1
|
Henden Y, Gümüş T, Kamer DDA, Kaynarca GB, Yücel E. Optimizing vegan frozen dessert: The impact of xanthan gum and oat-based milk substitute on rheological and sensory properties of frozen dessert. Food Chem 2024; 460:140787. [PMID: 39128371 DOI: 10.1016/j.foodchem.2024.140787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
This study aimed to optimize an alternative frozen dessert formulation using the response surface method (RSM). The formulation utilized oat-based milk substitute (OBMS) due to its desirable texture, sensory appeal, and nutritional benefits for vegans and lactose intolerant individuals. Xanthan gum (XG) was also incorporated to enhance the rheological properties of the dessert. With a coefficient of consistency of 192.58 Pa.s and a hysteresis field of 10,999 Pa/s, the ice cream formulation with the greatest rheological structure was discovered to be the combination of 20% oats, 0.5% xanthan gum (XG), and pasteurized at 65 °C. It also showed <10% melting in the first 10 min, confirming that it has a very stable structure. At the same pasteurization conditions and XG ratios, it was observed that rheological stability decreased with increasing oat milk addition. However, the shear thinning behavior of frozen dessert was improved by creating a more complex network structure with increasing XG concentration. The overrun values of the frozen desserts ranged from 21.55% to 34.63%, with the majority being statistically similar. The vegan frozen dessert formulation obtained with 40% oats, 0.37% XG and pasteurization at 60 °C showed a high level of sensory acceptance. This research contributes to the field of vegan food product development by providing innovative rheological and sensory alternatives to traditional frozen desserts using oats and XG.
Collapse
Affiliation(s)
- Yasemin Henden
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| | - Tuncay Gümüş
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye.
| | - Deniz Damla Altan Kamer
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| | - Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, 39100 Kirklareli, Türkiye
| | - Emel Yücel
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Türkiye
| |
Collapse
|
2
|
Markowska J, Tyfa A, Drabent A, Stępniak A. The Physicochemical Properties and Melting Behavior of Ice Cream Fortified with Multimineral Preparation from Red Algae. Foods 2023; 12:4481. [PMID: 38137285 PMCID: PMC10742974 DOI: 10.3390/foods12244481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Ice cream is a popular frozen food consumed worldwide throughout the year. However, as a thermally unstable product, it requires proper cold chain management. Thermal fluctuations alter the physicochemical properties of ice cream and reduce its quality. This study was conducted to evaluate the physicochemical and sensory properties of ice cream containing different amounts (0.5; 0.8; 1.0%) of a multimineral preparation from Atlantic red algae. The effect of thermal shock on the quality of ice cream after preparation and 90 days of frozen storage was studied. The addition of a multimineral component slightly increased the freezing and glass transition temperatures of the ice cream. The overrun of the ice cream ranged from 48.55 to 52.78% and decreased with the frozen storage time, but the samples with 0.8 and 1.0% mineral content had the most stable overrun in terms of storage time and thermal fluctuations. Ice cream stored for both 7 and 90 days showed a similar melting behavior, although a shift in the melting curves was observed after long frozen storage. The samples exposed to the thermal treatment had lower melting rates by 39.2-59.9% and 55.2-65.4% for 7-day and 90-day stored ice cream, respectively. The hardness parameters of the ice cream did not change significantly under the conditions applied, so the fragility of the ice cream and its fluffiness did not seem to be affected. The organoleptic evaluation showed that ice cream with a mineral content of 0.8% was the most acceptable in terms of taste, texture, and overall acceptability. The applied mineral and sucrose content ratios did not alter the main physicochemical and organoleptic parameters, but significantly affected the nutrient density of the ice cream.
Collapse
Affiliation(s)
- Joanna Markowska
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute (IBPRS-PIB), Department of Refrigeration Technology and Technique, Marszalka J. Pilsudzkiego 84 Avenue, 92-202 Lodz, Poland; (A.T.); (A.D.)
| | - Agnieszka Tyfa
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute (IBPRS-PIB), Department of Refrigeration Technology and Technique, Marszalka J. Pilsudzkiego 84 Avenue, 92-202 Lodz, Poland; (A.T.); (A.D.)
| | - Anna Drabent
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute (IBPRS-PIB), Department of Refrigeration Technology and Technique, Marszalka J. Pilsudzkiego 84 Avenue, 92-202 Lodz, Poland; (A.T.); (A.D.)
| | - Artur Stępniak
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165 Street, 90-236 Lodz, Poland;
| |
Collapse
|
3
|
Mohammadi A, Shahidi SA, Rafe A, Naghizadeh Raeisi S, Ghorbani-HasanSaraei A. Rheological properties of dairy desserts: Effect of rice bran protein and fat content. J Food Sci 2022; 87:4977-4990. [PMID: 36169930 DOI: 10.1111/1750-3841.16339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Rice bran protein (RBP) is an alternative plant protein that can be used in a wide range of foods due to its unique functional, nutritional, and hypoallergenic properties. The interactions of RBP with other biopolymers have revealed its feasibility for application in dairy products such as whipped cream and dairy desserts. Therefore, the effects of RBP and fat content on the rheological properties of dairy desserts were investigated. The pH value was not influenced by protein, but the nonfat milk solid content was changed by fat and protein content. All the desserts showed thixotropic properties which were mainly related to the molecular disentanglement at high shear rates. By increasing fat like RBP, the apparent viscosity (ηa ) was increased. Rheological parameters such as n value, thixotropic index, storage (G'), and loss moduli (G'') were increased by RBP. Moreover, the dairy desserts containing RBP and whole milk presented generally higher G', G'', complex modulus, and complex viscosity values, and lower tan δ values. The RBP enriched samples also had a higher hardness and gumminess. Syneresis was decreased by RBP, which was related to the formation of ordered mesh-like structures which enabled the entrapment of more water. There was a positive correlation between the rheological, textural, and physical properties of the dessert with added RBP, and therefore dairy dessert attributes can be improved along with fat reduction. However, a sensory evaluation is needed to unravel the acceptability rate of RBP in fat reduction from the view point of consumers. PRACTICAL APPLICATION: Rice bran protein (RBP) has nutritional and hypoallergenic properties which enable it to apply to many products such as dairy desserts. One of the main concerns in dairy technology is the growing interest in low-fat products due to health problems. RBP showed unique properties which makes the creamy behavior. The rheological results have elucidated the creaminess associated with RBP and can assist in the proper simulation of mouthfeel.
Collapse
Affiliation(s)
- Atefeh Mohammadi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Ali Rafe
- Department of Food Processing, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Shahram Naghizadeh Raeisi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | | |
Collapse
|
4
|
Vattanagijyingyong Y, Kulvanich P, Chatchawalsaisin J. Fabrication of delayed release hard capsule shells from zein/methacrylic acid copolymer blends. Eur J Pharm Sci 2022; 171:106124. [PMID: 35017013 DOI: 10.1016/j.ejps.2022.106124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/03/2022]
Abstract
Hard capsule shells with an inherent delayed release action are useful for oral administration of active ingredients, which are acid-labile and/or enzymatically degradable in the gastric environment, without the need of film coating. The objective of this study was to fabricate delayed release hard capsule shells by the dip coating method. The film coating formulations comprised blends of zein and methacrylic acid copolymer (Eudragit® L100-55), with and without the addition of the plasticizer, polyethylene glycol 1000. The rheology parameters (loss modulus (G'), storage modulus (G") and loss tangent (tan δ, G"/G')) of the film coating solution were measured to investigate the processability. Central composite design was used to investigate the main, interaction and quadratic effects of the proportion of methacrylic acid copolymer, solid content of the film formers and level of polyethylene glycol 1000 on the capsule wall thickness and mechanical strength. Multiple response optimization was further conducted, and the design space was established. The in vitro drug release in simulated gastric and intestinal fluids of three different formulations in the design space was compared. The results showed that the tan δ value after the gelation point should be < 0.9 in order to form a thin and sturdy capsule shell. The gelation time and viscosity of the coating solution were related to the thickness of the capsule shell. The study showed that drug release from the capsule with a specified thickness and mechanical strength can be modulated by varying the ratio of zein to methacrylic acid copolymer. The delayed drug release profile was achieved through the capsule shell fabricated from zein to methacrylic acid copolymer at the ratios of 75:25 and 83.2:16.8, with 10% polyethylene glycol 1000.
Collapse
Affiliation(s)
- Yada Vattanagijyingyong
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Poj Kulvanich
- Chulalongkorn University Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jittima Chatchawalsaisin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Chulalongkorn University Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Mihaylova D, Popova A, Goranova Z, Petkova D, Doykina P, Lante A. The Perspective of Nectarine Fruit as a Sugar Substituent in Puddings Prepared with Corn and Rice Starch. Foods 2021; 10:foods10112563. [PMID: 34828844 PMCID: PMC8623434 DOI: 10.3390/foods10112563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 01/17/2023] Open
Abstract
It has been long recognized that fruits are healthy diet compounds as they are excellent sources of health-beneficial bioactive components (polyphenols, minerals, vitamins, organic acids, etc.). The diversification of the consumer’s taste calls for an expansion of food options and novel ingredients. Puddings are a well-known food choice introduced in the human diet at a very early age because of their easy and high digestion. Four formulations with two types of starch (corn and rice) were selected as object of analysis. Nectarines were incorporated as a purée, and lyophilized powder. The nectarine variety “Gergana”, used for the preparations, is a local variety with proven beneficial properties. The study aimed at analyzing the physical (moisture, ash, color, water-holding capacity, water activity, density and syneresis), textural (firmness, gumminess, cohesiveness, springiness, and chewiness), nutritional, and sensory characteristics of the nectarine-enriched puddings. The outcomes obtained from this study provided significant information about the possible application of the formulations in the children’s daily menus. All four formulations had distinct peachy aroma. The formulations prepared with nectarine purée resulted in a better sensory perception about their texture, and better water-holding capacity. At this point, the formulation prepared with lyophilized fruit and rice starch has the most promising results. Sufficient evidence leads to further exploration of the perspective of fruit-enriched puddings in order to improve their technological and health-promoting properties.
Collapse
Affiliation(s)
- Dasha Mihaylova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.M.); (D.P.)
| | - Aneta Popova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
- Correspondence: or
| | - Zhivka Goranova
- Institute of Food Preservation and Quality, 4002 Plovdiv, Bulgaria;
| | - Dorina Petkova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.M.); (D.P.)
| | - Pavlina Doykina
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment—DAFNAE, Agripolis, University of Padova, 35020 Legnaro, Italy;
| |
Collapse
|
6
|
Rheological characterization of coconut cream emulsion using steady-state shear and time-dependent modeling. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Rudke AR, de Andrade CJ, Ferreira SRS. Kappaphycus alvarezii macroalgae: An unexplored and valuable biomass for green biorefinery conversion. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Djaoud K, Boulekbache‐Makhlouf L, Yahia M, Mansouri H, Mansouri N, Madani K, Romero A. Dairy dessert processing: Effect of sugar substitution by date syrup and powder on its quality characteristics. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kahina Djaoud
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algérie
| | - Lila Boulekbache‐Makhlouf
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algérie
| | - Massinissa Yahia
- Laboratory of Pharmacology University of Naples Federico II Naples Italy
| | - Hafid Mansouri
- Laboratoire de contrôle de qualité et de conformité (QualiLab) Bejaia Algerie
| | - Nassima Mansouri
- Laboratoire de contrôle de qualité et de conformité (QualiLab) Bejaia Algerie
| | - Khodir Madani
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algérie
- Centre de recherche en technologie agro‐alimentaire Bejaia Algerie
| | - Alberto Romero
- Department of Chemical Engineering Universidad de Sevilla Sevilla Spain
| |
Collapse
|