metabolic Pathways in Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1855-1866. [DOI: 10.1016/j.ajpath.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/24/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
|
44
|
Dhanjal NIK, Sharma S, Prabhu KS, Prakash NT. Selenium supplementation through Se-rich dietary matrices can upregulate the anti-inflammatory responses in lipopolysaccharide-stimulated murine macrophages. FOOD AGR IMMUNOL 2017; 28:1374-1392. [PMID: 29563666 PMCID: PMC5858741 DOI: 10.1080/09540105.2017.1343805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/14/2017] [Indexed: 01/21/2023] Open
Abstract
The accessibility of selenium from naturally enriched sources such as cereals crops can potentially be used as selenium supplements to support nutritional requirements. Dietary selenium supplementation, as Se-rich wheat extracts, on RAW264.7 macrophage cells enhanced the antioxidant capacity via augmentation of cellular selenoprotein glutathione peroxidase 1 (GPx-1) expression in the absence or presence of lipopolysaccharide (LPS) treatment. Cells were supplemented with Se in the form of sodium selenite (SS), seleniferous wheat extract (SeW) and seleniferous wheat extract with rMETase treatment (SeW+rMET) at three different concentrations. Cells supplemented with SS and SeW+rMET showed increase in GPx-1 expression as compared to SeW treated cells. SeW+rMET, further, down-regulated the LPS-induced expression of cyclooxygenase-2, microsomal PGE synthase-1 and inducible nitric oxide synthase w.r.t. Se-deficient cells, while the expression of hematopoietic PGD synthase was upregulated. This demonstrates SeSup effectively modulates the expression inflammatory responses, indicating the potential benefits of dietary selenium supplementation.
Collapse
Affiliation(s)
| | | | - K Sandeep Prabhu
- Department of Veterinary Science and The Center for Molecular Toxicology and Carcinogenesis, 115 Henning, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - N Tejo Prakash
- School of Energy and Environment, Thapar University, Patiala, India
| |
Collapse
|
45
|
Fahlén M, Zhang H, Löfgren L, Masironi B, von Schoultz E, von Schoultz B, Sahlin L. Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women. Gynecol Endocrinol 2017; 33:353-358. [PMID: 28277128 DOI: 10.1080/09513590.2016.1260109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.
Collapse
Affiliation(s)
- M Fahlén
- a Capio St Göran's Hospital , Stockholm , Sweden
- b Department of Oncology and Pathology
- c Pediatric Endocrinology Unit , and
| | - H Zhang
- c Pediatric Endocrinology Unit , and
| | - L Löfgren
- a Capio St Göran's Hospital , Stockholm , Sweden
| | | | | | - B von Schoultz
- d Division of Obstetrics and Gynecology , Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| | - L Sahlin
- c Pediatric Endocrinology Unit , and
| |
Collapse
|
46
|
Kuol N, Stojanovska L, Nurgali K, Apostolopoulos V. The mechanisms tumor cells utilize to evade the host's immune system. Maturitas 2017; 105:8-15. [PMID: 28477990 DOI: 10.1016/j.maturitas.2017.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
The immune system plays an essential role in the tumor progression; not only can it inhibit tumor growth but it can also promote tumor growth by establishing a favorable environment. Tumor cells utilize several strategies to evade the host's immune system, including expression of immunosuppressive molecules such as PD-L1, IDO and siglec-9. In addition, tumor cells not only regulate the recruitment and development of immunosuppressive forces to influence the tumor microenvironment but also shift the phenotype and function of normal immune cells from a possibly anti-tumor state to a pro-tumor state. As a result, tumor cells evade the host's immune system, leading to metastasis and/or recurrent disease.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, P.O. Box 14426, Melbourne, VIC 8001, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, P.O. Box 14426, Melbourne, VIC 8001, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, P.O. Box 14426, Melbourne, VIC 8001, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, P.O. Box 14426, Melbourne, VIC 8001, Australia.
| |
Collapse
|
47
|
Cyclooxygenase-2 in tumor-associated macrophages promotes breast cancer cell survival by triggering a positive-feedback loop between macrophages and cancer cells. Oncotarget 2016; 6:29637-50. [PMID: 26359357 PMCID: PMC4745752 DOI: 10.18632/oncotarget.4936] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/28/2015] [Indexed: 12/26/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play an important role in cancer cell survival, however, the mechanism of which remains elusive. In this study, we found that COX-2 was abundantly expressed in breast TAMs, which was correlated to poor prognosis in breast cancer patients. Ectopic over-expression of COX-2 in TAMs enhanced breast cancer cell survival both in vitro and in vivo. COX-2 in TAMs was determined to be essential for the induction and maintenance of M2-phenotype macrophage polarity. COX-2+ TAMs promoted breast cancer cell proliferation and survival by increasing Bcl-2 and P-gp and decreasing Bax in cancer cells. Furthermore, COX-2 in TAMs induced the expression of COX-2 in breast cancer cells, which in turn promoted M2 macrophage polarization. Inhibiting PI3K/Akt pathway in cancer cells suppressed COX-2+ TAMs-induced cancer cell survival. These findings suggest that COX-2, functions as a key cancer promoting factor by triggering a positive-feedback loop between macrophages and cancer cells, which could be exploited for breast cancer prevention and therapy.
Collapse
|
48
|
Hugo HJ, Saunders C, Ramsay RG, Thompson EW. New Insights on COX-2 in Chronic Inflammation Driving Breast Cancer Growth and Metastasis. J Mammary Gland Biol Neoplasia 2015; 20:109-19. [PMID: 26193871 DOI: 10.1007/s10911-015-9333-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Abstract
The medicinal use of aspirin stretches back to ancient times, before it was manufactured in its pure form in the late 19th century. Its accepted mechanistic target, cyclooxygenase (COX), was discovered in the 1970s and since this landmark discovery, the therapeutic application of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has increased dramatically. The most significant benefits of NSAIDs are in conditions involving chronic inflammation (CI). Given the recognized role of CI in cancer development, the use of long-term NSAID treatment in the prevention of cancer is an enticing possibility. COX-2 is a key driver of CI, and here we review COX-2 expression as a predictor of survival in various cancer types, including breast. Obesity and post-partum involution are natural inflammatory states that are associated with increased breast cancer risk. We outline the COX-2 mediated mechanisms contributing to the growth of cancers. We dissect the cellular mechanism of epithelial-mesenchymal transition (EMT) and how COX-2 may induce this to facilitate tumor progression. Finally we examine the potential regulation of COX-2 by c-Myb, and the possible interplay between c-Myb/COX-2 in proliferation, and hypoxia inducible factor-1 alpha (HIF1α)/COX-2 in invasive pathways in breast cancer.
Collapse
Affiliation(s)
- Honor J Hugo
- VBCRC Invasion and Metastasis Unit, St Vincent's Institute, Fitzroy, VIC, Australia.
| | - C Saunders
- School of Surgery, University of Western Australia, Perth, Western Australia, Australia
| | - R G Ramsay
- Differentation and Transcription Laboratory, Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - E W Thompson
- VBCRC Invasion and Metastasis Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland Institute of Technology, Brisbane, QLD, Australia
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Zhang H, Ding C, Suo Z, Kang Y. Effect of Helicobacter pylori on cyclooxygenase-2 and inducible nitric oxide synthase in patients with gastric precancerous lesions and its clinical significance. Exp Ther Med 2015; 9:2364-2368. [PMID: 26136988 DOI: 10.3892/etm.2015.2387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/16/2015] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to investigate the effect of Helicobacter pylori (Hp) on cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) levels in patients with gastric precancerous lesions and its clinical significance. A total of 114 patients with gastric precancerous lesions, 57 whom were positive for Hp (observation group) and 57 of whom were negative for Hp (control group), were selected for the study. The mRNA levels of COX-2 and iNOS in the gastric precancerous lesion tissue from the two groups of patients were analyzed through the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The protein expression levels of COX-2 and iNOS were analyzed using western blotting and an iNOS kit, respectively. In addition, normal human gastric mucosal GES-1 cells were cultured in vitro and stimulated by Hp for 3, 6, 9 and 12 h. The variations in the mRNA and protein levels of COX-2 and iNOS were then analyzed via RT-qPCR and western blotting. Compared with the control group, the mRNA levels of COX-2 and iNOS in the gastric tissue from the observation group were significantly increased (P<0.05). Furthermore, the expression level of COX-2 and iNOS protein in the gastric tissue from the observation group was significantly higher than that in the tissue from the control group (P<0.05). In vitro analysis showed that the COX-2 and iNOS mRNA and protein levels were significantly increased in the Hp-stimulated normal human gastric mucosal GES-1 cells compared with those in the unstimulated cells. Furthermore, the effect was time-dependent (P<0.05). In conclusion, COX-2 and iNOS are the main inflammatory markers. Hp can induce high expression levels of COX-2 and iNOS in gastric precancerous lesion tissue, which may be associated with the occurrence and development of gastric precancerous lesions.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Digestive Medicine, Henan University Huaihe Hospital, Kaifeng, Henan 475000, P.R. China
| | - Chunsheng Ding
- Department of Digestive Medicine, Henan University Huaihe Hospital, Kaifeng, Henan 475000, P.R. China
| | - Zhimin Suo
- Department of Digestive Medicine, Henan University Huaihe Hospital, Kaifeng, Henan 475000, P.R. China
| | - Yuhua Kang
- Department of Digestive Medicine, Henan University Huaihe Hospital, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
50
|
Zhen Y, Pan W, Hu F, Wu H, Feng J, Zhang Y, Chen J. Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway in PLC/PRF/5 hepatoma cells. Int J Oncol 2015; 46:2194-204. [PMID: 25738635 DOI: 10.3892/ijo.2015.2914] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/13/2015] [Indexed: 01/08/2023] Open
Abstract
Hydrogen sulfide (H2S) takes part in a diverse range of intracellular pathways and hss physical and pathological properties in vitro and in vivo. However, the effects of H2S on cancer are controversial and remain unclear. The present study investigates the effects of H2S on liver cancer progression via activating NF-κB pathway in PLC/PRF/5 hepatoma cells. PLC/PRF/5 hepatoma cells were pretreated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of CSE, CBS, phosphosphorylate (p)-NF-κB p65, caspase-3, COX-2, p-IκB and MMP-2 were measured by western blot assay. Cell viability was detected by cell counter kit 8 (CCK-8). Apoptotic cells were observed by Hoechst 33258 staining assay. The production level of H2S in cell culture medium was measured by using the sulfur-sensitive electrode method. The production of vascular endothelial growth factor (VEGF) was tested by enzyme-linked immunosorbent assay (ELISA). Our results showed that the production of H2S was dramatically increased in the PLC/PRF/5 hepatoma cells, compared with human LO2 hepatocyte cells group, along with the overexpression levels of CSE and CBS. Treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS (a donor of H2S) for 24 h markedly increased the expression levels of CSE, CBS, p-IκB and NF-κB activation, leading to COX-2 and MMP-2 overexpression, and decreased caspase-3 production, as well as increased cell viability and decreased number of apoptotic cells. Otherwise, the production level of H2S and VEGF were also significantly increased. Furthermore, co-treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS and 200 µmol/l PDTC for 24 h significantly overturned these indexes. The findings of the present study provide evidence that the NF-κB is involved in the NaHS-induced cell proliferation, anti-apoptisis, angiogenesis, and migration in PLC/PRF/5 hepatoma cells, and that the PDTC against the NaHS-induced effects were by inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Yulan Zhen
- Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Wanying Pan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Fen Hu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Hongfu Wu
- Department of Physiology, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianqiang Feng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ying Zhang
- Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Jingfu Chen
- Department of Cardiovasology and Cardiac Care Unit (CCU), Huangpu Division, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|