1
|
Hu X, Xu B. Chemical compositions and health promoting effects of edible mushrooms from genus Russula. PHYTOMEDICINE PLUS 2025; 5:100677. [DOI: 10.1016/j.phyplu.2024.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Basak G, Paloi S, Naskar A, Ghosh S, Acharya K. Unveiling tribal treasures: myco-chemical characterization and pharmacological evaluation of an unexplored Russula pers. species. Antonie Van Leeuwenhoek 2024; 118:15. [PMID: 39367931 DOI: 10.1007/s10482-024-02018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/30/2024] [Indexed: 10/07/2024]
Abstract
During extensive field explorations of the Lateritic area in West Bengal, one remarkable wild Russuloid macrofungus, ethnically termed "Kend Patra," was collected. The species was known to enrich the diet of the local people, being considered as income source for some tribal groups. Using morphological characters and molecular analysis of this collection, provide a unique placement of the taxon in the Russula subgenus Compactae (Fr.) Bon. Further in order to find functional constituents for biopharma applications, methanolic extract was prepared that shows the existence of a substantial amounts of phenol, flavonoid, ascorbic acid and carotenoids. Antioxidant activity was determined where the fraction demonstrated strong DPPH, ABTS, and nitric oxide radical scavenging activities, high Fe2+ ion chelating ability, and a reducing power with EC50 values ranging from 538.69 to 891.75 µg/ml. The extract was found to be effective against Listeria monocytogenes, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi and Staphylococcus aureus. In addition, the extract exhibited potent anticancer activities as it inhibited A549 cell proliferation, caused morphological changes, elevated ROS levels, hindered the clonogenic ability and migratory potential of cancerous cells, arrested cell cycle progression at S phase, and induced apoptosis by modulating the intrinsic mitochondrial pathway. Overall, this study contributes a new species to the world's myco-diversity and presents an exciting opportunity for future researchers to conduct comprehensive investigations on this unique species in order to uncover potential new medications for human use.
Collapse
Affiliation(s)
- Gouri Basak
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Soumitra Paloi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
- Food Technology & Science Institute (FTSI), TCG Centres for Research & Education in Science and Technology, ARDC building, 54/A/1, Block-DN, Sector-5, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sandipta Ghosh
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
3
|
Wang SH, Li GJ, Phurbu D, He MQ, Zhang MZ, Zhu XY, Li JX, Zhao RL, Cao B. Four new species of Russula from the Xizang Autonomous Region and other provinces of China. Mycology 2023; 15:210-237. [PMID: 38813475 PMCID: PMC11132434 DOI: 10.1080/21501203.2023.2265667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/27/2023] [Indexed: 05/31/2024] Open
Abstract
Russula is the largest genus in the Russulales and is widespread throughout the world. Almost all Russula species are known to be ectomycorrhizal with high ecological and edible values, and some are lethal poisonous. In this study, four new species belonging to the subgenus Russula crown clade are identified based on morphological and phylogenetic evidence from the Xizang Autonomous Region and other provinces of China. Morphologically, Russula paragraveolens (sect. Polychromae, subsect. Xerampelinae) is mainly characterised by a cherry red to blood red pileus centre, a reddish orange pileus margin; R. pseudograveolens (sect. Polychromae, subsect. Xerampelinae) is characterised by a violet brown to brownish red pileus centre, a pale red to pastel red pileus margin and short basidia; R. shigatseensis (sect. Flavisiccantes, subsect. Lepidinae) is characterised by a brownish orange to madder red pileus centre, pinkish red pileus margin, and having lateral branches or branches of hyphal terminations in pileipellis; R. yadongensis (sect. Tenellae, subsect. Laricinae) is characterised by a dark purplish red pileus centre with brownish purple tints and having isolated to clustered spines of spore ornamentations. Their distinct taxonomic status is confirmed by the positions of the four new species in both the ITS and 4-locus (nucLSU, mtSSU, rpb2, tef1) phylogenetic trees.
Collapse
Affiliation(s)
- Shi-Hui Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Guo-Jie Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Dorji Phurbu
- Tibet Plateau Institute of Biology, Lhasa, China
| | - Mao-Qiang He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Yu Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jia-Xin Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Liu Y, Li H, Ren P, Che Y, Zhou J, Wang W, Yang Y, Guan L. Polysaccharide from Flammulina velutipes residues protects mice from Pb poisoning by activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway and modulating gut microbiota. Int J Biol Macromol 2023; 230:123154. [PMID: 36610568 DOI: 10.1016/j.ijbiomac.2023.123154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/10/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Lead (Pb) can cause damages to the brain, liver, kidney, endocrine and other systems. Flammulina velutipes residues polysaccharide (FVRP) has been reported to exhibit anti-heavy metal toxicity on yeast, but its regulating mechanism is unclear. Therefore, the protective effect and the underlying mechanism of FVRP on Pb-intoxicated mice were investigated. The results showed that FVRP could reduce liver and kidney function indexes, serum inflammatory factor levels, and increase antioxidant enzyme activity of Pb-poisoned mice. FVRP also exhibited a protective effect on histopathological damages in organs of Pb-intoxicated mice. Furthermore, FVRP attenuated Pb-induced kidney injury by inhibiting apoptosis via activating the Akt/GSK3β/Nrf-2/HO-1 signaling pathway. In addition, based on 16 s rRNA and ITS-2 sequencing data, FVRP regulated the imbalance of gut microbiota to alleviate the damage of Pb-poisoned mice by increasing the abundance of beneficial microbiota (Lachnospiraceae, Lactobacillaceae, Saccharomyces and Mycosphaerella) and decreasing the abundance of harmful microbiota (Muribaculaceae and Pleosporaceae). In conclusion, FVRP inhibited kidney injury in Pb-poisoned mice by inhibiting apoptosis via activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway, and regulating gut fungi and gut bacteria. This study not only revealed the role of gut fungi in Pb-toxicity, but also laid a theoretical foundation for FVRP as a natural drug against Pb-toxicity.
Collapse
Affiliation(s)
- Yingying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Hailong Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ping Ren
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yange Che
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiaming Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wanting Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yiting Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China; Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
5
|
Gangwar R, Ghosh A, Kumar S, Maurya VK. Antibacterial, Antioxidant and Nutraceutical Potential of New Culinary-Medicinal Mushroom Russula lakhanpalii (Agaricomycetes) from India. Int J Med Mushrooms 2023; 25:77-85. [PMID: 36749059 DOI: 10.1615/intjmedmushrooms.2022046844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Russula lakhanpalii is a wild edible mushroom, collected from Pedkhal block of Pauri Garhwal, India. The nutritional composition, antioxidant activity (AOA), and antibacterial activity (ABA) of R. lakhanpalii were analyzed for the first time in this study. Dried fruiting bodies of R. lakhanpalii were reported to contain 17.7% ash, 10% crude fiber, 13.4% protein, 30.9% carbohydrate, and 5% unsaturated lipids. In addition, 10.22-72.56% DPPH scavenging activity also confirmed the good antioxidant nature of R. lakhanpalii. The methanolic extract of R. lakhanpalii fruiting bodies inhibited the growth of five pathogenic bacteria in vitro; Klebsiella pneumoniae (MTCC 4030), Micrococcus luteus (MTCC 1809), Staphylococcus aureus (MTCC 1144), Escherichia coli (MTCC 68), and Streptococcus pneumoniae (MTCC 655). The maximum and minimum zone of inhibitions (ZOIs) reported were 17.8 ± 1.04 mm (K. pneumoniae) and 11.16 ± 0.76 mm, (E. coli), respectively. The noticeable feature of the extract was the inhibition of erythromycin-resistant E. coli and M. luteus by it, which were resistant to 15 μg/disc concentration of erythromycin. Dietary components, antibacterial and antioxidant potentials of R. lakhanpalii suggested its nutraceutical and medicinal applications.
Collapse
Affiliation(s)
- Reena Gangwar
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Aniket Ghosh
- Department of Botany, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India; Central National Herbarium, Botanical Survey of India, Salt Lake City, Kolkata 700064, India
| | - Shambhu Kumar
- Forest Pathology Department, KSCSTE-Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
| | - Vineet Kumar Maurya
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| |
Collapse
|
6
|
Boulaka A, Mantellou P, Stanc GM, Souka E, Valavanis C, Saxami G, Mitsou E, Koutrotsios G, Zervakis GI, Kyriacou A, Pletsa V, Georgiadis P. Genoprotective activity of the Pleurotus eryngii mushrooms following their in vitro and in vivo fermentation by fecal microbiota. Front Nutr 2022; 9:988517. [PMID: 36082029 PMCID: PMC9445615 DOI: 10.3389/fnut.2022.988517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Pleurotus eryngii mushrooms are commercially cultivated and widely consumed due to their organoleptic properties, and the low caloric and high nutritional value. In addition, they contain various biologically active and health-promoting compounds; very recently, their genoprotective effect in Caco-2 cells after their fermentation by the human fecal microbiota was also documented. In the current study, the effect of P. eryngii pre- and post-fermentation supernatants in micronuclei formation was evaluated in human lymphocytes. In addition, the genoprotective properties of increasing concentrations of aqueous extracts from P. eryngii mushrooms (150, 300, 600 mg/kg) against the cyclophosphamide-induced DNA damage were studied in young and elderly female and male mice in bone marrow and whole blood cells. The ability of the highest dose (600 mg/kg) to regulate the main cellular signaling pathways was also evaluated in gut and liver tissues of female animals by quantifying the mRNA expression of NrF2, Nfkβ, DNMT1, and IL-22 genes. P. eryngii post-fermentation, but not pre-fermentation, supernatants were able to protect human lymphocytes from the mitomycin C-induced DNA damage in a dose-dependent manner. Similarly, genoprotection was also observed in bone marrow cells of mice treated by gavage with P. eryngii extract. The effect was observed in all the experimental groups of mice (young and elderly, male and female) and was more potent in young female mice. Overexpression of all genes examined was observed in both tissues, mainly among the elderly animals. In conclusion, P. eryngii mushrooms were shown to maintain genome integrity through protecting cells from genotoxic insults. These beneficial effects can be attributed to their antioxidant and immunomodulatory properties, as well as their ability to regulate the cell's epigenetic mechanisms and maintain cell homeostasis.
Collapse
Affiliation(s)
- Athina Boulaka
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Panagiota Mantellou
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Gabriela-Monica Stanc
- Department of Pathology, Molecular Pathology Unit, Metaxa Cancer Hospital, Piraeus, Greece
| | - Efthymia Souka
- Department of Pathology, Molecular Pathology Unit, Metaxa Cancer Hospital, Piraeus, Greece
| | - Christoς Valavanis
- Department of Pathology, Molecular Pathology Unit, Metaxa Cancer Hospital, Piraeus, Greece
| | - Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Evdokia Mitsou
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Georgios Koutrotsios
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | | | - Vasiliki Pletsa
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Panagiotis Georgiadis
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
7
|
Matías J, Rodríguez MJ, Granado-Rodríguez S, Cruz V, Calvo P, Reguera M. Changes in Quinoa Seed Fatty Acid Profile Under Heat Stress Field Conditions. Front Nutr 2022; 9:820010. [PMID: 35419388 PMCID: PMC8996139 DOI: 10.3389/fnut.2022.820010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
The nutritional quality of quinoa is often related to the high protein content of their seeds. However, and despite not being an oilseed crop, the oil composition of quinoa seeds is remarkable due to its profile, which shows a high proportion of polyunsaturated fatty acids (PUFAs), particularly in essential fatty acids such as linoleic (ω-6) and α-linolenic (ω-3). In line with this, this study aimed at evaluating the effect of elevated temperatures on the oil composition of different quinoa cultivars grown in the field in two consecutive years (i.e., 2017 and 2018). In 2017, heat stress episodes resulted in a reduced oil content and lower quality linked to decreased ratios of oleic acid:linoleic acid, larger omega-6 (ω-6) to omega-3 (ω-3) ratios, and lower monounsaturated fatty acid (MUFA) and higher PUFA contents. Furthermore, the correlations found between mineral nutrients such as phosphorous (P) and the contents of oleic and linoleic acids emphasize the possibility of optimizing oil quality by controlling fertilization. Overall, the results presented in this study show how the environmental and genetic factors and their interaction may impact oil quality in quinoa seeds.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute "La Orden-Valdesequera" of Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Badajoz, Spain
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Badajoz, Spain
| | | | - Verónica Cruz
- Agrarian Research Institute "La Orden-Valdesequera" of Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Badajoz, Spain
| | - Patricia Calvo
- Technological Institute of Food and Agriculture of Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Badajoz, Spain
| | - María Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Illuri R, M E, M K, R SB, P P, Nguyen VH, Bukhari NA, Hatamleh AA, P B. Bio-prospective potential of Pleurotus djamor and Pleurotus florida mycelial extracts towards Gram positive and Gram negative microbial pathogens causing infectious disease. J Infect Public Health 2021; 15:297-306. [PMID: 34690095 DOI: 10.1016/j.jiph.2021.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The emergence of resistance to commonly used antibiotics by human infections occurred mostly due to their overuse, that prompted individuals to pursue novel and innovative treatments. The phytochemical characteristics, antibacterial activity, and cytotoxicity of MCF7 cells were evaluated in two Pleurotus spp. mycelial extracts in this work. METHODS Pleurotus djamor and Pleurotus florida mycelial extracts from pure cultures were tested for antibacterial activity by a well-diffusion assay and antimicrobial activity against mold fungi was evaluated for biomass inhibition. Mycelial extracts were obtained from dichloromethane extracts and their biophysical characteristics are analyzed by UV-vis spectrum and FTIR analysis. By spraying detection reagents onto TLC plates, the chemicals in dichloromethane extraction of chosen mushroom fungus mycelia were identified. Using the MTT test, the cytotoxic effect of dichloromethane extracts of selected mushroom fungi was evaluated on MCF7 Cell lines. RESULTS Mycelial extracts of P. djamor and P. florida exhibited significant antimicrobial effect on the bacterial and fungal pathogens tested. Dichloromethane mycelial extracts were obtained using soxhlet extraction which response positive for various phytochemical analysis. Detection of metabolites in thin layer chromatography using spray reagents documented one of few first accounts on flavonoids, anthroquinone and terpenoid compounds in P. djamor and P. florida. P. djamor and P. florida had dose-dependent antiproliferative activity against MCF7 cells, with an inhibitory impact of 55.72% and 64.47% percent at 125 μg/mL, respectively. CONCLUSION The study has reported the identification with the potent biological activity of some of the key bioactive components present in DCM extracts from the mycelia of P. djamor and P. florida.
Collapse
Affiliation(s)
- Ramanaiah Illuri
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India
| | - Eyini M
- PG and Centre for Research in Botany, Thiagarajar College, Madurai, Tamilnadu, India
| | - Kumar M
- Department of Plant Biology and Plant Biotechnology, Madras Christian College (Autonomous), Tambaram, Chennai, Tamilnadu, India
| | - Suresh Babu R
- Department of Neurological Sciences, Rush University Medical Center, Rush University, Chicago, IL 60612, USA
| | - Prema P
- Department of Zoology, VHNSN College (Autonomous), Virudhunagar, Tamilnadu, India
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Najat A Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ashraf A Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Balaji P
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India.
| |
Collapse
|
9
|
Yadav D, Negi PS. Bioactive components of mushrooms: Processing effects and health benefits. Food Res Int 2021; 148:110599. [PMID: 34507744 DOI: 10.1016/j.foodres.2021.110599] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Mushrooms have been recognized for their culinary attributes for long and were relished in the most influential civilizations in history. Currently, they are the focus of renewed research because of their therapeutic abilities. Nutritional benefits from mushrooms are in the form of a significant source of essential proteins, dietary non-digestible carbohydrates, unsaturated fats, minerals, as well as various vitamins, which have enhanced its consumption, and also resulted in the development of various processed mushroom products. Mushrooms are also a crucial ingredient in traditional medicine for their healing potential and curative properties. The literature on the nutritional, nutraceutical, and therapeutic potential of mushrooms, and their use as functional foods for the maintenance of health was reviewed, and the available literature indicates the enormous potential of the bioactive compounds present in mushrooms. Future research should be focused on the development of processes to retain the mushroom bioactive components, and valorization of waste generated during processing. Further, the mechanisms of action of mushroom bioactive components should be studied in detail to delineate their diverse roles and functions in the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
10
|
Kiran M, Caboň M, Senko D, Khalid AN, Adamčík S. Description of the Fifth New Species of Russula subsect. Maculatinae from Pakistan Indicates Local Diversity Hotspot of Ectomycorrhizal Fungi in Southwestern Himalayas. Life (Basel) 2021; 11:662. [PMID: 34357034 PMCID: PMC8303804 DOI: 10.3390/life11070662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/14/2023] Open
Abstract
Russula subsect. Maculatinae is morphologically and phylogenetically well-defined lineage of ectomycorrhizal fungi associated with arctic, boreal, temperate and Mediterranean habitats of Northern Hemisphere. Based on phylogenetic distance among species, it seems that this group diversified relatively recently. Russula ayubiana sp. nov., described in this study, is the fifth in the group known from relatively small area of northern Pakistan situated in southwestern Himalayas. This is the highest known number of agaric lineage members from a single area in the world. This study uses available data about phylogeny, ecology, and climate to trace phylogenetic origin and ecological preferences of Maculatinae in southwestern Himalayas. Our results suggest that the area has been recently colonised by Maculatinae members migrating from various geographical areas and adapting to local conditions. We also discuss the perspectives and obstacles in research of biogeography and ecology, and we propose improvements that would facilitate the integration of ecological and biogeographical metadata from the future taxonomic studies of fungi in the region.
Collapse
Affiliation(s)
- Munazza Kiran
- Department of Cryptogams, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523 Bratislava, Slovakia; (M.K.); (M.C.); (D.S.)
- Institute of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan;
| | - Miroslav Caboň
- Department of Cryptogams, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523 Bratislava, Slovakia; (M.K.); (M.C.); (D.S.)
| | - Dušan Senko
- Department of Cryptogams, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523 Bratislava, Slovakia; (M.K.); (M.C.); (D.S.)
| | - Abdul Nasir Khalid
- Institute of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan;
| | - Slavomír Adamčík
- Department of Cryptogams, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523 Bratislava, Slovakia; (M.K.); (M.C.); (D.S.)
| |
Collapse
|
11
|
Khatua S, Paloi S, Acharya K. An untold story of a novel mushroom from tribal cuisine: an ethno-medicinal, taxonomic and pharmacological approach. Food Funct 2021; 12:4679-4695. [PMID: 33928983 DOI: 10.1039/d1fo00533b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
India showcases an array of fascinating and rare mushrooms that grow exclusively in the wilderness of West Bengal. Thus, the state has always been our prime choice to document myco-diversity and associated indigenous knowledge. Fortuitously, a recent expedition gifted us a violet-coloured Russuloid macrofungus, called "Jam Patra", that plays an integral part in the food security of local ethnic groups. However, the species has not received the much-needed attention among city dwellers and remains abandoned, motivating us to carry a thorough investigation. To our surprise, extensive analyses on morphological features and nrITS based phylogenetic estimation pointed the novelty of the taxon, as justified herein. Extending this research, a water-soluble polysaccharide-rich fraction was isolated to determine therapeutic prospects. Chemical characterization revealed that the backbone of the polymers, organized in triple-helical form, predominantly consisted of β-glucan accompanied by a lower extent of galactose, mannose and xylose. Subsequently, the effective antioxidant activity was noted in terms of radical scavenging, reducing power and chelating ability with EC50 of 305-2726 μg ml-1. Further, the macromolecules triggered murine macrophages to proliferate, phagocytose, release NO, produce intracellular ROS and change morphodynamics. A significant alleviation in the expression of TLR-2, TLR-4, NF-κB, COX-2, TNF-α, Iκ-Bα, IFN-γ, IL-10 and iNOS was also observed explaining the definite immune-stimulatory activity and supporting traditional consumption of "Jam Patra" as a health-promoting food. Altogether, the study introduces a species in the world's myco-diversity and tribal food list opening doors of various opportunities in functional food and nature-based drug development arenas, which are currently in trend.
Collapse
Affiliation(s)
- Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | | | | |
Collapse
|
12
|
Kostić M, Ivanov M, Fernandes Â, Pinela J, Calhelha RC, Glamočlija J, Barros L, Ferreira ICFR, Soković M, Ćirić A. Antioxidant Extracts of Three Russula Genus Species Express Diverse Biological Activity. Molecules 2020; 25:E4336. [PMID: 32971797 PMCID: PMC7570958 DOI: 10.3390/molecules25184336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/20/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022] Open
Abstract
This study explored the biological properties of three wild growing Russula species (R. integra, R. rosea, R. nigricans) from Serbia. Compositional features and antioxidant, antibacterial, antibiofilm, and cytotoxic activities were analyzed. The studied mushroom species were identified as being rich sources of carbohydrates and of low caloric value. Mannitol was the most abundant free sugar and quinic and malic acids the major organic acids detected. The four tocopherol isoforms were found, and polyunsaturated fatty acids were the predominant fat constituents. Regarding phenolic compounds, P-hydroxybenzoic and cinnamic acids were identified in the prepared methanolic and ethanolic extracts, which displayed antioxidant activity through the inhibition of thiobarbituric acid reactive substances (TBARS) formation and oxidative hemolysis; the highest activity was attributed to the R. nigricans ethanolic extract. This is the first report on the antibacterial and antibiofilm potential of the studied species, with the most promising activity observed towards Streptococcus spp. (0.20-0.78 mg/mL as the minimal inhibitory concentration, MIC). The most promising cytotoxic effect was caused by the R. integra methanolic extract on non-small cell lung cancer cells (NCI-H460). Therefore, due to the observed in vitro bioactive properties, the studied mushrooms arise as a source of functional ingredients with potential to be used in novel nutraceutical and drug formulations, which can be used in the treatment of various diseases and health conditions.
Collapse
Affiliation(s)
- Marina Kostić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.K.); (M.I.); (J.G.)
| | - Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.K.); (M.I.); (J.G.)
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (J.P.); (R.C.C.); (L.B.); (I.C.F.R.F.)
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (J.P.); (R.C.C.); (L.B.); (I.C.F.R.F.)
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (J.P.); (R.C.C.); (L.B.); (I.C.F.R.F.)
| | - Jasmina Glamočlija
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.K.); (M.I.); (J.G.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (J.P.); (R.C.C.); (L.B.); (I.C.F.R.F.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (J.P.); (R.C.C.); (L.B.); (I.C.F.R.F.)
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.K.); (M.I.); (J.G.)
| | - Ana Ćirić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.K.); (M.I.); (J.G.)
| |
Collapse
|