1
|
Li Y, Wan Y, Wang J, Zhang X, Leng Y, Wang T, Liu W, Wei C. Investigation of the oxidation rules and oxidative stability of seabuckthorn fruit oil during storage based on lipidomics and metabolomics. Food Chem 2025; 476:143238. [PMID: 39977978 DOI: 10.1016/j.foodchem.2025.143238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Seabuckthorn fruit oil (SBFO) is recognized for its high nutritional value, yet it remains highly prone to oxidation during storage. The changes in its primary components and micronutrient molecules during storage have not been thoroughly investigated. This study employed untargeted lipidomics and metabolomics to dynamically monitor alterations in lipid composition and metabolites of SBFO over 30 days of accelerated storage. Lipidomics analysis revealed an increase in TGs and oxidized fatty acids, while sphingolipids, glycerophospholipids, and total lipid content showed significant reductions (p < 0.05). After 30 days, metabolomics combined with bioinformatics analysis identified 13 critical pathways, with linoleic acid metabolism consistently associated with SBFO oxidation. Key oxidation products included 9(S)-HpODE, 9,10,13-TriHOME, and 9,10-DHOME. This study provides potential targets for developing endogenous antioxidants in SBFO and offers new perspectives on the oxidation mechanisms of edible oils.
Collapse
Affiliation(s)
- Yazhuan Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China
| | - Yilai Wan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China
| | - Jing Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China
| | - Xu Zhang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China
| | - Yuanyuan Leng
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China
| | - Ting Wang
- Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, Uygur Autonomous Region, PR China
| | - Wenyu Liu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China
| | - Changqing Wei
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, Uygur Autonomous Region, PR China.
| |
Collapse
|
2
|
Lai L, Xin R, Cui T. Gene editing technology combined with response surface optimization to improve the synthesis ability of lycopene in Pantoea dispersa MSC14. J Appl Microbiol 2024; 135:lxae272. [PMID: 39479795 DOI: 10.1093/jambio/lxae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
AIM The aim of this study is to engineer Pantoea dispersa MSC14 into a strain capable of producing lycopene and to enhance its lycopene content. METHODS AND RESULTS Our laboratory isolated the strain P. dispersa MSC14 from petroleum-contaminated soil in a mining area. Whole-genome sequencing confirmed the existence of a carotenoid synthesis pathway in this strain. This study employed an optimized CRISPR/Cas9 system to perform a traceless gene knockout of the lycopene cyclase gene crtY and to overexpress the octahydrolycopene dehydrogenase gene crtI in the P. dispersa MSC14. This strategic genetic modification successfully constructed the lycopene-producing strain MSC14-LY, which exhibited a notable lycopene content with a biomass productivity of 553 μg of lycopene per gram dry cell weight (DCW). Additionally, the components of the lycopene fermentation medium were optimized using Plackett-Burman design and response surface methodology. The average lycopene content was increased to 5.13 mg g -1 DCW in the optimized LY fermentation medium. Through genetic engineering, P. dispersa MSC14 was transformed into a strain capable of producing lycopene, achieving a yield of 5.13 mg g-1 DCW after medium optimization. CONCLUSIONS Genetic engineering successfully transformed P. dispersa MSC14 into a strain capable of producing lycopene, achieving a yield of 5.13 mg g-1 DCW after medium optimization.
Collapse
Affiliation(s)
- La Lai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District,Guangzhou 510006, China
| | - Run Xin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District,Guangzhou 510006, China
| | - Tangbing Cui
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District,Guangzhou 510006, China
| |
Collapse
|
3
|
Li Z, Yu F. Recent Advances in Lycopene for Food Preservation and Shelf-Life Extension. Foods 2023; 12:3121. [PMID: 37628120 PMCID: PMC10453541 DOI: 10.3390/foods12163121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, there has been increasing concern about the safety of additives used to extend the shelf-life of food products. As a result, lycopene, a natural phytochemical compound, has attracted attention, as it has been demonstrated to be a potential alternative to traditional artificial antioxidants, with significant health benefits when applied to food preservation. Based on this, this review introduces the specific forms of lycopene currently used as an antioxidant in foods, both in its naturally occurring forms in fruits and vegetables and in artificially added forms involving technologies such as composite coating, active film packaging, emulsion, and microcapsules. In addition, it also provides a comprehensive summary of the effects and progress of lycopene in the preservation of different types of food products, such as meat, seafood, oil, dairy products, fruits, and vegetables, in the last decade. At last, it also points out the limitations of lycopene, including its insolubility in water, dark color, and high sensitivity to heat or light, as well as the potential solutions to load lycopene on suitable carriers, such as combining lycopene with antimicrobial substances or other actives, in order to broaden its applications as an antioxidant in future foods.
Collapse
Affiliation(s)
- Zhixi Li
- Haide College, Ocean University of China, Qingdao 266100, China;
| | - Fanqianhui Yu
- Haide College, Ocean University of China, Qingdao 266100, China;
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Oxidative Stability of Cottonseed Butter Products under Accelerated Storage Conditions. Molecules 2023; 28:molecules28041599. [PMID: 36838586 PMCID: PMC9963269 DOI: 10.3390/molecules28041599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cottonseed is a natural product of cotton (Gossypium spp.) crops. This work evaluated the oxidative stability of cottonseed butters through accelerated autoxidation by storage at 60 °C for 25 days. Three oxidative stability parameter values (peroxide value, p-anisidine value, and total oxidation value) were monitored over the storage time. These chemical measurements revealed that the storage stability of the butter products was dominated by primary oxidation of lipid (oil) components, while the secondary oxidation levels were relatively unchanged over the storage time. An analysis of the tocopherols (natural oxidants in cottonseed) suggested not only the protection function of the molecules against oxidation of the cottonseed butter during storage, but also the dynamic mechanism against the primary oxidation of lipid components. Attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) data confirmed no changes in the major C functional groups of cottonseed butters over the storage time. On the other hand, characteristic minor peaks of conjugated dienes and trienes related to lipid oxidation were impacted by the accelerated storage. As each day of accelerated oxidation at 60 °C is equivalent to 16 days of storage at 20 °C, observations in this work should have reflected the oxidative stability behaviors of the cottonseed butters after about 13 months of shelf storage under ambient storage conditions. Thus, these data that were collected under the accelerated oxidation testing would be useful not only to create a better understanding of the autooxidation mechanism of lipid molecules in cottonseed butters, but also in developing or recommending appropriate storage conditions for cottonseed end products to prevent them from quality degradation.
Collapse
|
5
|
Tolve R, Tchuenbou-Magaia FL, Sportiello L, Bianchi F, Radecka I, Favati F. Shelf-Life Prediction and Thermodynamic Properties of No Added Sugar Chocolate Spread Fortified with Multiple Micronutrients. Foods 2022; 11:foods11152358. [PMID: 35954123 PMCID: PMC9368434 DOI: 10.3390/foods11152358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
The development of fortified healthy pleasant foods, in which saturated fats are replaced with unsaturated ones, poses a challenge for the food industry due to their susceptibility to oxidative rancidity, which decreases product shelf-life, causes the destruction of health-promoting molecules, and forms potentially toxic compounds. A comparative study applying the Arrhenius model was carried out to investigate the oxidative stability and predict the shelf-life of a newly developed no added sugar chocolate spread formulated with sunflower oil, and fortified with vitamin D, Mg, and Ca checked against two commercially available spreads: No Palm and a well-known commercially available product (RB). The results obtained from the accelerated shelf-life testing for peroxide value (PV) showed relatively higher activation energy (Ea, 14.48 kJ/mol K) for RB, whereas lower Ea (11.31–12.78 kJ/mol K) was obtained for No Palm and all the experimental spread chocolates. Q10 values were comparable (1.202–1.154), indicating a similar catalytic effect of the temperature upon the oxidation rate across all the investigated samples. The positive Gibbs free energies ranged from 75.014 to 83.550 kJ/mol and pointed out that the lipid oxidation reaction in the chocolate spread was an endergonic process. The predicted shelf-life at 293.15 K was 8.57 months (RB), 7 months (No Palm), and 6.8 months for all the experimental spreadable chocolate. However, the higher production of hydroperoxides was observed in chocolate fortified with magnesium-calcium carbonate nanoparticles and stored at 313.15 and 323.15 K, suggesting these particles may enhance lipid oxidation.
Collapse
Affiliation(s)
- Roberta Tolve
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Fideline Laure Tchuenbou-Magaia
- Division of Chemical Engineering, School of Engineering, Computing and Mathematical Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: ; Tel.: +44-190-251-8509
| | - Lucia Sportiello
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Federico Bianchi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Iza Radecka
- School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Fabio Favati
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
6
|
Valorization of Traditional Italian Walnut (Juglans regia L.) Production: Genetic, Nutritional and Sensory Characterization of Locally Grown Varieties in the Trentino Region. PLANTS 2022; 11:plants11151986. [PMID: 35956464 PMCID: PMC9370163 DOI: 10.3390/plants11151986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/12/2022]
Abstract
Juglans regia (L.) is cultivated worldwide for its nutrient-rich nuts. In Italy, despite the growing demand, walnut cultivation has gone through a strong decline in recent decades, which led to Italy being among the top five net importing countries. To promote the development of local high-quality Italian walnut production, we devised a multidisciplinary project to highlight the distinctive traits of three varieties grown in the mountainous region Trentino (northeast of Italy): the heirloom ‘Bleggiana’, a second local accession called local Franquette and the French cultivar ‘Lara’, recently introduced in the local production to increase yield. The genetic characterization confirmed the uniqueness of ‘Bleggiana’ and revealed local Franquette as a newly described autochthonous variety, thus named ‘Blegette’. The metabolic profiles highlighted a valuable nutritional composition of the local varieties, richer in polyphenols and with a lower ω-6/ω-3 ratio than the commercial ‘Lara’. ‘Blegette’ obtained the highest preference scores from consumers for both the visual aspect and tasting; however, the volatile organic compound profiles did not discriminate among the characterized cultivars. The described local varieties represent an interesting reservoir of walnut genetic diversity and quality properties, which deserve future investigation on agronomically useful traits (e.g., local adaptation and water usage) for a high-quality and sustainable production.
Collapse
|
7
|
Walnut (Juglans regia L.) oil chemical composition depending on variety, locality, extraction process and storage conditions: A comprehensive review. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Improving the Oxidation Stability and Shelf-Life of Peanut Oil by Addition of Rosemary Extract Combined with Vitamin C and Ascorbyl Palmitate. J FOOD QUALITY 2022. [DOI: 10.1155/2022/7229412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rosemary extracts are natural antioxidants, which can be considered an alternative for synthetic antioxidants in the food industry. The aim of the present study was to evaluate the oxidation stability and shelf-life of rosemary extracts combined with vitamin C (VC) and ascorbyl palmitate (AP) in peanut oil stored at 65°C. Peanut oil with tertbutyl hydroquinone (TBHQ) and without additives served as positive and negative controls, respectively. The peroxide value (POV), thiobarbituric acid reactant (TBARs), conjugated diene (CD), and conjugated triene (CT) values of the peanut oil samples were evaluated during accelerated storage every 48 h. Among them, 0.23 g/kg rosemary extracts combined with 0.13 g/kg VC and 0.07 mg/kg AP exhibited the best oxidative stability. Additionally, the oxidation kinetics model predicated that the rosemary extracts combined with VC and AP could effectively prolong the shelf-life of peanut oil. In accelerated storage, the rosemary extracts combined with VC and AP not only inhibited peanut oil oxidation like chemical antioxidants, but also were safer than chemical antioxidants. Therefore, the rosemary extracts combined with VC and AP were an effective alternative to chemical antioxidants, which could improve the oxidation stability and shelf-life of peanut oil.
Collapse
|
9
|
Sun J, Hu P, Lyu C, Tian J, Meng X, Tan H, Dong W. Comprehensive lipidomics analysis of the lipids in hazelnut oil during storage. Food Chem 2022; 378:132050. [PMID: 35032812 DOI: 10.1016/j.foodchem.2022.132050] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 01/09/2023]
Abstract
Although hazelnut oil is is nutritious, it is easily oxidized during storage. Thus far, changes in lipids during storage have not been comprehensively analyzed. Here, we used ultra-high liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to dynamically monitor the lipid composition of hazelnut oil during accelerated storage for 24 d. A total of 10 subclasses of 103 lipids were identified. After 24 d, the content of triacylglycerol, diacylglycerol, phosphatidic acid, phosphatidylethanolamine, phosphatidylethanol, ceramide, and total lipids decreased significantly (P < 0.05). A total of 51 significantly different lipids were screened (Variable Importance in Projection > 1, P < 0.05), and these lipids could be used as biomarkers to distinguish fresh and oxidized hazelnut oil. We also detected seven most important pathways by bioinformatics analysis to explore the mechanism underlying changes. Our results provide useful information for future applications of hazelnut oil and provide new insight into edible oil oxidation.
Collapse
Affiliation(s)
- Jiayang Sun
- College of Food Science, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Pengpeng Hu
- College of Foreign Language Teaching Development, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Chunmao Lyu
- College of Food Science, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China.
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China
| |
Collapse
|
10
|
CHENG Q, ZHANG Y, LIN Q, TIAN Y, BAO Y. Study on the antioxidant activity of β-sitosterol and stigmasterol from Sacha Inchi oil and Prinsepia oil added to walnut oil. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.69522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qin CHENG
- Yunnan Agricultural University, China
| | | | - Qi LIN
- Yunnan Agricultural University, China
| | - Yang TIAN
- Yunnan Agricultural University, China
| | | |
Collapse
|
11
|
Kaseke T, Opara UL, Fawole OA. Oxidative stability of pomegranate seed oil from blanched and microwave pretreated seeds: Kinetic and thermodynamic studies under accelerated conditions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tafadzwa Kaseke
- Department of Food Science Stellenbosch University Stellenbosch South Africa
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
- UNESCO International Centre for Biotechnology Nsukka Nigeria
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology University of Johannesburg Johannesburg South Africa
| |
Collapse
|
12
|
Zhang L, Wu S, Jin X. Fatty Acid Stable Carbon Isotope Ratios Combined with Oxidation Kinetics for Characterization and Authentication of Walnut Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6701-6709. [PMID: 34100285 DOI: 10.1021/acs.jafc.1c01843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Walnut oil is vulnerable to oxidation due to its high content of polyunsaturated fatty acids and adulteration due to its high price. This study investigated 12 typical walnut oils from six main walnut-producing areas in China, using differential scanning calorimetry (DSC), Rancimat test, gas chromatography (GC), elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) and GC-IRMS combined with oxidation kinetic analysis, Pearson correlation analysis, and principal component analysis (PCA). The melting and crystallization profiles using DSC indicated that walnut oils with a relatively high crystal onset temperature tended to be more stable against oxidation. Oleic acid was found to be the most characteristic fatty acid in walnut oil, with a content ranging from 13.84 to 35.08%. Two walnut oils with the highest oleic acid contents of 35.08 and 32.78% had the highest activation energies in nonisothermal DSC. Their predicted shelf lives based on the Rancimat test were 3.5-4.0 times longer than that of the oil with the highest α-linolenic acid at 4 °C and 3.1-3.5 times longer at 25 °C. The δ13C values of walnut oils were determined by EA-IRMS, and the δ13C values of fatty acids were determined by GC-IRMS. Fatty acid stable carbon isotope ratios combined with PCA were successfully applied to intuitively discriminate different walnut oils. The results suggested that fatty acid δ13C values determined by IRMS combined with chemometrics and lipid compositions are promising as a powerful means of vegetable oil authentication and discrimination.
Collapse
Affiliation(s)
- Limin Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinyu Jin
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
13
|
Jiang H, He Y, Chen Q. Qualitative identification of the edible oil storage period using a homemade portable electronic nose combined with multivariate analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3448-3456. [PMID: 33270243 DOI: 10.1002/jsfa.10975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The edible oil storage period is one of the important indicators for evaluating the intrinsic quality of edible oil. The present study aimed to develop a portable electronic nose device for the qualitative identification of the edible oil storage period. First, four metal oxide semiconductor gas sensors, comprising TGS2600, TGS2611, TGS2620 and MQ138, were selected to prepare a sensor array to assemble a portable electronic nose device. Second, the homemade portable electronic nose device was used to obtain the odor change information of edible oil samples during different storage periods, and the sensor features were extracted. Finally, three pattern recognition methods, comprising linear discriminant analysis (LDA), K-nearest neighbors (KNN) and support vector machines (SVM), were compared to establish a qualitative identification model of the edible oil storage period. The input features and related parameters of the model were optimized by a five-fold cross-validation during the process of model establishment. RESULTS The research results showed that the recognition performance of the non-linear SVM model was significantly better than that of the linear LDA and KNN models, especially in terms of generalization performance, which had a correct recognition rate of 100% when predicting independent samples in the prediction set. CONCLUSION The overall results demonstrate that it is feasible to apply the homemade portable electronic nose device with the help of the appropriate pattern recognition methods to achieve the fast and efficient identification of the edible oil storage period, which provides an effective analysis tool for the quality detection of the edible oil storage. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yingchao He
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
14
|
Estimation of oxidative indices in the raw and roasted hazelnuts by accelerated shelf-life testing. Journal of Food Science and Technology 2020; 57:2433-2442. [PMID: 32549593 DOI: 10.1007/s13197-020-04278-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 10/25/2022]
Abstract
To estimate the oxidative stability of the raw and roasted hazelnuts, accelerated shelf-life testing (ASLT) was used at elevated temperatures (55, 65 and 75 °C) at water activity (aw) of 0.43. Chemical parameters, including peroxide value (PV), para-anisidine value, and total oxidation value were measured to estimate the oxidative stability of the samples using Arrhenius model. In addition, the samples were maintained for 8 months in a real condition at 20-30 °C (long-term shelf-life testing) for validating the results obtained from short-term ASLT. The maximum activation energy (Ea, 78.76 kJ/mol °K) and Q10 (1.871) was obtained for PV in raw hazelnuts, while the minimum Ea (53.36 kJ/mol °K) and Q10 (1.552) were recorded for PV in roasted hazelnuts, indicating the negative effect of roasting process on the oxidative stability of the samples. In order to validate the estimations, the values predicted by short-term ASLT for each oxidation index were plotted versus their corresponding values in actual storage. The results showed good correlation coefficients (R2 = 0.91-0.98), confirming the fitness of the Arrhenius model to predict the oxidative indices of the samples during normal storage.
Collapse
|
15
|
Hao J, Xu XL, Jin F, Regenstein JM, Wang FJ. HS-SPME GC-MS characterization of volatiles in processed walnuts and their oxidative stability. Journal of Food Science and Technology 2020; 57:2693-2704. [PMID: 32549619 DOI: 10.1007/s13197-020-04305-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/26/2019] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
Abstract
Processed walnuts including hot air-dried and roasted walnuts were prepared. Volatiles in raw and processed walnuts were analyzed using head-space solid phase microextraction combined with gas chromatography and mass spectrometry. Oxidative stability of hot air-dried walnuts in different antioxidants, with or without vacuum package was studied to find a proper package for oxidation stability of hot air-dried walnuts. The results showed that there were 14 volatiles in raw walnuts, 28 in hot air-dried walnuts and 38 in roasted walnuts. The changes of oil quality indices, total phenols, malondialdehyde and free radical scavenging activities during storage at 60 °C showed that the oil oxidation increased with storage time. The addition of antioxidants and vacuum package could slow down the oxidation. Vacuum aluminum foil package (14 × 20 cm) can delay the oil oxidation and extend the shelf life to ~ 230 days of hot air-dried walnuts at 20 °C. With added antioxidant this was extended to ~ 257 days.
Collapse
Affiliation(s)
- Jing Hao
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing City, 100083 People's Republic of China
| | - Xiao-Lin Xu
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing City, 100083 People's Republic of China
| | - Feng Jin
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing City, 100083 People's Republic of China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201 USA
| | - Feng-Jun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing City, 100083 People's Republic of China
| |
Collapse
|
16
|
Zhang ZS, Zhang LX, Xie QF, Che LM. Effect of Accelerated Storage on Fatty Acids, Thermal Properties and Bioactive Compounds of Kenaf Seed Oil. J Food Sci 2019; 84:2121-2127. [PMID: 31269247 DOI: 10.1111/1750-3841.14653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023]
Abstract
The effects of thermal oxidation at 65 °C for 24 days on oxidation indices, fatty acid positional distribution, thermal properties, vitamin E composition and sterol composition of kenaf seed oil are investigated. The results showed that total oxidation value (TOTOX) of the oil increased from initial 8.83 to 130.74 at the end of 24 days storage. Linoleic acid at sn-1, 3 positon of kenaf seed oil was less stable than the one at sn-2 positon. Oxidative degradation changed the melting profile of kenaf seed oil, the value of endothermic enthalpy reduced from 58.17 to 20.25 J/g after 24 days of storage. Moreover, the content of vitamin E and total sterol decreased by 84.26% and 38.47%, respectively. Tocotrienols were more stable than tocopherols during the accelerated storage. Correlation analysis indicated vitamin E content was significantly related to p-anisidine value, while sterol content was significantly related to peroxide value. PRACTICAL APPLICATION: Kenaf seed oil is rich in polyunsaturated fatty acids and bioactive compounds. Heating process and long-term storage cause oil oxidation and bioactive compounds degradation. The oxidation process of kenaf seed oil is simulated with accelerated storage. The study evaluates fatty acid composition and distribution, vitamin E and sterol content, melting thermal characteristics of kenaf seed oil at different oxidation levels. The research shows the stability of fatty acid is related with its type and position in backbone of triacylglycerol molecule. There are good correlation among oxidation level, vitamin E and sterol content, and melting enthalpy value of kenaf seed oil.
Collapse
Affiliation(s)
- Zhen-Shan Zhang
- College of Food Science and Technology, Henan Univ. of Technology, NO.100, Lianhua Street, Zhengzhou, 45001, P. R. China
| | - Li-Xia Zhang
- Xinyang City Acad. of Agricultural Science, No.20, Minquan South Road, Xinyang, 464000, P. R. China
| | - Qing-Fang Xie
- College of Food Science and Technology, Henan Univ. of Technology, NO.100, Lianhua Street, Zhengzhou, 45001, P. R. China
| | - Li-Ming Che
- Dept. of Chemical and Biochemical Engineering, Xiamen Univ., No.422, Siming South Road, Xiamen, 361005, P. R. China
| |
Collapse
|
17
|
Sun Q, Cheng Y, Yang G, Ma ZF, Zhang H, Li F, Kong L. Stability and sensory analysis of walnut polypeptide liquid: response surface optimization. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1611600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Qian Sun
- College of Food and Pharmaceutics, Xinjiang Agricultural University, Urumqi, China
| | - Yimei Cheng
- College of Food and Pharmaceutics, Xinjiang Agricultural University, Urumqi, China
| | - Gang Yang
- College of Food and Pharmaceutics, Xinjiang Agricultural University, Urumqi, China
| | - Zheng Feei Ma
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Hongxia Zhang
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Fang Li
- Xinjiang Institute of Light Technology, Urumqi, China
| | - Lingming Kong
- College of Food and Pharmaceutics, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|