1
|
Huang J, Zhao N, Wang L, He H, Song Z, Wang X. Effect of amino acids on the formation and distribution of volatile aldehydes in high oleic sunflower oil during frying. Food Res Int 2024; 192:114749. [PMID: 39147554 DOI: 10.1016/j.foodres.2024.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
This research aims to assess the effect of amino acids as lipid antioxidants in reducing the formation of volatile aldehydes in frying oil. Methionine, histidine, and glycine at concentrations of 2.5, 5, and 10 mM were added to high oleic sunflower oil (HOSO) to investigate their effects on the distribution and formation of saturated, monounsaturated, and polyunsaturated volatile aldehydes. The results showed that the proportion of saturated volatile aldehydes was greater than that of unsaturated ones; Methionine exhibited the best inhibitory effect, after 12 h of frying, 10 mM methionine reduced the content of saturated volatile aldehydes by 24.21 %, monounsaturated by 52.4 %, and polyunsaturated by 54.73 % compared to the control. Methionine's sulfur-containing side chain was also proven to have strong antioxidant activity. Combined with the results of this study, this can also provide insights for using amino acids as lipid antioxidants.
Collapse
Affiliation(s)
- Jianhua Huang
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nanyu Zhao
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lijun Wang
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongying He
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhihua Song
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Perreault M, Means J, Gerson E, James M, Cotton S, Bergeron CG, Simon M, Carlin DA, Schmidt N, Moore TC, Blasbalg J, Sondheimer N, Ndugga-Kabuye K, Denney WS, Isabella VM, Lubkowicz D, Brennan A, Hava DL. The live biotherapeutic SYNB1353 decreases plasma methionine via directed degradation in animal models and healthy volunteers. Cell Host Microbe 2024; 32:382-395.e10. [PMID: 38309259 DOI: 10.1016/j.chom.2024.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine β-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.
Collapse
|
3
|
Imanzadeh H, Sefid-Sefidehkhan Y, Afshary H, Afruz A, Amiri M. Nanomaterial-based electrochemical sensors for detection of amino acids. J Pharm Biomed Anal 2023; 230:115390. [PMID: 37079932 DOI: 10.1016/j.jpba.2023.115390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Amino acids are the building blocks of proteins and muscle tissue. They also play a significant role in physiological processes related to energy, recovery, mood, muscle and brain function, fat burning and stimulating growth hormone or insulin secretion. Accurate determination of amino acids in biological fluids is necessary because any changes in their normal ranges in the body warn diseases like kidney disease, liver disease, type 2 diabetes and cancer. To date, many methods such as liquid chromatography, fluorescence mass spectrometry, etc. have been used for the determination of amino acids. Compared with the above techniques, electrochemical systems using modified electrodes offer a rapid, accurate, cheap, real-time analytical path through simple operations with high selectivity and sensitivity. Nanomaterials have found many interests to create smart electrochemical sensors in different application fields e.g. biomedical, environmental, and food analysis because of their exceptional properties. This review summarizes recent advances in the development of nanomaterial-based electrochemical sensors in 2017-2022 for the detection of amino acids in various matrices such as serum, urine, blood and pharmaceuticals.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hosein Afshary
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Afruz
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
4
|
Effects of amino acids on the formation and distribution of glycerol core aldehydes during deep frying. Food Res Int 2023; 163:112257. [PMID: 36596168 DOI: 10.1016/j.foodres.2022.112257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Glyceryl core aldehyde (GCAs) are hazard factors produced during the frying process using oils and fats, and GCAs control and mitigation research is very important. This study investigated the effects of adding amino acids (methionine, glycine, and histidine) at 2.5, 5, and 10 mM on the formation and distribution of four GCAs during frying. High oleic sunflower oil (HOSO) was selected as frying oil for French fries. After 12 h of frying, the content of GCAs in the tert-butylhydroquinone-treated group (0.02 wt%, 1.1 mM) decreased by 29 % compared with the control group. The addition of methionine, glycine, and histidine decreased the total GCAs by 51 %, 28 %, and 27 %, respectively. The total GCAs content was best inhibited by methionine, while glycine and histidine were not significantly different from TBHQ. Methionine addition significantly reduced GCAs (9-oxo), GCAs (10-oxo-8), and GCAs (11-oxo-9) by 39 %, 78 %, and 80 %, respectively, while histidine was the most potent inhibitor of GCAs (8-oxo), which decreased by 40 %. Methionine also proved effective in slowing degradation of frying oil quality. These results provide a new direction for decreasing GCAs in frying systems.
Collapse
|
5
|
Hwang H, Winkler‐Moser JK, Liu SX. Antioxidant activity of amino acid sodium and potassium salts in vegetable oils at frying temperatures. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hong‐Sik Hwang
- U.S. Department of Agriculture, Agricultural Research Service National Center for Agricultural Utilization Research, Functional Food Research Peoria Illinois USA
| | - Jill K. Winkler‐Moser
- U.S. Department of Agriculture, Agricultural Research Service National Center for Agricultural Utilization Research, Functional Food Research Peoria Illinois USA
| | - Sean X. Liu
- U.S. Department of Agriculture, Agricultural Research Service National Center for Agricultural Utilization Research, Functional Food Research Peoria Illinois USA
| |
Collapse
|
6
|
Wang C, Zhang J, Lv J, Li J, Gao Y, Patience BE, Niu T, Yu J, Xie J. Effect of Methyl Jasmonate Treatment on Primary and Secondary Metabolites and Antioxidant Capacity of the Substrate and Hydroponically Grown Chinese Chives. Front Nutr 2022; 9:859035. [PMID: 35449536 PMCID: PMC9016137 DOI: 10.3389/fnut.2022.859035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Hydroponic culture has become a commercial planting model for leafy vegetables, herbs, and other plants with medicinal value. Methyl jasmonate (MeJA) is involved in primary and secondary plant metabolism; moreover, it regulates plant bioactive compounds and enhances the nutritional and medicinal value of plants. We performed targeted metabolomic analysis of the primary and secondary metabolites in substrate-grown and hydroponic Chinese chive leaves sprayed with MeJA (0, 300, 500, and 800 μM). Using ultra-performance liquid chromatography (UPLC), UPLC tandem mass spectrometry, and chemometric tools, and analyzed the antioxidant activity of these plants. We identified the biomarkers of amino acids (serine, proline, lysine, and arginine) and phenolic compounds (4-coumaric acid and protocatechuic acid) using chemometric tools to distinguish between substrate-grown and hydroponic Chinese chives treated with MeJA. MeJA (500 μM) treatment significantly increased the total sugar and amino acid (essential and non-essential amino acids and sulfur-containing amino acids) contents of hydroponically grown Chinese chives. However, the changes in total sugar and amino acid contents in Chinese chive grown in substrates showed the opposite trend. The organic acid content of hydroponically grown Chinese chives treated with MeJA decreased significantly, whereas that of substrate-grown plants treated with 300 μM MeJA increased significantly. Further, MeJA treatment significantly increased the phenolic content of substrate-grown Chinese chives. Treatment with 800 μM MeJA significantly increased the carotenoid content of substrate-grown Chinese chives and the phenolic content of hydroponic Chinese chives. In addition, the 500 μM MeJA treatment significantly increased the antioxidant activity of Chinese chives in both substrate-grown and hydroponic cultures, and promoted the accumulation of nutrients and bioactive substances. This treatment also improved the flavor quality of these plants and their nutritional and medicinal value. Thus, the results suggested that MeJA-treated plants could be used as value-added horticultural products.
Collapse
Affiliation(s)
- Cheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Low Quantity but Critical Contribution to Flavor: Review of The Current Understanding of Volatile Sulfur-containing Compounds in Baijiu. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Zhao L, Zhang M, Wang H, Devahastin S. Effects of carbon dots in combination with rosemary-inspired carnosic acid on oxidative stability of deep frying oils. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107968] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|