1
|
Ha JS, Kim JW, Lee NK, Paik HD. Antioxidative and immunity-enhancing effects of heat-killed probiotic Enterococcus faecium KU22001 without toxin or antibiotic resistance. Microb Pathog 2024; 195:106875. [PMID: 39173849 DOI: 10.1016/j.micpath.2024.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
This study evaluated the probiotic properties, safety profile, and antioxidative and immune system-enhancing effects of Enterococcus faecium strains isolated from human infant feces. E. faecium KU22001, E. faecium KU22002, and E. faecium KU22005 exhibited potential probiotic properties; however, to eliminate concerns about toxin production and antibiotic resistance, the E. faecium strains were heat-treated prior to experimental usage. E. faecium KU22001 showed the highest antioxidant activity and lowest reactive oxygen species production among the three strains. The immune system-enhancing effects of heat-killed E. faecium strains were evaluated using a nitric oxide assay. E. faecium KU22001 induced an increase in the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, and proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in RAW 264.7 cells. Furthermore, E. faecium KU22001 activated the mitogen-activated protein kinase pathway, which was a key regulator of the immune system. These results demonstrate the potential use of E. faecium KU22001 as a multifunctional food material.
Collapse
Affiliation(s)
- Jun-Su Ha
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jong-Woo Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Mickky B, Elsaka H, Abbas M, Gebreil A, Shams Eldeen R. Orange peel-mediated synthesis of silver nanoparticles with antioxidant and antitumor activities. BMC Biotechnol 2024; 24:66. [PMID: 39334269 PMCID: PMC11428432 DOI: 10.1186/s12896-024-00892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Orange (Citrus sinensis L.) is a common fruit crop widely distributed worldwide with the peel of its fruits representing about 50% of fruit mass. In the current study, orange peel was employed to mediate the synthesis of silver nanoparticles (AgNPs) in a low-cost green approach. Aqueous extracts of suitably-processed peel were prepared using different extraction methods; and their phytochemical profile was identified. Based on phytochemical screening, amount of main phytochemicals, free radical-scavenging ability, reducing power and antioxidant activity, the peel extract prepared by boiling seemed to be the most promising. Thus, major compounds of this extract were identified by gas chromatography-mass spectrometry. Potency of the peel extract to mediate the synthesis of AgNPs was then monitored by visual observation, UV-visible spectroscopy, energy dispersive X-ray analysis, transmission electron microscopy and zetametry. Color change of the reaction mixture to brown and absorption peak at 450 nm indicated AgNPs formation. Characterization of AgNPs revealed spherical shape, size of 30-40 nm, zeta potential of -18.2 mV and yield conversion of 82%. The as-synthesized AgNPs had antioxidant capacity (free radical-scavenging ability, reducing power and antioxidant activity) lower than that of the orange peel extract. However, these biogenic AgNPs had antitumor activity (IC50 of 16 ppm against HCT-116 and 1.6 ppm against HepG2 cell lines) much higher than the peel extract that was completely non-toxic to the considered cell lines.
Collapse
Affiliation(s)
- Bardees Mickky
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Heba Elsaka
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Muhammad Abbas
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Gebreil
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Reham Shams Eldeen
- Botany & Microbiology Department, Faculty of Science, Arish University, Arish, 45511, Egypt
| |
Collapse
|
3
|
Mohabbat M, Arazi H. Effect of resistance training plus enriched probiotic supplement on sestrin2, oxidative stress, and mitophagy markers in elderly male Wistar rats. Sci Rep 2024; 14:7744. [PMID: 38565633 PMCID: PMC10987664 DOI: 10.1038/s41598-024-58462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
This study aimed to determine the effects of resistance training combined with a probiotic supplement enriched with vitamin D and leucine on sestrin2, oxidative stress, antioxidant defense, and mitophagy markers in aged Wistar rats. Thirty-five male rats were randomly assigned to two age groups (old with 18-24 months of age and young with 8-12 weeks of age) and then divided into five groups, including (1) old control (OC: n = 5 + 2 for reserve in all groups), (2) young control (YC: n = 5), (3) old resistance training (OR: n = 5), (4) old resistance training plus supplement (ORS: n = 5), and old supplement group (OS: n = 5). Training groups performed ladder climbing resistance training 3 times per week for 8 weeks. Training intensity was inserted progressively, with values equal to 65, 75, and 85, determining rats' maximal carrying load capacity. Each animal made 5 to 8 climbs in each training session, and the time of each climb was between 12 and 15 s, although the time was not the subject of the evaluation, and the climbing pattern was different in the animals. Old resistance plus supplement and old supplement groups received 1 ml of supplement 5 times per week by oral gavage in addition to standard feeding, 1 to 2 h post training sessions. Forty-eight hours after the end of the training program, 3 ml of blood samples were taken, and all rats were then sacrificed to achieve muscle samples. After 8 weeks of training, total antioxidant capacity and superoxide dismutase activity levels increased in both interventions. A synergistic effect of supplement with resistance training was observed for total antioxidant capacity, superoxide dismutase, and PTEN-induced kinase 1. Sestrin 2 decreased in intervention groups. These results suggest that resistance training plus supplement can boost antioxidant defense and mitophagy while potentially decreasing muscle strength loss.
Collapse
Affiliation(s)
- Majid Mohabbat
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, P.O. Box: 41635-1438, Rasht, Iran
| | - Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, P.O. Box: 41635-1438, Rasht, Iran.
| |
Collapse
|
4
|
Li W, Lim CH, Zhao Z, Wang Y, Conway PL, Loo SCJ. In Vitro Profiling of Potential Fish Probiotics, Enterococcus hirae Strains, Isolated from Jade Perch, and Safety Properties Assessed Using Whole Genome Sequencing. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10244-0. [PMID: 38498111 DOI: 10.1007/s12602-024-10244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
The demands of intensified aquaculture production and escalating disease prevalence underscore the need for efficacious probiotic strategies to enhance fish health. This study focused on isolating and characterising potential probiotics from the gut microbiota of the emerging aquaculture species jade perch (Scortum barcoo). Eighty-seven lactic acid bacteria and 149 other bacteria were isolated from the digestive tract of five adult jade perch. The screening revealed that 24 Enterococcus hirae isolates inhibited the freshwater pathogens Aeromonas sobria and Streptococcus iniae. Co-incubating E. hirae with the host gut suspensions demonstrated a two- to five-fold increase in the size of growth inhibition zones compared to the results when using gut suspensions from tilapia (a non-host), indicating host-specificity. Genome analysis of the lead isolate, E. hirae R44, predicted the presence of antimicrobial compounds like enterolysin A, class II lanthipeptide, and terpenes, which underlay its antibacterial attributes. Isolate R44 exhibited desirable probiotic characteristics, including survival at pH values within the range of 3 to 12, bile tolerance, antioxidant activity, ampicillin sensitivity, and absence of transferable antimicrobial resistance genes and virulence factors commonly associated with hospital Enterococcus strains (IS16, hylEfm, and esp). This study offers a foundation for sourcing host-adapted probiotics from underexplored aquaculture species. Characterisation of novel probiotics like E. hirae R44 can expedite the development of disease mitigation strategies to support aquaculture intensification.
Collapse
Affiliation(s)
- Wenrui Li
- NTU Institute for Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, 61 Nanyang Drive, Singapore, 637335, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chiun Hao Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongtian Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Patricia Lynne Conway
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Centre for Marine Science Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
5
|
Kwun SY, Yoon JA, Kim GY, Bae YW, Park EH, Kim MD. Isolation of a Potential Probiotic Levilactobacillus brevis and Evaluation of Its Exopolysaccharide for Antioxidant and α-Glucosidase Inhibitory Activities. J Microbiol Biotechnol 2024; 34:167-175. [PMID: 38282411 PMCID: PMC10840464 DOI: 10.4014/jmb.2304.04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 01/30/2024]
Abstract
The probiotic properties of ten lactic acid bacteria and antioxidant and α-glucosidase inhibitory activities of the exopolysaccharide (EPS) of the selected strain were investigated in this study. Levilactobacillus brevis L010 was one of the most active strains across all the in vitro tests. The cell-free supernatant (50 g/l) of L. brevis L010 showed high levels of both α-glucosidase inhibitory activity (98.73 ± 1.32%) and 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity (32.29 ± 3.86%). The EPS isolated from cell-free supernatant of L. brevis L010 showed 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activity (80.27 ± 2.51%) at 80 g/l, DPPH radical-scavenging activity (38.19 ± 9.61%) at 40 g/l, and ferric reducing antioxidant power (17.35 ± 0.20 mg/l) at 80 g/l. Further, EPS exhibited inhibitory activities against α-glucosidase at different substrate concentrations. Kinetic analysis suggests that the mode of inhibition was competitive, with a kinetic constant of Km = 2.87 ± 0.88 mM and Vmax = 0.39 ± 0.06 μmole/min. It was concluded that the EPS might be one of the plausible candidates for possible antioxidant and α-glucosidase activities of the L. brevis L010 strain.
Collapse
Affiliation(s)
- Se-Young Kwun
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeong-Ah Yoon
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ga-Yeon Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young-Woo Bae
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun-Hee Park
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myoung-Dong Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Fermentation and Brewing, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
6
|
Pereira N, Farrokhi M, Vida M, Lageiro M, Ramos AC, Vieira MC, Alegria C, Gonçalves EM, Abreu M. Valorisation of Wasted Immature Tomato to Innovative Fermented Functional Foods. Foods 2023; 12:foods12071532. [PMID: 37048352 PMCID: PMC10094284 DOI: 10.3390/foods12071532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
In this study, the lactic fermentation of immature tomatoes as a tool for food ingredient production was evaluated as a circular economy-oriented alternative for valorising industrial tomatoes that are unsuitable for processing and which have wasted away in large quantities in the field. Two lactic acid bacteria (LAB) were assessed as starter cultures in an immature tomato pulp fermentation to produce functional food ingredients with probiotic potential. The first trial evaluated the probiotic character of Lactiplantibacillus plantarum (LAB97, isolated from immature tomato microbiota) and Weissella paramesenteroides (C1090, from the INIAV collection) through in vitro gastrointestinal digestion simulation. The results showed that LAB97 and C1090 met the probiotic potential viability criterion by maintaining 6 log10 CFU/mL counts after in vitro simulation. The second trial assessed the LAB starters’ fermentative ability. Partially decontaminated (110 °C/2 min) immature tomato pulp was used to prepare the individually inoculated samples (Id: LAB97 and C1090). Non-inoculated samples, both with and without thermal treatment (Id: CTR-TT and CTR-NTT, respectively), were prepared as the controls. Fermentation was undertaken (25 °C, 100 rpm) for 14 days. Throughout storage (0, 24, 48, 72 h, 7, and 14 days), all the samples were tested for LAB and Y&M counts, titratable acidity (TA), solid soluble content (SSC), total phenolic content (TPC), antioxidant capacity (AOx), as well as for organic acids and phenolic profiles, and CIELab colour and sensory evaluation (14th day). The LAB growth reached ca. 9 log10 CFU/mL for all samples after 72 h. The LAB97 samples had an earlier and higher acidification rate than the remaining ones, and they were highly correlated to lactic acid increments. The inoculated samples showed a faster and higher decrease rate in their SSC levels when compared to the controls. A nearly two-fold increase (p < 0.05) during the fermentation, over time, was observed in all samples’ AOx and TPC (p < 0.05, r = 0.93; similar pattern). The LAB97 samples obtained the best sensory acceptance for flavour and overall appreciation scores when compared to the others. In conclusion, the L. plantarum LAB97 starter culture was selected as a novel probiotic candidate to obtain a potential probiotic ingredient from immature tomato fruits.
Collapse
Affiliation(s)
- Nelson Pereira
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
| | - Mahsa Farrokhi
- Instituto Superior de Engenharia, Universidade do Algarve, 8005-139 Faro, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global and Sustainability Institute, Faculty of Science and Technology, Universidade do Algarve, Campus de Gambelas, 8005-310 Faro, Portugal
| | - Manuela Vida
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
| | - Manuela Lageiro
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, FCT-UNL, 2829-516 Caparica, Portugal
| | - Ana Cristina Ramos
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, FCT-UNL, 2829-516 Caparica, Portugal
| | - Margarida C. Vieira
- Instituto Superior de Engenharia, Universidade do Algarve, 8005-139 Faro, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global and Sustainability Institute, Faculty of Science and Technology, Universidade do Algarve, Campus de Gambelas, 8005-310 Faro, Portugal
| | - Carla Alegria
- cE3c—Centre for Ecology, Evolution and Environmental Changes, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Elsa M. Gonçalves
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, FCT-UNL, 2829-516 Caparica, Portugal
| | - Marta Abreu
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| |
Collapse
|
7
|
Dynamic Analysis of the Bacterial Community and Determination of Antioxidant Capacity during the Fermentation of Sour Tea. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The imbalance of the redox state caused by extra reactive oxygen species is closely related to many diseases. Therefore, it is necessary for people to ingest antioxidants through food. The safety of some synthetic antioxidants has been questioned. In this context, it is worth exploring natural and safe antioxidants from biological sources. Tea has good antioxidant activity, and the antioxidant activity of fermented sour tea is better than that of other types. It is necessary to clarify the antioxidant capacity of sour tea during fermentation, as well as the microbial community and its sources. Nonculture and culture-dependent methods were adopted to track the changes in the microbial population and community structure during the fermentation of sour tea. Sequence analysis of 16S rRNA gene amplification revealed significant differences in community complexity and structure at different fermentation times. The highest proportion of operational taxonomic units (OTU s) in all samples was Latilactobacillus, which was determined to be Lactiplantibacillus plantarum by further analysis. The second highest proportion of OTUs was Enterobacter. With the fermentation of sour tea, the antioxidant capacity increased, and all isolated Lb. plantarum had good DPPH clearance rates. Our findings suggest that Lb. plantarum plays a crucial role in the fermentation process of sour tea. The possibility of discovering new antioxidants was provided by the determination of the antioxidant capacity and bacterial community during the fermentation of sour tea.
Collapse
|
8
|
Growth Kinetics of Lactobacillus plantarum in Sesame Seed Protein Extract Media. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Cinar A, Altuntas S, Demircan H, Dundar AN, Taner G, Oral RA. Encapsulated black garlic: Comparison with black garlic extract in terms of physicochemical properties, biological activities, production efficiency and storage stability. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Flavor and Functional Analysis of Lactobacillus plantarum Fermented Apricot Juice. FERMENTATION 2022. [DOI: 10.3390/fermentation8100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The small white apricot is a juicy, delicious fruit with a short shelf life. Slight fermentation can significantly promote the flavors and nutrient value of apricot juice. This study used high-performance liquid chromatography (HPLC) and headspace solid-phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME-GC-MS) to examine the physicochemical properties, nutritive value and flavor substances of apricot juice fermented by Lactobacillus plantarum LP56. Fermentation significantly increased lactic acid bacteria (LAB) and their product lactic acid, adding probiotic benefits to fermented apricot juice. In addition, the total phenolic compounds and antioxidant capacity increased, while the levels of soluble solids and organic acids decreased. Gallic acid, 3-caffeoylquinic acid and rutin mainly contributed to the antioxidant activity of fermented apricot juice. Alcohols, aldehyde, acid, ester, etc., were the main volatile compounds. Among the flavors, 12 substances with high odor activity values (OAV > 1) were the key aroma-producing compounds with fruit, pine and citrus flavors. In conclusion, this study shows that L. plantarum LP56 fermentation can improve the nutritional value and aroma characteristics of apricot juice.
Collapse
|
11
|
Ben Farhat L, Aissaoui N, Torrijos R, Luz C, Meca G, Abidi F. Correlation between metabolites of lactic acid bacteria isolated from dairy traditional fermented Tunisian products and antifungal and antioxidant activities. J Appl Microbiol 2022; 133:3069-3082. [PMID: 35924966 DOI: 10.1111/jam.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
AIMS The objective of this study is to identify and investigate the antifungal and antioxidant potential of lactic acid bacteria (LAB) isolated from traditional fermented products. METHODS AND RESULTS In this work, a collection of LAB was isolated from traditional fermented products collected in four Tunisian regions. After first screening using the overlay method, seven bacterial strains were retained due to their high antifungal effect. Four strains of Limosilactobacillus fermentum were identified, one strain of Lacticaseibacillus paracasei, one strain of Lacticaseibacillus rhamnosus and one strain of Enterococcus faecium. The antifungal as well as the antioxidant potential of these bacteria were then evaluated. Bacterial strains were effective against six fungal strains with a minimum inhibitory concentrations ranging from 25 to 100 mg/mL and a minimum fungicidal concentrations ranging from 50 to 200 mg/mL. Cell free supernatants of LAB were analyzed by HPLC-DAD and LC-MS-qTOF-MS analysis. Results showed significant production of organic acids as well as several phenolic compounds. Correlation analysis confirmed that PLA and 1,2-Dihydroxybenzene were positively correlated with antifungal potential. The results of the antioxidant activity highlighted an ABTS radical cation scavenging activity ranging from 49% to 57% and a DPPH trapping percentage ranging from 80% to 97%. CONCLUSIONS Therefore, due to these characteristics, identified lactic acid bacteria strains have shown their effectiveness to perform as antifungal and antioxidant agents. SIGNIFICANCE AND IMPACT OF THE STUDY Since microbial contamination is at the root of extensive losses in the food sector, the identified strains or their metabolites can potentially be used as additives to limit microorganism spoilage in food products and increase their shelf life.
Collapse
Affiliation(s)
- Leila Ben Farhat
- University of Carthage, INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080 Cedex, Tunisia.,University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Neyssene Aissaoui
- University of Carthage, INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080 Cedex, Tunisia
| | - Raquel Torrijos
- University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Carlos Luz
- University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Giuseppe Meca
- University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Ferid Abidi
- University of Carthage, INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080 Cedex, Tunisia
| |
Collapse
|
12
|
Characterization of metabolites of elderberry juice fermented by Lactobacillus bulgaricus BNCC336436 and Streptococcus thermophilus ABT-T using LC–MS/MS. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Kumar M, Karthika S, Anjitha N, Varalakshmi P, Ashokkumar B. Screening for probiotic attributes of lactic acid bacteria isolated from human milk and evaluation of their anti-diabetic potentials. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2092494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Manoj Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sukumaran Karthika
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | |
Collapse
|
14
|
Selection of Lactiplantibacillus Strains for the Production of Fermented Table Olives. Microorganisms 2022; 10:microorganisms10030625. [PMID: 35336200 PMCID: PMC8956003 DOI: 10.3390/microorganisms10030625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/07/2022] Open
Abstract
Lactiplantibacillus strains (n. 77) were screened for technological properties (e.g., xylose fermentation, EPS production, antimicrobial activity, tolerance to NaCl and phenolic compounds, oleuropein degradation and hydroxytyrosol formation) relevant for the production of fermented table olives. Survival to olive mill wastewater (OMW) and to simulated gastro-intestinal tract (GIT), the capability to grow at different combinations of NaCl and pH values, radical scavenging activities and biofilm formation were further investigated in 15 selected strains. The screening step revealed high diversity among Lactiplantibacillus strains. Most of the strains were able to ferment xylose, while only a few strains produced EPS and had inhibitory activity against Y. lipolytica. Resistance to phenolic compounds (gallic, protocatechuic, hydroxybenzoic and syringic acids), as well as the ability to release hydroxytyrosol from oleuropein, was strain-specific. OMWs impaired the survival of selected strains, while combinations of NaCl ≤ 6% and pH ≥ 4.0 were well tolerated. DPPH and hydroxyl radical degradation were strain-dependent, while the capability to form biofilm was affected by incubation time. Strains were very tolerant to the GIT. The genome of Lpb. pentosus O17 was sequenced and analysed to verify the presence of genes involved in the degradation and metabolism of phenolic compounds. O17 lacks carboxylesterase and gallate decarboxylase (subunits B and D) sequences, and its gene profile differs from that of other publicly available Lpb. pentosus genomes.
Collapse
|
15
|
Lee NK, Han KJ, Park H, Paik HD. Effects of the Probiotic Lactiplantibacillus plantarum KU15120 Derived from Korean Homemade Diced-Radish Kimchi Against Oxidation and Adipogenesis. Probiotics Antimicrob Proteins 2022; 15:728-737. [PMID: 35031967 DOI: 10.1007/s12602-021-09885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Intestinal microflora can influence abnormal adipocyte growth. Therefore, this study was aimed to investigate the probiotic properties and antioxidant and antiobesity effects of isolated strains from homemade kimchi. Among the isolated strains, Lactiplantibacillus plantarum KU15120 showed high tolerance to artificial gastric juice and bile salt conditions, high adhesion to HT-29 cells, nonproduction of β-glucuronidase, nonhemolysis, and acceptable resistance to antibiotics. It showed high antioxidant activity, including DPPH and ABTS radical scavenging and antioxidant activity, as determined by the β-carotene bleaching assay. Oil red O staining and intracellular triglyceride levels revealed reduced lipid accumulation, which confirmed the anti-adipogenic activity of L. plantarum KU15120. In addition, the expression levels of fatty acid synthase, CCAAT/enhance-binding protein α, and peroxisome proliferator-activated receptor γ, were significantly lower in the probiotic-treated group than in the control group. These results suggest that L. plantarum KU15120 has probiotic properties, antioxidant, and antiobesity effects and could be used as a therapeutic probiotics.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea.,WithBio Inc, Seoul, 05029, Republic of Korea
| | - Kyoung Jun Han
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hoon Park
- Department of Food Science, Sun Moon University, Asan, 31460, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
16
|
Selected Kefir Water from Malaysia Attenuates Hydrogen Peroxide-Induced Oxidative Stress by Upregulating Endogenous Antioxidant Levels in SH-SY5Y Neuroblastoma Cells. Antioxidants (Basel) 2021; 10:antiox10060940. [PMID: 34200854 PMCID: PMC8230435 DOI: 10.3390/antiox10060940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/27/2023] Open
Abstract
Kefir, a fermented probiotic drink was tested for its potential anti-oxidative, anti-apoptotic, and neuroprotective effects to attenuate cellular oxidative stress on human SH-SY5Y neuroblastoma cells. Here, the antioxidant potentials of the six different kefir water samples were analysed by total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), and 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) assays, whereas the anti-apoptotic activity on hydrogen peroxide (H2O2) induced SH-SY5Y cells was examined using MTT, AO/PI double staining, and PI/Annexin V-FITC assays. The surface and internal morphological features of SH-SY5Y cells were studied using scanning and transmission electron microscopy. The results indicate that Kefir B showed the higher TPC (1.96 ± 0.54 µg GAE/µL), TFC (1.09 ± 0.02 µg CAT eq/µL), FRAP (19.68 ± 0.11 mM FRAP eq/50 µL), and DPPH (0.45 ± 0.06 mg/mL) activities compared to the other kefir samples. The MTT and PI/Annexin V-FITC assays showed that Kefir B pre-treatment at 10 mg/mL for 48 h resulted in greater cytoprotection (97.04%), and a significantly lower percentage of necrotic cells (7.79%), respectively. The Kefir B pre-treatment also resulted in greater protection to cytoplasmic and cytoskeleton inclusion, along with the conservation of the surface morphological features and the overall integrity of SH-SY5Y cells. Our findings indicate that the anti-oxidative, anti-apoptosis, and neuroprotective effects of kefir were mediated via the upregulation of SOD and catalase, as well as the modulation of apoptotic genes (Tp73, Bax, and Bcl-2).
Collapse
|
17
|
Microbiological and Chemical Properties of Chokeberry Juice Fermented by Novel Lactic Acid Bacteria with Potential Probiotic Properties during Fermentation at 4 °C for 4 Weeks. Foods 2021; 10:foods10040768. [PMID: 33916805 PMCID: PMC8065681 DOI: 10.3390/foods10040768] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
On the frame of this research survey, a novel potentially probiotic strain (Lactobacillus paracasei SP5) recently isolated from kefir grains was evaluated for chokeberry juice fermentation. Chokeberry juice was retrieved from the variety Aronia melanocarpa, a plant known to provide small, dark berries and to be one of the richest sources of antioxidants. The juice was subsequently fermented inoculating L. paracasei SP5 for 48 h at 30 °C. The fermented juices were left at 4 °C and tested regarding microbiological and physicochemical characteristics for 4 weeks. The potentially probiotic strain was proved capable of performing lactic acid fermentation at 30 °C. Cell viability of L. paracasei was detected in high levels during fermentation and the whole storage period, while the fermented juice showed higher levels of viability in juice with 40.3 g/L of initial sugar concentration. No ethanol was detected in the final fermented juice. Fermented chokeberry juice was characterized by aromatic desirable volatiles, which were retained in adequate levels for the whole storage period. Specifically, the occurrence of organic esters detected in fermented juices is considered as positive evidence of the provision of fruity and floral notes to the final product. During storage, total phenolics content and antioxidant activity were observed in higher levels in fermented chokeberry juice compared with non-fermented juice. Subsequently, fermentation of chokeberry juice by potentially probiotic lactic acid bacteria could provide high industrialization potential, providing the market with a nutritional beverage of good volatile quality with an enhanced shelf-life compared with an unfermented fresh juice.
Collapse
|
18
|
Long X, Sun F, Wang Z, Liu T, Gong J, Kan X, Zou Y, Zhao X. Lactobacillus fermentum CQPC08 protects rats from lead-induced oxidative damage by regulating the Keap1/Nrf2/ARE pathway. Food Funct 2021; 12:6029-6044. [PMID: 34037025 DOI: 10.1039/d1fo00589h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this experiment, Lactobacillus fermentum CQPC08 (LF-CQPC08) isolated from traditionally fermented pickles was used to study its mitigation effect on lead acetate-induced oxidative stress and lead ion adsorption capacity in rats. In vitro experiments showed that the survival rate in artificial gastric juice and the growth efficiency in artificial bile salt of LF-CQPC08 was 93.6% ± 2.2% and 77.2% ± 0.8%, and the surface hydrophobicity rate was 45.5% ± 0.3%. The scavenging rates of hydroxyl radical, superoxide anion, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) were 47.8% ± 0.9%, 63.9% ± 1.2%, and 83.6% ± 1.5%, respectively, and the reduction power was 107.3 ± 2.8 μmol L-1. LF-CQPC08 could not only adsorb 76.9% ± 1.0% lead ions in aqueous solution but also reduce the lead content in serum, liver, kidneys, and brain tissue of Sprague-Dawley (SD) rats, as well as maintain the cell structure and tissue state of the liver and kidneys. In addition, by examining the indicators of inflammation and oxidation in the serum, liver, and kidneys of SD rats, we found that LF-CQPC08 can reduce the proinflammatory factors interleukin (IL)-1 beta (1β), IL-6, tumor necrosis factor alpha, and interferon gamma in the body, increase the level of anti-inflammatory factor IL-10, enhance the activity of antioxidant enzymes such as superoxide dismutase and catalase and glutathione levels in serum and organ tissues, and reduce the production of reactive oxygen species and accumulation of lipid peroxide malondialdehyde. LF-CQPC08 can also activate the Keap1/Nrf2/ARE signaling pathway to promote high-level expression of the downstream antioxidants heme oxygenase 1 (HO-1), NAD(P)H : quinone oxidoreductase 1 (NQO1), and γ-glutamylcysteine synthetase (γ-GCS). As food-grade lactic acid bacteria, LF-CQPC08 has great potential and research value in removing heavy metals from food and alleviating the toxicity of heavy metals in the future.
Collapse
Affiliation(s)
- Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China. and Department of Food Science and Biotechnology, Cha University, Seongnam 13488, South Korea
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Zhiying Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, P.R. China
| | - Tongji Liu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China.
| | - Jianjun Gong
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China.
| | - Xuemei Kan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China.
| | - Yujie Zou
- Department of Emergency, Chongqing University Central Hospital, Chongqing 400014, P.R. China.
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China.
| |
Collapse
|
19
|
Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem 2020; 332:127382. [DOI: 10.1016/j.foodchem.2020.127382] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 01/12/2023]
|
20
|
Riani CR, Nuraida L, Meryandini A. ISOLASI BAKTERI ASAM LAKTAT ASAL JUS NANAS SEBAGAI KANDIDAT PROBIOTIK. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2020. [DOI: 10.6066/jtip.2020.31.2.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lactic acid bacteria (LAB) are the main group of probiotic bacteria that widely used in fruit juice fermentation products. Fruit juice contains antioxidants that can prevent free radicals. The objective of this study was to identify LAB isolated from pineapple juice that possess probiotic properties and to analyze the antioxidant activity of pineapple juice after being fermented with the LAB. LAB isolates from pineapple juice were evaluated for their probiotic properties (tolerance to acidic conditions and bile salts, antimicrobial activity against pathogenic bacteria, and sensitivity to antibiotics) and their adherence properties (autoaggregation, coaggregation, and hydrophobicity). The best isolates obtained are then inoculated into pineapple juice. From 5 types of pineapple juice, 5 isolates with LAB characteristics were obtained, i.e NHC6, NHC7, NHC8, NHC9, and NPC1. Isolate NHC6 had a good tolerance to acidic conditions (pH 2) and 0,5% bile salt, had antimicrobial activity, was sensitive to ampicillin, showed the best adherance properties and was identified as Lactobacillus plantarum. L. plantarum NHC6 was then added to pineapple juice. Addition of L. plantarum NHC6 to pineapple juice reduced the ᵒBrix and pH values during incubation. After 24 hours of incubation, the antioxidant activity was 89,05%, with LAB growth of 8,33 log CFU/mL, thus 24 hours incubation was considered the best fermentation time for pineapple juice.
Collapse
|
21
|
Bolek S. Olive stone powder: A potential source of fiber and antioxidant and its effect on the rheological characteristics of biscuit dough and quality. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102423] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Han KJ, Lee JE, Lee NK, Paik HD. Antioxidant and Anti-Inflammatory Effect of Probiotic Lactobacillus plantarum KU15149 Derived from Korean Homemade Diced-Radish Kimchi. J Microbiol Biotechnol 2020; 30:591-598. [PMID: 32238771 PMCID: PMC9728282 DOI: 10.4014/jmb.2002.02052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lactobacillus plantarum KU15149 was demonstrated to have probiotic behavior and functions, including antioxidant and anti-inflammatory activity. L. plantarum KU15149 obtained from homemade diced-radish kimchi has a high survival rate under artificial gastric acid (pH 2.5, 0.3% pepsin) and bile salt (0.3% oxgall) conditions. However, L. plantarum KU15149 did not produce β-glucuronidase, which is known to be a carcinogenic enzyme with resistance to several antibiotics, such as gentamycin, kanamycin, streptomycin, tetracycline, and ciprofloxacin. L. plantarum KU15149 strongly adhered to HT-29 cells and had high antioxidant activity in terms of 2,2-diphenyl- 1-picrylhydrazyl (DPPH) free radical-scavenging and β-carotene bleaching assays. L. plantarum KU15149 also exhibited a pronounced inhibition of nitric oxide (NO) production, along with expression of nitric oxide synthase (iNOS) and cyclooxygenase -2 (COX-2) as well as proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6, when RAW 264.7 cells were stimulated with LPS. Therefore, L. plantarum KU15149 exhibited pharmaceutical functionality as a potential probiotic.
Collapse
Affiliation(s)
- Kyoung Jun Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji-Eun Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-2049-6011 Fax: +82-2-455-3082 E-mail:
| |
Collapse
|
23
|
Jung J, Kim S, Lee JY, Yoon S, You S, Kim SH. Multifunctional properties of Lactobacillus plantarum strains WiKim83 and WiKim87 as a starter culture for fermented food. Food Sci Nutr 2019; 7:2505-2516. [PMID: 31428338 PMCID: PMC6694436 DOI: 10.1002/fsn3.1075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
This study aimed to evaluate the safety (hemolysis and enzyme activity), probiotic properties (gastrointestinal tract tolerance, adhesion, hydrophobicity, and auto-aggregation), and functional characteristics (antimicrobial, antioxidant, and β-galactosidase activities) of lactic acid bacteria (LAB), isolated from kimchi, in order to select a multifunctional LAB strain for starter culture in fermented food. The five isolated strains included Lactobacillus plantarum WiKim83, L. plantarum WiKim84, Pediococcus pentosaceus WiKim85, P. pentosaceus WiKim86, and L. plantarum WiKim87, as identified by 16S rRNA gene sequence analysis; they were confirmed to be nonhemolytic and not able to produce β-glucuronidase, a carcinogenic enzyme. Probiotic properties of the five LAB strains were evaluated relative to those of commercial Lactobacillus rhamnosus GG, and results revealed probiotic potential of three strains (L. plantarum WiKim83, L. plantarum WiKim84, and L. plantarum WiKim87) to be superior. L. plantarum WiKim84 showed high antimicrobial activity against pathogens, and L. plantarum WiKim83 exhibited the highest antioxidant and β-galactosidase activities. Based on the probiotic and functional properties, the main characteristics of each strain were highlighted and two of them, L. plantarum WiKim83 and L. plantarum WiKim87, were selected as the most potent by principal component analysis. These strains showed antimicrobial, β-galactosidase, and antioxidant activities, which recommend their suitability as starter culture in various fermented foods.
Collapse
Affiliation(s)
- Ji‐Hye Jung
- Hygienic Safety and Analysis CenterWorld Institute of KimchiGwangjuKorea
| | - Su‐Ji Kim
- Hygienic Safety and Analysis CenterWorld Institute of KimchiGwangjuKorea
| | - Jae Yong Lee
- Hygienic Safety and Analysis CenterWorld Institute of KimchiGwangjuKorea
| | - So‐Ra Yoon
- Hygienic Safety and Analysis CenterWorld Institute of KimchiGwangjuKorea
| | - Su‐Yeon You
- Hygienic Safety and Analysis CenterWorld Institute of KimchiGwangjuKorea
| | - Sung Hyun Kim
- Hygienic Safety and Analysis CenterWorld Institute of KimchiGwangjuKorea
| |
Collapse
|
24
|
Mustafa SM, Chua LS, El-Enshasy HA. Effects of Agitation Speed and Kinetic Studies on Probiotication of Pomegranate Juice with Lactobacillus casei. Molecules 2019; 24:E2357. [PMID: 31247970 PMCID: PMC6651325 DOI: 10.3390/molecules24132357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
The issues of lactose intolerance and vegetarianism have encouraged the introduction of non-dairy fermented food into the market. Therefore, this study aims to evaluate the effect of agitation speed on the bioactive compounds and functional characteristics of probioticated pomegranate juice. Pomegranate juice was fermented with Lactobacillus casei at different agitation speeds ranging from 0 (microaerophilic) to 150 rpm at 37 °C. The functional properties of probioticated pomegranate juice were evaluated in terms of growth (biomass), lactic acid production, antioxidant activity, total phenolic content, and key metabolites using LC-MS/MS. The growth kinetics of fermentation was monitored at the optimal condition using one factor at a time method. High cell growth (3.58 × 1010 cfu/mL or 7.9 gL-1) was observed for L. casei probioticated pomegranate juice agitated at 0 rpm. The findings of this study reveal the potential of pomegranate juice as a medium for L. casei cultivation without nutrient supplementation. The improvement of antioxidant activity in the probioticated juice could be due to the increment of quercetin-3-glucoside. Therefore, L. casei grew well in pomegranate juice with a high cell viability and antioxidant activity at a non-agitated condition. Probioticated pomegranate juice is a potentially functional drink.
Collapse
Affiliation(s)
- Siti Marhaida Mustafa
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia
| | - Lee Suan Chua
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia.
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia.
| | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
25
|
Markkinen N, Laaksonen O, Nahku R, Kuldjärv R, Yang B. Impact of lactic acid fermentation on acids, sugars, and phenolic compounds in black chokeberry and sea buckthorn juices. Food Chem 2019; 286:204-215. [PMID: 30827597 DOI: 10.1016/j.foodchem.2019.01.189] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 11/25/2022]
Abstract
The aim of this research was to study the potential of malolactic fermentation to modify the composition of the juices of sea buckthorn, chokeberry and lingonberry. Juices were prepared with and without pectinolytic enzyme treatment, followed by fermentation with commercially available strains of Lactobacillus plantarum, originally isolated from fermented plant materials. The juices before and after the fermentation were analyzed with GC-FID, HPLC-DAD, and HPLC-MS. Enzyme treatment significantly increased the phenolic content in the juices by 11-50%. None of strains showed ability to ferment lingonberry juice. On the other hand, L. plantarum DSM 10492 and DSM 20174 converted all malic acid to lactic acid in sea buckthorn and chokeberry juices, respectively. Fermentation with DSM 10492 reduced the content of flavonols by 9-14% and hydroxycinnamic acids by 20-24% in chokeberry juice. Flavonol glycosides and sugars in sea buckthorn as well as anthocyanins in chokeberry remained unaffected by the fermentation.
Collapse
Affiliation(s)
- N Markkinen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - O Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - R Nahku
- Center of Food and Fermentation Technologies (CFFT), EE-12618 Tallinn, Estonia.
| | - R Kuldjärv
- Center of Food and Fermentation Technologies (CFFT), EE-12618 Tallinn, Estonia.
| | - B Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland.
| |
Collapse
|
26
|
Son SH, Yang SJ, Jeon HL, Yu HS, Lee NK, Park YS, Paik HD. Antioxidant and immunostimulatory effect of potential probiotic Lactobacillus paraplantarum SC61 isolated from Korean traditional fermented food, jangajji. Microb Pathog 2018; 125:486-492. [DOI: 10.1016/j.micpath.2018.10.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023]
|
27
|
Bah A, Ferjani R, Fhoula I, Gharbi Y, Najjari A, Boudabous A, Ouzari HI. Microbial community dynamic in tomato fruit during spontaneous fermentation and biotechnological characterization of indigenous lactic acid bacteria. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1385-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
28
|
Yang SJ, Lee JE, Lim SM, Kim YJ, Lee NK, Paik HD. Antioxidant and immune-enhancing effects of probiotic Lactobacillus plantarum 200655 isolated from kimchi. Food Sci Biotechnol 2018; 28:491-499. [PMID: 30956861 DOI: 10.1007/s10068-018-0473-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Probiotic properties including antioxidant and immune-enhancing effects of Lactobacillus plantarum 200655 isolated from kimchi were evaluated. The tolerance of three strains (L. plantarum 200655, L. plantarum KCTC 3108, and L. rhamnosus GG to bile salts (0.3% oxgall, 24 h) was similar, and L. plantarum 200655 showed the highest tolerance to gastric juice (0.3% pepsin, 3 h). All strains presented similar autoaggregation ability. L. plantarum 200655 showed higher cell surface hydrophobicity and adhesion ability on HT-29 cells. L. plantarum 200655 did not produce β-glucuronidase and was sensitive to ampicillin, tetracycline, chloramphenicol, and doxycycline. Additionally, L. plantarum 200655 showed the highest antioxidant effects in DPPH and ABTS radical scavenging, and β-carotene bleaching assays. RAW 264.7 cells treated with L. plantarum 200655 produced more nitric oxide, induced nitric oxide synthase, and cytokine related to immune-enhancing effects such as interleukin-1β and interleukin-6. Therefore, L. plantarum 200655 could be useful as a probiotic strain for older people.
Collapse
Affiliation(s)
- Seo-Jin Yang
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Ji-Eun Lee
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Sung-Min Lim
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Yu-Jin Kim
- Korean Culture Center of Microorganisms, Seoul, 03641 Republic of Korea
| | - Na-Kyoung Lee
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
29
|
Kwaw E, Ma Y, Tchabo W, Apaliya MT, Wu M, Sackey AS, Xiao L, Tahir HE. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem 2018; 250:148-154. [PMID: 29412905 DOI: 10.1016/j.foodchem.2018.01.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/30/2017] [Accepted: 01/01/2018] [Indexed: 01/08/2023]
Abstract
This study was conducted to investigate the effect of lactic acid bacteria (LAB) strains on color properties, phenolic profile and antioxidant activities of mulberry juice. Mulberry juice was separately fermented at 37 °C for 36 h using Lactobacillus plantarum, Lactobacillus acidophilus and Lactobacillus paracasei. The results showed that lactic acid fermentation impacted on the color of the juice. Moreover, the study demonstrated that LABs impacted on the phenolic profile of the juice. Syringic acid, cyanidin-3-O-rutinoside and quercetin were the predominant phenolic acid, anthocyanin and flavonol respectively in the lactic-acid-fermented mulberry juice. The degree of radical scavenging activity was species-specific with the L. plantarum fermented juice having the highest radical scavenging activities. The correlation analysis demonstrated that flavonols and anthocyanins were mostly responsible for the increased in 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity while phenolic acids and flavonols were responsible for 2,2-diphenyl-1-picrylhydrazyl scavenging activity and reducing power capacity of the fermented juice.
Collapse
Affiliation(s)
- Emmanuel Kwaw
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China; School of Applied Sciences and Arts, Cape Coast Technical University, P. O. Box AD50, Cape Coast, Ghana
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China.
| | - William Tchabo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Maurice Tibiru Apaliya
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Meng Wu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Augustina Sackle Sackey
- School of Applied Sciences and Arts, Cape Coast Technical University, P. O. Box AD50, Cape Coast, Ghana
| | - Lulu Xiao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haroon Elrasheid Tahir
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| |
Collapse
|
30
|
Son SH, Jeon HL, Jeon EB, Lee NK, Park YS, Kang DK, Paik HD. Potential probiotic Lactobacillus plantarum Ln4 from kimchi: Evaluation of β-galactosidase and antioxidant activities. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Improvement of the Antioxidant Activity of Fenugreek Protein Isolates by Lactococcus lactis Fermentation. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9636-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Ding W, Wang L, Zhang J, Ke W, Zhou J, Zhu J, Guo X, Long R. Characterization of antioxidant properties of lactic acid bacteria isolated from spontaneously fermented yak milk in the Tibetan Plateau. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Mechmeche M, Kachouri F, Ksontini H, Hamdi M. Production of bioactive peptides from tomato seed isolate by Lactobacillus plantarum fermentation and enhancement of antioxidant activity. FOOD BIOTECHNOL 2017. [DOI: 10.1080/08905436.2017.1302888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Manel Mechmeche
- National Institute of Applied Sciences and Technology (INSAT), Laboratory of Microbial Ecology and Technology (LETMI), Tunis, Tunisia
- Superior School of Food Industry at Tunis (ESIAT), Tunis, Tunisia
| | - Faten Kachouri
- National Institute of Applied Sciences and Technology (INSAT), Laboratory of Microbial Ecology and Technology (LETMI), Tunis, Tunisia
- Superior School of Food Industry at Tunis (ESIAT), Tunis, Tunisia
| | - Hamida Ksontini
- National Institute of Applied Sciences and Technology (INSAT), Laboratory of Microbial Ecology and Technology (LETMI), Tunis, Tunisia
- Superior School of Food Industry at Tunis (ESIAT), Tunis, Tunisia
| | - Moktar Hamdi
- National Institute of Applied Sciences and Technology (INSAT), Laboratory of Microbial Ecology and Technology (LETMI), Tunis, Tunisia
- Superior School of Food Industry at Tunis (ESIAT), Tunis, Tunisia
| |
Collapse
|
34
|
Mechmeche M, Kachouri F, Yaghlane HB, Ksontini H, Setti K, Hamdi M. Kinetic analysis and mathematical modeling of growth parameters of Lactobacillus plantarum in protein-rich isolates from tomato seed. FOOD SCI TECHNOL INT 2016; 23:128-141. [DOI: 10.1177/1082013216665706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of the present study was to evaluate the applicability of using protein-rich isolates from tomato seed as a sole source of nutrition for the growth of lactic acid bacteria. Unstructured mathematical and logistic models were proposed to describe growth, pH drop, lactic acid production and nutriment consumption by Lactobacillus plantarum in whole and defatted isolates in order to compare their suitability for the production of a fermented beverage. These media have considerable good quantities of nutriment that allowed the growth of L. plantarum, after which the cell numbers begin to decline. The maximum biomass was observed in defatted isolate (1.42 g L−1) followed by the whole isolate (1.24 g L−1). The lactic acid increased by about 5.5 and 6.5 times respectively in whole and defatted protein isolates. However, significant nutriment consumption occurred during the growth phase as well as stationary phase. A reduction of 61.90% and 95.88% in sugar content, as well as 21.91% and 16.93% reduction in protein content were observed respectively in whole and defatted isolates. In most cases, the proposed models adequately describe the biochemical changes taking place during fermentation and are a promising approach for the formulation of tomato seed-based functional foods.
Collapse
Affiliation(s)
- Manel Mechmeche
- Laboratory of Microbial Ecology and Technology (LETMI), National Institute of Applied Sciences and Technology (INSAT), Tunis, Tunisia
- Superior School of Food Industry at Tunis (ESIAT), Tunis, Tunisia
| | - Faten Kachouri
- Laboratory of Microbial Ecology and Technology (LETMI), National Institute of Applied Sciences and Technology (INSAT), Tunis, Tunisia
- Superior School of Food Industry at Tunis (ESIAT), Tunis, Tunisia
| | - Hana B Yaghlane
- Research Unity of Bio-conservation and Enhancement of Agro-food Products, Superior School of Food Industry at Tunis (ESIAT), Tunis, Tunisia
| | - Hamida Ksontini
- Laboratory of Microbial Ecology and Technology (LETMI), National Institute of Applied Sciences and Technology (INSAT), Tunis, Tunisia
- Superior School of Food Industry at Tunis (ESIAT), Tunis, Tunisia
| | - Khaoula Setti
- Laboratory of Microbial Ecology and Technology (LETMI), National Institute of Applied Sciences and Technology (INSAT), Tunis, Tunisia
- Superior School of Food Industry at Tunis (ESIAT), Tunis, Tunisia
| | - Moktar Hamdi
- Laboratory of Microbial Ecology and Technology (LETMI), National Institute of Applied Sciences and Technology (INSAT), Tunis, Tunisia
- Superior School of Food Industry at Tunis (ESIAT), Tunis, Tunisia
| |
Collapse
|