1
|
Kalisz G, Budzynska B, Sroka-Bartnicka A. The optimization of sample preparation on zebrafish larvae in vibrational spectroscopy imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125288. [PMID: 39437695 DOI: 10.1016/j.saa.2024.125288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
The zebrafish (Danio rerio) larvae are widely used in biomedical, pharmaceutical, and ecotoxicological studies. Their transparency and translational potential make them particularly valuable for fluorescence imaging. In addition to fluorescence imaging, microspectroscopy, which combines vibrational spectroscopy: Raman or Fourier transform infrared (FT-IR) with microscopy, allows the collection of spatially resolved, label-free information. According to available literature, it was the first application of FT-IR imaging in zebrafish larvae. This study aims to compare different fixation methods for 10-day post-fertilization (dpf) zebrafish larvae using vibrational spectroscopy imaging. Paraformaldehyde (PFA), glutaraldehyde (GA), low temperature, and embedding in gelatin and agarose were investigated. Amides, lipids, and phosphates distribution were more informative in embedded samples but with challenging handling of the sample due to stiffness at -20 °C. FT-IR and Raman mapping revealed that frozen samples had better-preserved tissue structure than chemical fixation. PFA showed uniform amide distribution, while GA treatment exhibited tissue disruptions and denser protein networks in both. Handling of embedded samples is challenging for an operator, but provides more reliable results in developmental biology or disease modeling, compared to chemical treatment.
Collapse
Affiliation(s)
- Grzegorz Kalisz
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland; Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland.
| | - Barbara Budzynska
- Independent Unit of Behavioral Studies, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland.
| |
Collapse
|
2
|
Yoshikawa Y, Yamato K, Ishida A, Yoshida Y, Kumamoto Y, Isogai A. Amidation of carboxy groups in TEMPO-oxidized cellulose for improving surface hydrophobization and thermal stability of TEMPO-CNCs. Carbohydr Polym 2025; 347:122654. [PMID: 39486921 DOI: 10.1016/j.carbpol.2024.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 11/04/2024]
Abstract
Surface-hydrophobized cellulose nanomaterials (CNs) with high thermal degradation points are required for preparing various materials, such as epoxy nanocomposites, which possess high mechanical strength, optical transparency, and thermal stability. Amidation of carboxy groups in CNs is one possible chemical modification for hydrophilic CNs that contain abundant carboxy groups. However, achieving efficient amidation of high ratios of carboxy groups in CNs is highly challenging for industrial applications. In this study, carboxy group-containing fibrous wood pulp was subjected to amidation in heterogeneous solid/liquid systems to prepare products with high amidation ratios and high yields, while implementing cost-effective isolation and purification processes. Consequently, a partially acid-hydrolyzed wood pulp with abundant carboxy groups was first prepared. Subsequently, 88 % and 91 % of the carboxy groups in the pulp were successfully amidated using polyalkylene glycols-NH2 and octylamine, respectively. This was achieved by utilizing 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride and N-methylmorpholine as the condensation reagent and activator, respectively, in N,N-dimethylformamide (DMF) at approximately 23 °C for 16 h. The thermal degradation point increased from 224 °C for the acid-hydrolyzed pulp to over 250 °C after amidation. The amidated pulps were then converted into transparent dispersions, consisting of amidated cellulose nanocrystals, by homogenization in an epoxy monomer/DMF mixture using high-pressure homogenization.
Collapse
Affiliation(s)
- Yuki Yoshikawa
- R&D Performance Chemicals Research, Kao Corporation, 1334 Minato, Wakayama 640-8580, Japan.
| | - Kyohei Yamato
- R&D Performance Chemicals Research, Kao Corporation, 1334 Minato, Wakayama 640-8580, Japan.
| | - Akiko Ishida
- R&D Analytical Science Research, Kao Corporation, 1334 Minato, Wakayama 640-8580, Japan.
| | - Yutaka Yoshida
- R&D Performance Chemicals Research, Kao Corporation, 1334 Minato, Wakayama 640-8580, Japan.
| | - Yoshiaki Kumamoto
- R&D Performance Chemicals Research, Kao Corporation, 2-1-3 Bunka, Sumida-ku 103-8501, Japan.
| | - Akira Isogai
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan.
| |
Collapse
|
3
|
Bas-Bellver C, Barrera C, Betoret N, Seguí L, Harasym J. IV-Range Carrot Waste Flour Enhances Nutritional and Functional Properties of Rice-Based Gluten-Free Muffins. Foods 2024; 13:1312. [PMID: 38731683 PMCID: PMC11083371 DOI: 10.3390/foods13091312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Fortification of bakery products with plant-based functional ingredients has gained interest in recent years. Low-cost fruit and vegetable waste has been proposed to replace wheat flour, but less research has been conducted on gluten-free flours. Rice is generally accepted as a gluten-free alternative to wheat flour but is poor in bioactive constituents; thus, the addition of vegetable-based functional ingredients could improve the nutritive value of gluten-free products. In the present work, IV-range carrot waste powder (CP) was incorporated into rice-based gluten-free muffin formulations in different proportions (5, 10, 20, and 30% w/w). The impact of CP addition on physicochemical and antioxidant properties was evaluated in flour blends, doughs, and baked products. Products were also evaluated in terms of water activity, hardness, and colour before and after a one-week storage period under fridge conditions. The results showed that water and oil absorption capacities increased in flour blends with CP addition, whereas the pasting properties of flour blends were affected when adding CP. Rheological measurements revealed an increase of G' and G'' modulus values with CP addition. Colour was also significantly modified by CP addition, since CP provided an orangish and brownish colour, but also due to intensified Maillard reactions during baking. Muffin hardness was reduced in enriched formulations compared to control ones, which was attributed to the fibre being incorporated with CP. It was confirmed that CP addition improved the antioxidant properties of both flour blends and muffins, with the higher the replacement, the better the antioxidant properties. The quality of gluten-free muffins was hindered after one week stored under cold conditions, so that colour was affected, hardness increased, and the antioxidant properties diminished. In conclusion, this work presents an interesting approach for the use of carrot waste flour as a functional food ingredient to improve the nutritional value of new gluten-free rice-based muffins, thus contributing to the circularity of food systems and to the development of healthier and more sustainable diets.
Collapse
Affiliation(s)
- Claudia Bas-Bellver
- Instituto Universitario de Ingeniería de Alimentos—FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.B.-B.); (C.B.); (N.B.)
| | - Cristina Barrera
- Instituto Universitario de Ingeniería de Alimentos—FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.B.-B.); (C.B.); (N.B.)
| | - Noelia Betoret
- Instituto Universitario de Ingeniería de Alimentos—FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.B.-B.); (C.B.); (N.B.)
| | - Lucía Seguí
- Instituto Universitario de Ingeniería de Alimentos—FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.B.-B.); (C.B.); (N.B.)
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wrocław University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland;
| |
Collapse
|
4
|
Wennman M, Pinon AC, Svagan AJ, Hellberg M, Hedenqvist MS. A biobased binder of carboxymethyl cellulose, citric acid, chitosan and wheat gluten for nonwoven and paper. Carbohydr Polym 2024; 323:121430. [PMID: 37940257 DOI: 10.1016/j.carbpol.2023.121430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 11/10/2023]
Abstract
The amount of disposable nonwovens used today for different purposes have an impact on the plastic waste streams which is built up from several single-use products. A particular problem comes from nonwoven products with "hidden" plastic (such as cellulose mixed with synthetic fibers and/or plastic binders) where the consumers cannot see or expect plastic. We have here developed a sustainable binder based on natural components; wheat gluten (WG) and a polyelectrolyte complex (PEC) made from chitosan, carboxymethyl cellulose and citric acid which can be used with cellulosic fibers, creating a fully biobased nonwoven product. The binder formed a stable dispersion that improved the mechanical properties of a model nonwoven. With WG added, both the dry and the wet strength of the impregnated nonwoven increased. In dry-state, PEC increased the tensile index with >30 % (from 22.5 to 30 Nm/g), and with WG, with 60 % (to 36 Nm/g). The corresponding increase in the wet strength was 250 % (from 8 to 28 Nm/g) and 300 % (to 32 Nm/g). The increased strength was explained as an enrichment of covalent bonds (ester and amide bonds) established during curing at 170 °C, confirmed by DNP NMR and infrared spectroscopy.
Collapse
Affiliation(s)
- Maria Wennman
- OrganoClick AB, Linjalvägen 9, SE-187 66 Täby, Sweden.
| | - Arthur C Pinon
- Swedish NMR Center, University of Gothenburg, Gothenburg, Sweden
| | - Anna J Svagan
- KTH Royal Institute of Technology, School of Engineering Sciences of Chemistry, Biotechnology and Health, Fibre and Polymer Technology, SE-100 44 Stockholm, Sweden
| | | | - Mikael S Hedenqvist
- KTH Royal Institute of Technology, School of Engineering Sciences of Chemistry, Biotechnology and Health, Fibre and Polymer Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
5
|
Chen Z, Nie M, Xi H, He Y, Wang A, Liu L, Wang L, Yang X, Dang B, Wang F, Tong LT. Effect of continuous instant pressure drop treatment on the rheological properties and volatile flavor compounds of whole highland barley flour. Food Res Int 2023; 173:113408. [PMID: 37803747 DOI: 10.1016/j.foodres.2023.113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Continuous instant pressure drop (CIPD) treatment effectively reduces microbial contamination in whole highland barley flour (WHBF). Base on it, this study further investigated its effects on flour properties (especially rheological properties) and volatile compounds (VOCs) profile of WHBF, and compared it with that of ultraviolet-C (UV-C), ozone and hot air (HA) treatments. The results showed that the damaged starch content (6.0%) of CIPD-treated WHBF was increased, leading to a rough surface and partial aggregation of starch particle, thereby increasing the particle size (18.06 μm of D10, 261.46 μm of D50 and 534.44 μm of D90). Besides, CIPD treatment exerted a positive influence on the structure and rheological properties of WHBF, including an elevation in pasting temperature and viscosity. Notably, CIPD-treated WHBF exhibited higher storage modulus and loss modulus compared to the other three groups of sterilization treatments, contributing to the formulation of a better-defined and stable gel strength (tan δ = 0.38). UV-C and ozone, as cold sterilization techniques, also induced alterations in specific characteristics of WHBF. UV-C treatment led to changes in WHBF's crystallinity, while ozone treatment caused modifications in the secondary protein structure of WHBF. A total of 68 VOCs were identified in raw WHBF (including 3 acids, 19 alcohols, 25 aldehydes, 1 alkene, 8 esters, 2 ethers, 3 furans, and 7 ketones). The maximum flavor-contributing VOC in CIPD-treated WHBF remained dimethyl sulfide monomer (cabbage aroma), consistent with the raw WHBF. Conversely, in HA-treated WHBF, the maximum flavor-contributing VOC shifted to 2-furanmethanethiol monomer (roasted coffee aroma), altering the initial flavor presentation. These findings will provide strong support for the application of CIPD technology in the powdery foods industry.
Collapse
Affiliation(s)
- Zhiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Huihan Xi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yue He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Aixia Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xijuan Yang
- Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai 810016, China
| | - Bin Dang
- Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai 810016, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
6
|
Moreno-Araiza O, Boukid F, Suo X, Wang S, Vittadini E. Pretreated Green Pea Flour as Wheat Flour Substitutes in Composite Bread Making. Foods 2023; 12:2284. [PMID: 37372495 DOI: 10.3390/foods12122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The present study aimed to assess the impact of substituting wheat flour with three different pretreated green pea flour at different addition levels (10-50%) on fresh bread quality during a 7-day storage period. Dough and bread enriched with conventionally milled (C), pre-cooked (P), and soaked under-pressure-steamed (N) green pea flour were evaluated for their rheological, nutritional, and technological features. Compared to wheat flour, legumes had lower viscosity but higher water absorption, development time, and lower retrogradation. Bread made with C10 and P10 showed similar specific volume, cohesiveness, and firmness to the control, whereas addition levels beyond 10% decreased specific volume and increased firmness. During storage, incorporating legume flour (10%) delayed staling. Composite bread increased proteins and fiber. C30 had the lowest rate of starch digestibility, while pre-heated flour increased starch digestibility. In conclusion, P and N can be considered valuable ingredients for making soft and stable bread.
Collapse
Affiliation(s)
- Oscar Moreno-Araiza
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Macerata, Italy
| | | | - Xinying Suo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Macerata, Italy
| | - Shihao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Macerata, Italy
| | - Elena Vittadini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Macerata, Italy
| |
Collapse
|
7
|
Zhang X, Wang Z, Wang L, Ou X, Huang J, Luan G. Structural support of zein network to rice flour gluten-free dough: Rheological, textural and thermal properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Study on the quality characteristics of hot-dry noodles by microbial polysaccharides. Food Res Int 2023; 163:112200. [PMID: 36596138 DOI: 10.1016/j.foodres.2022.112200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The effect of curdlan gum (CG), gellan gum (GG), and xanthan gum (XG) on the quality characteristics of hot-dry noodles (HDN) was investigated. The rheology properties were used to evaluate the quality of the dough, the textural, viscosity, cooking characteristics and water states were investigated to study the quality changes of HDN. Three microbial polysaccharides were found that it could improve the quality of wheat flour and significantly increase the starch viscosity of HDN and delay the water migration rate of HDN. When 0.2% CG, 0.5% GG, and 0.5% XG were added, the HDN showed the best flour swelling power, texture, and tensile properties, and the structure of gluten network was significantly improved. The flourier transform infrared spectroscopy results showed that microbial polysaccharides with appropriate concentrations changed the formation of hydrogen bond in HDN, decreased α-helix and increased β-turn content. Meanwhile, the relative continuous and complete gluten network was formed, which could be proven by microstructure observation. This study provides a reference for functionality applications of HDN with microbial polysaccharides.
Collapse
|
9
|
Xing B, Zhang Z, Zhu M, Teng C, Zou L, Liu R, Zhang L, Yang X, Ren G, Qin P. The gluten structure, starch digestibility and quality properties of pasta supplemented with native or germinated quinoa flour. Food Chem 2023; 399:133976. [DOI: 10.1016/j.foodchem.2022.133976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
|
10
|
Salam S, Arif A, Nabi F, Mahmood R. Molecular docking and biophysical studies on the interaction between thiram and human hemoglobin. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Liu H, Wan L, Xiao S, Fu Y, Wang X. Changes in the physicochemical and protein distribution properties of dough with the wheat oligopeptide incorporation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Suitability of Improved and Ancient Italian Wheat for Bread-Making: A Holistic Approach. Life (Basel) 2022; 12:life12101613. [PMID: 36295048 PMCID: PMC9605622 DOI: 10.3390/life12101613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ancient and old wheat grains are gaining interest as a genetic reservoir to develop improved Italian genotypes with peculiar features. In this light, the aim of this study was to assess the baking performance of two improved einkorn (Monlis and Norberto) and two improved emmer (Padre Pio and Giovanni Paolo) genotypes in comparison with two Italian landraces (Garfagnana and Cappelli) and Khorasan. This set was evaluated following a holistic approach considering the flour, dough, and bread properties. The results showed that the flour properties, dough rheology, pasting, and fermentation parameters, as well as the bread properties, significantly differed among the studied genotypes. Cappelli produced the bread with the best quality, i.e., the highest volume and lowest firmness. Despite having the same pedigrees, Giovanni Paolo and Padre Pio resulted in significantly different technological properties. Giovanni Paolo flour showed the highest protein content and provided a dough with a high gas production capacity, resulting in the bread having a similar firmness to Cappelli. Padre Pio flour provided bread having a similar volume to Cappelli but a high firmness similar to Khorasan and Garfagnana. The einkorn genotypes, Monlis and Norberto, showed poor fermentation properties and high gelatinization viscosity that resulted in bread with poor quality. Alternatively, they could be more suitable for making non-fermented flatbreads. Our results showed that the improved wheat showed a high versatility of features, which offers bakers a flexible material to make a genotype of bread types.
Collapse
|
13
|
Hu X, Hu R, Zhu H, Chen Q, Lu Y, Chen J, Liu Y, Chen H. Nanozyme-based cascade SPR signal amplification for immunosensing of nitrated alpha-synuclein. Mikrochim Acta 2022; 189:367. [PMID: 36056240 DOI: 10.1007/s00604-022-05465-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
A self-assembled nanozyme of iron porphyrin mediated supramolecular modified gold nanoparticles (FpA) was fabricated to determine nitrated alpha-synuclein as the Tyr 39 residue (nT39 α-Syn) of a potential biomarker for early diagnosis of Parkinson's disease (PD). Mechanically, localized surface plasmon resonance (LSPR) and the mass effect caused by catalytic deposition of the nanozyme contributed to a cascade signal amplification strategy. The sensor allowed a signal amplification and selective nT39 α-Syn bioanalysis with a 1.34-fold enhancement by cascade amplified SPR signal and double specific recognition. The detection limit was 1.78 ng/mL in the detection range of 7-240 ng/mL. Benefiting from the excellent immunosensor, this method can distinguish healthy people and PD patients using actual samples. Overall, this strategy provides a nanozyme-based biosensing platform for the early diagnosis of PD and can be applied to detect other protein biomarkers, such as PD-L1.
Collapse
Affiliation(s)
- Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Ruhui Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Han Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qiang Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yongkai Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jie Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
14
|
Zhang Z, Zhu M, Xing B, Liang Y, Zou L, Li M, Fan X, Ren G, Zhang L, Qin P. Effects of extrusion on structural properties, physicochemical properties and in vitro starch digestibility of Tartary buckwheat flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Kataria A, Sharma S, Khatkar SK. Antioxidative, structural and thermal characterisation of simulated fermented matrix of quinoa, chia and teff with caseinate. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ankita Kataria
- Department of Food Science and Technology Punjab Agricultural University (PAU) Ludhiana 141004 Punjab India
| | - Savita Sharma
- Department of Food Science and Technology Punjab Agricultural University (PAU) Ludhiana 141004 Punjab India
| | - Sunil Kumar Khatkar
- Byproducts Utilization Lab, Department of Dairy Technology College of Dairy Science and Technology, Guru Angad Dev Veterinary & Animal Sciences University (GADVASU) Ludhiana 141004 Punjab India
| |
Collapse
|
16
|
Liu Y, Leng Y, Xiao S, Zhang Y, Ding W, Ding B, Wu Y, Wang X, Fu Y. Effect of inulin with different degrees of polymerization on dough rheology, gelatinization, texture and protein composition properties of extruded flour products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Ishikawa D, Yang J, Fujii T. Quantification of Starch Order in Physically Modified Rice Flours Using Small-Angle X-ray Scattering (SAXS) and Fourier Transform Infrared (FT-IR) Spectroscopy. APPLIED SPECTROSCOPY 2021; 75:1033-1042. [PMID: 34264122 DOI: 10.1177/00037028211028278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to understand the ordered structure of starch in rice flour based on a physical modification with non-heating, milling, and water sorption through the structural evaluation of rice flour using small-angle X-ray scattering (SAXS) and infrared spectroscopy within the 4000-100 cm-1 region. The SAXS pattern of the samples with low moisture contents subjected to milling yield a band within the 0.4-0.9 nm-1 of the q range owing to a lamellar repeat of starch with an ordered structure in rice flour. We proposed an order parameter using the intensity of the SAXS band to quantify the order structure of starch in rice flour, and the true density was negatively correlated with the order parameter. Infrared band at 990 cm-1 in COH bending mode applied to the hydroxyl group of C6 shifted to a low wavenumber corresponding to the order parameter. A linear correlation was found between the order parameter and the 990 cm-1 and band at 861 cm-1 owing to COC symmetrical stretching of glycoside bond and CH2 deformation of the glucose unit of starch, 572, 472, and 436 cm-1, owing to the pyranose ring in the glucose unit of starch. The identified infrared bands are effective for quantifying the ordered structure of starch at the lamellar level. When subjected to water sorption, the band position at 990 cm-1 shifted to a higher wavenumber above a water activity of 0.7. This result revealed that the water-induced transition of glass to rubber of starch in rice flour can be clearly evaluated through infrared spectroscopy using the band at 990 cm-1. In addition, the band at 861 cm-1 also shifted to a higher wavenumber, whereas those at 572 and 436 cm-1 did not show a significant shift. These results indicate that water sorption slightly affects the internal structure and may mainly affect the surface of starch.
Collapse
Affiliation(s)
- Daitaro Ishikawa
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Jiamin Yang
- Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Tomoyuki Fujii
- Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| |
Collapse
|
18
|
Neder-Suárez D, Quintero-Ramos A, Meléndez-Pizarro CO, de Jesús Zazueta-Morales J, Paraguay-Delgado F, Ruiz-Gutiérrez MG. Evaluation of the physicochemical properties of third-generation snacks made from blue corn, black beans, and sweet chard produced by extrusion. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Lisiecka K, Wójtowicz A, Sujak A. Effect of Composition and Processing Conditions on Selected Properties of Potato-Based Pellets and Microwave-Expanded Snacks Supplemented with Fresh Beetroot Pulp. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/138321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Fetouhi A, Sujak A, Bentallah L, Nawrocka A, Szymańska-Chargot M, Tomczyńska-Mleko M, Wójtowicz A, Zidoune M. Development of New Gluten-Free Maize-Field Bean Bread Dough: Relationships Between Rheological Properties and Structure of Non-Gluten Proteins. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/135800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Garcia-Valle DE, Bello-Pérez LA, Agama-Acevedo E, Alvarez-Ramirez J. Effects of mixing, sheeting, and cooking on the starch, protein, and water structures of durum wheat semolina and chickpea flour pasta. Food Chem 2021; 360:129993. [PMID: 33984560 DOI: 10.1016/j.foodchem.2021.129993] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 11/18/2022]
Abstract
The influence of the pasta preparation stages on starch, proteins, and water structures of semolina and chickpea pasta was studied. The hydrated starch structures (995/1022 FTIR ratio) increased in semolina and reduced in chickpea pasta. The processing stages in semolina pasta led to a significant increase of β-sheet structures (~50% to ~68%). The β-sheet structures content in chickpea pasta was lower (~52%), and was most affected by sheeting and cooking. The water structure was assessed by the analysis of the OH fingerprint FTIR region (3700-2800 cm-1) and showing that water molecules (~90%) are strongly and moderately bound. The chickpea pasta displayed the highest content of strongly bonded water (about 55%) in contrast to the semolina pasta (~48%). A principal component analysis showed that the molecular organization of semolina pasta was mostly affected by dough formation and cooking; the molecular organization of chickpea pasta was determined by the cooking stage.
Collapse
Affiliation(s)
| | | | | | - Jose Alvarez-Ramirez
- Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Iztapalapa 09340, Mexico
| |
Collapse
|
22
|
Guo J, Yang L, Wang D, Lian X, Liu C. Research on the influences of two alcohol soluble glutenins on the retrogradation of wheat amylopectin/amylose. Int J Biol Macromol 2021; 183:463-472. [PMID: 33932417 DOI: 10.1016/j.ijbiomac.2021.04.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Two alcohol soluble glutenins (ASGLUs) were extracted from gluten and further separated by column chromatography. The ASGLUs with Mw lower than 20,000 (ASGLU 1) and Mw higher than 70,000 (ASGLU 2) show the total amino acid contents of 86.71 g/100 g and 62.847 g/100 g respectively. Both of them are rich in Glu (45.574% and 43.224%) and Pro (15.447% and 16.370%) while poor in cys-s, met and lys (less than 1%). When wheat amylopectin/amylose retrogrades with those ASGLUs, the retrogradation rate of amylopectin with ASGLU 1 enhances significantly. UV-Vis, X-ray diffraction, FT-IR, DSC, CD and solid 13C NMR suggest that the double helixes of amylopectin short-chain branching are unwound during gelatinization. The hydrogen bonds of ASGLU 1 between amide and carbonyl oxygen are destroyed, meanwhile, β-sheets are unfolded. During retrogradation, ASGLU 1 with less steric hindrance gets into the crevice of amylopectin and combines with the short-chain branching by hydrogen bond. The retrogradation dynamics show that the nucleation type of amylopectin-ASGLU 1 changes from instantaneous to rod-like growth during the process of retrogradation. β-sheet of ASGLU 1 changes to β-turn and random conformations at the meantime. The results provide a key targeting to control retrogradation of dough.
Collapse
Affiliation(s)
- Junjie Guo
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Lu Yang
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Danli Wang
- School of Science, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Xijun Lian
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China.
| | - Cheng Liu
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| |
Collapse
|
23
|
Salama M, Mu T, Sun H. Influence of sweet potato flour on the microstructure and nutritional quality of gluten‐free fresh noodles. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mahmoud Salama
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District Beijing100193China
- Food Science Department Faculty of Agriculture Cairo University Giza Egypt
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District Beijing100193China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District Beijing100193China
| |
Collapse
|
24
|
Ishikawa D, Yang J, Ichikawa C, Fujii T. Evaluation of solid state of rice flours produced by different milling processes using ATR-FTIR spectroscopy. Biosci Biotechnol Biochem 2021; 85:1056-1062. [DOI: 10.1093/bbb/zbab003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/28/2020] [Indexed: 11/14/2022]
Abstract
ABSTRACT
This study evaluated the influence of the milling process on solid state of rice flours according to water activity using ATR-FTIR. A band at 1740 cm−1 attributed to the C=O stretching of lipids was detected for crystalline samples, and it disappeared at a high aw range. The CH band at 2930 cm−1 of crystalline samples gradually shifted to a higher wavenumber with aw. This band of the α-formed and wet-milled samples shifted to higher wavenumbers above 0.8aw. A band due to OH stretching mode in the 3500-3000 cm−1 region did not shift with aw. The result obtained from IR spectra suggests that the parameter K calculated by Guggenheim–Anderson–de Boar model reflected not only the interaction between water molecules but also the changes of state in solids. Consequently, the results from this study provide insights about the adsorption properties of nonideal solids such as rice flour.
Collapse
Affiliation(s)
- Daitaro Ishikawa
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Jiamin Yang
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Chiaki Ichikawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tomoyuki Fujii
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
25
|
Benkadri S, Salvador A, Sanz T, Nasreddine Zidoune M. Optimization of Xanthan and Locust Bean Gum in a Gluten-Free Infant Biscuit Based on Rice-Chickpea Flour Using Response Surface Methodology. Foods 2020; 10:foods10010012. [PMID: 33374600 PMCID: PMC7822444 DOI: 10.3390/foods10010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Incorporation of xanthan gum and locust bean gum in rice flour supplemented by chickpea flour was used to obtain a good quality of nutritionally enriched biscuit for celiac children. Response surface methodology (RSM) was applied to optimize the levels of xanthan and locust bean gum added to the composite gluten-free flour. Analysis was based on the rheological (hardness and viscoelastic) characteristics of the dough and specific volume, water activity, and hardness of the biscuit. The results revealed that the regression and variance analysis coefficients related to the rheological and physical properties of dough and biscuit under the influence of independent variables were sufficient for an adequate and well-fitted response surface model. Linear terms of variables significantly affect most of the dough and biscuit parameters, where the xanthan gum effect was found to be more pronounced than locust bean gum. Interaction terms showed a significant positive effect on the specific volume of the biscuits and a negative effect on the water activity. However, the interactive effect of gums did not significantly affect the rheological parameters of the dough. Optimized conditions were developed to maximize the specific volume of biscuit and minimize water activity and biscuit hardness, while keeping hardness and viscoelastic properties of the dough in range. Predicted responses were found satisfactory for both rheological and physical characteristics of dough and biscuit.
Collapse
Affiliation(s)
- Soulef Benkadri
- Institut de la Nutrition, de l’Alimentation et des Technologies Agro-alimentaires (I.N.A.T.A-A.), Route Ain El bey, 25000 Constantine, Algeria; (S.B.); (M.N.Z.)
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain;
| | - Ana Salvador
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain;
- Correspondence:
| | - Teresa Sanz
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain;
| | - Mohammed Nasreddine Zidoune
- Institut de la Nutrition, de l’Alimentation et des Technologies Agro-alimentaires (I.N.A.T.A-A.), Route Ain El bey, 25000 Constantine, Algeria; (S.B.); (M.N.Z.)
| |
Collapse
|
26
|
Ungureanu-Iuga M, Dimian M, Mironeasa S. Development and quality evaluation of gluten-free pasta with grape peels and whey powders. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109714] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Khamidah SZ, Hastarini E, Fardiaz D, Budijanto S. MIKROENKAPSULASI KONSENTRAT ASAM LEMAK TAK JENUH DARI MINYAK IKAN PATIN. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2019. [DOI: 10.6066/jtip.2019.30.2.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|