1
|
Novel Epigenetic Eight-Gene Signature Predictive of Poor Prognosis and MSI-Like Phenotype in Human Metastatic Colorectal Carcinomas. Cancers (Basel) 2021; 13:cancers13010158. [PMID: 33466447 PMCID: PMC7796477 DOI: 10.3390/cancers13010158] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The global methylation profile of two human metastatic colorectal carcinoma subgroups with significantly different outcomes (primary-resistant versus drug-sensitive tumors) was analyzed and compared with the gene expression and methylation data from The Cancer Genome Atlas COlon ADenocarcinoma (TCGA COAD) metastatic colorectal carcinoma dataset with the aim to identify a prognostic signature of functionally methylated genes. A novel epigenetic eight-gene signature, with hypermethylation of the promoter regions, was identified and validated for its capacity to predict poor outcome, which had a CpG-island methylator phenotype (CIMP)-high status and microsatellite instability (MSI)-like phenotype. Abstract Epigenetics is involved in tumor progression and drug resistance in human colorectal carcinoma (CRC). This study addressed the hypothesis that the DNA methylation profiling may predict the clinical behavior of metastatic CRCs (mCRCs). The global methylation profile of two human mCRC subgroups with significantly different outcome was analyzed and compared with gene expression and methylation data from The Cancer Genome Atlas COlon ADenocarcinoma (TCGA COAD) and the NCBI GENE expression Omnibus repository (GEO) GSE48684 mCRCs datasets to identify a prognostic signature of functionally methylated genes. A novel epigenetic signature of eight hypermethylated genes was characterized that was able to identify mCRCs with poor prognosis, which had a CpG-island methylator phenotype (CIMP)-high and microsatellite instability (MSI)-like phenotype. Interestingly, methylation events were enriched in genes located on the q-arm of chromosomes 13 and 20, two chromosomal regions with gain/loss alterations associated with adenoma-to-carcinoma progression. Finally, the expression of the eight-genes signature and MSI-enriching genes was confirmed in oxaliplatin- and irinotecan-resistant CRC cell lines. These data reveal that the hypermethylation of specific genes may provide prognostic information that is able to identify a subgroup of mCRCs with poor prognosis.
Collapse
|
2
|
Zhai J, Gao W, Zhao L, Gao Z, Jiang X, Lu C. Dendritic cell vaccine with Ag85A enhances anti-colorectal carcinoma immunity. Exp Ther Med 2018; 16:5123-5129. [PMID: 30542467 PMCID: PMC6257656 DOI: 10.3892/etm.2018.6851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) are able to trigger T-cell activation and thus have been considered important for vaccine production against cancers. Vaccines containing DCs have been reported to be effective for developing immunity against cancer cells. The interactions between DCs and auxiliary agents are critical in the development of second-generation vaccines. In the present study, it was evaluated whether Ag85A-mixed DCs could enhance anti-tumor immunity in laboratory mice with colorectal carcinoma. Functional and phenotypic analyses of the effects of Ag85A-mixed DCs were conducted via flow cytometry and measurement of T-cell proliferation. In addition, interferon (IFN)-γ production was assessed. The therapeutic efficacy of DC vaccination for colorectal carcinoma treatment in mice was investigated. It was identified that Ag85A-mixed DCs exhibited strong upregulation of CD80, CD86 and major histocompatibility complex class II. Cytotoxic T-lymphocytes with CT26-primed Ag85A-DCs were indicated to induce stronger responses against CT26 tumor cells and trigger IFN-γ production. Furthermore, the Ag85A-mixed DC vaccine exerted a considerable inhibitory effect on tumor progression in mice as compared with the control group. Therefore, DCs in combination with the Ag85A gene may reinforce anti-colorectal carcinoma immunity. The current study provides a novel potential strategy for cancer treatment by enhancing immunity via Ag85A-mixed DC vaccination.
Collapse
Affiliation(s)
- Jingbo Zhai
- Brucellosis Institute of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028000, P.R. China.,Department of Immunology, China Medical University, Shenyang, Liaoning 110122, P.R. China.,Brucellosis Prevention and Treatment Engineering Technology Research Center of Inner Mongolia Autonomous Region, Tongliao, Inner Mongolia 028042, P.R. China
| | - Wei Gao
- Brucellosis Institute of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028000, P.R. China.,Brucellosis Prevention and Treatment Engineering Technology Research Center of Inner Mongolia Autonomous Region, Tongliao, Inner Mongolia 028042, P.R. China
| | - Leheng Zhao
- Brucellosis Institute of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028000, P.R. China.,Brucellosis Prevention and Treatment Engineering Technology Research Center of Inner Mongolia Autonomous Region, Tongliao, Inner Mongolia 028042, P.R. China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuefeng Jiang
- Department of Immunology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Changlong Lu
- Brucellosis Institute of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028000, P.R. China.,Department of Immunology, China Medical University, Shenyang, Liaoning 110122, P.R. China.,Brucellosis Prevention and Treatment Engineering Technology Research Center of Inner Mongolia Autonomous Region, Tongliao, Inner Mongolia 028042, P.R. China
| |
Collapse
|