1
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
2
|
Liang J, Zeng Y, Hu H, Yin Y, Zhou X. Prevotella copri Improves Selenium Deposition and Meat Quality in the longissimus dorsi Muscle of Fattening Pigs. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10340-1. [PMID: 39105886 DOI: 10.1007/s12602-024-10340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Selenium is among the important trace elements that influence the quality of meat. Although it has been established that the gut microbiota is closely associated with selenium metabolism, it has yet to be determined whether these microbes influence the accumulation of selenium in muscles. To identify gut microbiota that potentially influence the deposition of selenium in muscles, we compared the colonic microbial composition of pigs characterized by high and low contents of selenium in the longissimus dorsi muscle and accordingly detected a higher abundance of the bacterium Prevotella copri (P. copri) in pigs with a higher muscle selenium content. To verify the effect of P. copri, 16 pigs weighing approximately 61 kg were fed either a basal diet or a basal diet supplemented with P. copri (1.0 × 1010 CFU/kg feed) for 45 days. The results revealed significant increases in the contents of selenium and selenoprotein in the serum and longissimus dorsi muscle of fattening pigs fed the P. copri-supplemented diet. Moreover, supplementing the feed of pigs with P. copri was observed to promote significant improvement in the antioxidant capacity and quality of meat, including drip loss, pH, and meat color. In conclusion, our findings in this study indicate that P. copri has potential utility as a dietary supplement for improving the selenium status and meat quality in fattening pigs.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture the Chinese Academy of Sciences, Changsha, 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yan Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture the Chinese Academy of Sciences, Changsha, 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hong Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture the Chinese Academy of Sciences, Changsha, 410125, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Xihong Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture the Chinese Academy of Sciences, Changsha, 410125, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410208, China.
| |
Collapse
|
3
|
Zhang R, Zhang P, Xia F, Jin Z, Chen S, Yu Y, Sun W. Preparation of chitosan photodynamic antibacterial film loaded with VK 3 complex in the preservation of chilled mutton. Int J Biol Macromol 2024; 274:133105. [PMID: 38876240 DOI: 10.1016/j.ijbiomac.2024.133105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
To effectively utilize the photodynamic antibacterial ability of vitamin K3 (VK3), by solving the photothermal instability of VK3, it was combined with natural polymers to apply the preservation of chilled mutton. We encapsulated VK3 in the (2-Hydroxypropyl)-β-cyclodextrin (HP-β-CD) to construct VK3-HP-β-CD complex and then introduced the complex to chitosan (CS) and polyvinyl alcohol (PVA) to fabricate an antibacterial film (CS/PVA-VK3-HP-β-CD film). Through the packaging performance test of the film, the content of VK3-HP-β-CD was an important factor determining the properties of film including tensile strength, elongation at break, water vapor permeability, water content and water contact angle. Meanwhile, CS/PVA-VK3-HP-β-CD films could continuously release ROS under light and suspended in dark, thus realizing >99 % antibacterial rate for Escherichia coli and Staphylococcus aureus. In the application experiment of chilled mutton, CS/PVA-VK3-1-HP-β-CD film could significantly inhibit the increase of total viable count (TVC), pH value (pH) and total volatile base nitrogen (TVB-N) of chilled mutton, and extended its shelf life for at least 12 days. These results indicated that the CS/PVA film with the VK3-HP-β-CD complex might have promising potential as an antibacterial material for packaging and preserving food.
Collapse
Affiliation(s)
- Rongxi Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Peng Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Fei Xia
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Zichun Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Sixu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yaxin Yu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wenxiu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
4
|
Orkusz A, Rampanti G, Michalczuk M, Orkusz M, Foligni R. Impact of Refrigerated Storage on Microbial Growth, Color Stability, and pH of Turkey Thigh Muscles. Microorganisms 2024; 12:1114. [PMID: 38930495 PMCID: PMC11206166 DOI: 10.3390/microorganisms12061114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The quality of poultry meat offered to the consumer depends mainly on the level of hygiene during all stages of its production, storage time, and temperature. This study investigated the effect of refrigerated storage on the microbiological contamination, color, and pH of turkey thigh muscles stored at 1 °C over six days. Microbial growth, including total mesophilic aerobes, presumptive lactic acid bacteria, and Enterobacteriaceae, significantly increased, impacting the meat's sensory attributes and safety. On the 6th day of meat storage, the content of total mesophilic aerobes, presumptive lactic acid bacteria, and Enterobacteriaceae was 1.82 × 107 CFU/g, 1.00 × 104 CFU/g, and 1.87 × 105 CFU/g, respectively. The stability of color was assessed by quantifying the total heme pigments, comparing myoglobin, oxymyoglobin, and metmyoglobin concentrations, analyzing color parameters L*, a*, b*, and the sensory assessment of surface color, showing a decline in total heme pigments, three myoglobin forms, redness (a*) and lightness (L*). In contrast, yellowness (b*) increased. These changes were correlated with the growth of spoilage microorganisms that influenced the meat's pigmentation and pH, with a notable rise in pH associated with microbial metabolization. Based on the conducted research, it was found that the maximum storage time of turkey thigh muscles at a temperature of 1 °C is 4 days. On the 4th day of storage, the total mesophilic aerobe content was 3.5 × 105 CFU/g. This study underscores the critical need for maintaining controlled refrigeration conditions to mitigate spoilage, ensuring food safety, and preserving turkey meat's sensory and nutritional qualities. There is a need for further research to improve turkey meat storage techniques under specific temperature conditions by studying the impact of using varying packaging materials (with different barrier properties) or the application of natural preservatives. Additionally, future studies could focus on evaluating the effectiveness of cold chain management practices to ensure the quality and safety of turkey products during storage. By addressing these research gaps, practitioners and researchers can contribute to developing more efficient and sustainable turkey meat supply chains, which may help mitigate food wastage by safeguarding the quality and safety of the meat.
Collapse
Affiliation(s)
- Agnieszka Orkusz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (R.F.)
| | - Monika Michalczuk
- Department of Animal Breeding and Production, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Martyna Orkusz
- Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Roberta Foligni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (R.F.)
| |
Collapse
|
5
|
Jiang J, Xia M, Gong H, Ma J, Sun W. Effect of magnetic field modification on oxidative stability of myoglobin in sarcoplasm systems. Food Chem 2024; 436:137691. [PMID: 37837684 DOI: 10.1016/j.foodchem.2023.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
This study aimed to investigate the effect of magnetic fields (0, 3, 6, 12 mT) on the oxidation characteristics of myoglobin (Mb) in the sarcoplasmic protein (SP) system and to understander the underlying mechanism. The metmyoglobin content, Soret band of heme iron porphyrin, protein conformation and molecular weight distribution were measured in different Mb and SP samples. The results showed that the primary oxidation site of hydroxyl radical on Mb was likely to be the porphyrin ring structure and the side chain group of protein rather than the central iron atoms, what's more, 12 mT magnetic field treatment had an inhibitory effect on the oxidative damage induced by hydroxyl radical.
Collapse
Affiliation(s)
- Jingjiao Jiang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Minquan Xia
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| |
Collapse
|
6
|
Hoa VB, Song DH, Seol KH, Kim YS, Kim HW, Bae IS, Cho SH. Effect of coating with combined chitosan and gallic acid on shelf-life stability of Jeju black cattle beef. Anim Biosci 2024; 37:123-130. [PMID: 37905318 PMCID: PMC10766466 DOI: 10.5713/ab.23.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE Beef of Jeju black cattle (JBC) is considered as a healthy meat type due to its significantly higher unsaturated fatty acids (UFA). Lipid (e.g., UFA) is highly susceptible to oxidizing agents, which results in the quality deterioration and economic value loss of meat products. Therefore, development and application of novel preservative techniques is necessary to improve the shelf-life stability of high-UFA beef. The objective of this study was to assess the applicability of chitosan-based coatings in preservation of JBC beef. METHODS Different coating solutions: 2% chitosan alone, and 2% chitosan containing 0.1% or 0.3% gallic acid were prepared to investigate their applicability in preservation of fresh beef during storage. Jeju black cattle beef (2-cm thick steaks) were non-coated (control) or coated with the above coating solutions, placed on trays, over-wrapped with plastic film and stored at 4°C. The microbiological indices, color, total volatile basic nitrogen (TVBN) and lipid oxidation of the beef were investigated after 1, 10, and 21 days of storage. RESULTS Coating with 2% chitosan alone reduced the spoilage bacteria count, TVBN and thiobarbituric acid reactive substances levels in the beef compared with control during storage (p<0.05). Noticeably, coating with 2% chitosan containing 0.1% or 0.3% gallic acid was more effective on retardation of spoilage bacteria growth, lipid oxidation and discoloration in the beef compared to the chitosan coating alone over the storage period (21 days) (p<0.05). CONCLUSION Taken together, the combined chitosan and gallic acid coating could be used as a bio-preservative technique in the meat industry.
Collapse
Affiliation(s)
- Van-Ba Hoa
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Dong-Heon Song
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Kuk-Hwan Seol
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Yun-Seok Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Hyun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - In-Seon Bae
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Soo-Hyun Cho
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| |
Collapse
|
7
|
Monteiro MLG, Mutz YDS, Francisco KDA, Rosário DKAD, Conte-Junior CA. Combined UV-C Technologies to Improve Safety and Quality of Fish and Meat Products: A Systematic Review. Foods 2023; 12:foods12101961. [PMID: 37238779 DOI: 10.3390/foods12101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to identify the best UV-C combined treatments for ensuring the safety and quality of fish and meat products. A total of 4592 articles were screened in the relevant databases, and 16 were eligible studies. For fish, the most effective treatments to reduce Gram-negative and Gram-positive bacteria were UV-C at 0.5 J/cm2 + non-thermal atmospheric plasma (NTAP) for 8 min (33.83%) and 1% Verdad N6 + 0.05 J/cm2 + vacuum packaging (25.81%), respectively. An oxygen absorber with 0.102 J/cm2 was the best combined treatment, reducing lipid oxidation (65.59%), protein oxidation (48.95), color (ΔE = 4.51), and hardness changes (18.61%), in addition to a shelf-life extension of at least 2 days. For meat products, Gram-negative bacteria were more reduced by nir-infrared heating (NIR-H; 200.36 µW/cm2/nm) combined with 0.13 J/cm2 (70.82%) and 0.11 J/cm2 (52.09%). While Gram-positive bacteria by 0.13 J/cm2 with NIR-H (200.36 µW/cm2/nm), 1, 2, or 4 J/cm2 with flash pasteurization (FP) during 1.5 or 3 s, and 2 J/cm2 with FP for 0.75 s (58.89-67.77%). LAE (5%) + 0.5 J/cm2 was promising for maintaining color and texture. UV-C combined technologies seem to be a cost-effective alternative to ensure safety with little to no quality changes in fish and meat products.
Collapse
Affiliation(s)
- Maria Lúcia Guerra Monteiro
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, RJ, Brazil
| | - Yhan da Silva Mutz
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Karen de Abreu Francisco
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Denes Kaic Alves do Rosário
- Center for Agrarian Sciences and Engineering, Federal University of Espírito Santo (UFES), Alto Universitário, S/N Guararema, Alegre 29500-000, ES, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
8
|
Mediani A, Hamezah HS, Jam FA, Mahadi NF, Chan SXY, Rohani ER, Che Lah NH, Azlan UK, Khairul Annuar NA, Azman NAF, Bunawan H, Sarian MN, Kamal N, Abas F. A comprehensive review of drying meat products and the associated effects and changes. Front Nutr 2022; 9:1057366. [PMID: 36518998 PMCID: PMC9742493 DOI: 10.3389/fnut.2022.1057366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/11/2022] [Indexed: 08/13/2023] Open
Abstract
Preserving fresh food, such as meat, is significant in the effort of combating global food scarcity. Meat drying is a common way of preserving meat with a rich history in many cultures around the globe. In modern days, dried meat has become a well enjoyed food product in the market because of its long shelf-life, taste and health benefits. This review aims to compile information on how the types of meat, ingredients and the used drying technologies influence the characteristics of dried meat in physicochemical, microbial, biochemical and safety features along with technological future prospects in the dried meat industry. The quality of dried meat can be influenced by a variety of factors, including its production conditions and the major biochemical changes that occur throughout the drying process, which are also discussed in this review. Additionally, the sensory attributes of dried meat are also reviewed, whereby the texture of meat and the preference of the market are emphasized. There are other aspects and concerning issues that are suggested for future studies. It is well-known that reducing the water content in meat helps in preventing microbial growth, which in turn prevents the presence of harmful substances in meat. However, drying the meat can change the characteristics of the meat itself, making consumers concerned on whether dried meat is safe to be consumed on a regular basis. It is important to consider the role of microbial enzymes and microbes in the preservation of their flavor when discussing dried meats and dried meat products. The sensory, microbiological, and safety elements of dried meat are also affected by these distinctive changes, which revolve around customer preferences and health concerns, particularly how drying is efficient in eliminating/reducing hazardous bacteria from the fish. Interestingly, some studies have concentrated on increasing the efficiency of dried meat production to produce a safer range of dried meat products with less effort and time. This review compiled important information from all available online research databases. This review may help the food sector in improving the efficiency and safety of meat drying, reducing food waste, while maintaining the quality and nutritional content of dried meat.
Collapse
Affiliation(s)
- Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | | | | | - Sharon Xi Ying Chan
- Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | | | - Noor Hanini Che Lah
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Ummi Kalthum Azlan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | - Nur Aida Fatin Azman
- Faculty of Information Science and Technology, Multimedia University, Malacca, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Murni Nazira Sarian
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nurkhalida Kamal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Ribeiro DM, Martins CF, Costa M, Coelho D, Pestana J, Alfaia C, Lordelo M, de Almeida AM, Freire JPB, Prates JAM. Quality Traits and Nutritional Value of Pork and Poultry Meat from Animals Fed with Seaweeds. Foods 2021; 10:2961. [PMID: 34945510 PMCID: PMC8701104 DOI: 10.3390/foods10122961] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
Seaweeds have caught the attention of the scientific community in recent years. Their production can mitigate the negative impact of anthropogenic activity and their use in animal nutrition reduces the dependency on conventional crops such as maize and soybean meal. In the context of monogastric animals, novel approaches have made it possible to optimise their use in feed, namely polysaccharide extraction, biomass fermentation, enzymatic processing, and feed supplementation with carbohydrate-active enzymes (CAZymes). Their bioactive properties make them putative candidates as feed ingredients that enhance meat quality traits, such as lipid oxidation, shelf-life, and meat colour. Indeed, they are excellent sources of essential amino acids, polyunsaturated fatty acids, minerals, and pigments that can be transferred to the meat of monogastric animals. However, their nutritional composition is highly variable, depending on species, harvesting region, local pollution, and harvesting season, among other factors. In this review, we assess the current use and challenges of using seaweeds in pig and poultry diets, envisaging to improve meat quality and its nutritional value.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (D.M.R.); (C.F.M.); (M.L.); (A.M.d.A.); (J.P.B.F.)
| | - Cátia Falcão Martins
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (D.M.R.); (C.F.M.); (M.L.); (A.M.d.A.); (J.P.B.F.)
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.C.); (D.C.); (J.P.); (C.A.)
| | - Mónica Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.C.); (D.C.); (J.P.); (C.A.)
| | - Diogo Coelho
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.C.); (D.C.); (J.P.); (C.A.)
| | - José Pestana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.C.); (D.C.); (J.P.); (C.A.)
| | - Cristina Alfaia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.C.); (D.C.); (J.P.); (C.A.)
| | - Madalena Lordelo
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (D.M.R.); (C.F.M.); (M.L.); (A.M.d.A.); (J.P.B.F.)
| | - André Martinho de Almeida
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (D.M.R.); (C.F.M.); (M.L.); (A.M.d.A.); (J.P.B.F.)
| | - João Pedro Bengala Freire
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (D.M.R.); (C.F.M.); (M.L.); (A.M.d.A.); (J.P.B.F.)
| | - José António Mestre Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.C.); (D.C.); (J.P.); (C.A.)
| |
Collapse
|
10
|
Hoa VB, Seol KH, Kang SM, Kim YS, Cho SH. A study on shelf life of prepackaged retail-ready Korean native black pork belly and shoulder butt slices during refrigerated display. Anim Biosci 2021; 34:2012-2022. [PMID: 34237929 PMCID: PMC8563243 DOI: 10.5713/ab.21.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE In most retail centers, primal pork cuts for sale are usually prepared into retail-ready slices and overwrapped with air-permeable plastic film. Also, meat of Korean native black pig (KNP) is reputed for its superior quality, however, its shelf life during retail display has not been studied. Thus, the objective of this study was to evaluate shelf life of prepackaged retail-ready KNP belly and shoulder butt slices during refrigerated display. METHODS Bellies and shoulder butt obtained at 24 h post-mortem from finishing KNP were used. Each belly or shoulder butt was manually cut into 1.5 cm-thick slices. The slices in each cut type were randomly taken and placed on white foam tray (2 slices/tray) overwrapped with polyvinyl chloride film. The retail-ready packages were then placed in a retail display cabinet at 4°C. Shelf life and sensory quality of the samples were evaluated on day 1, 3, 6, 9, 12, and 15 of display. RESULTS The shoulder butt reached the upper limit (20 mg/100 g) of volatile basic nitrogen for fresh meat after 9 days while, the belly remained within this limit throughout the display time (15 days). Both the cuts reached a thiobarbituric acid reactive substances level of above 0.5 mg malondialdehyde/kg after 9 days. The a* (redness) values remained unchanged during first 9 days in both cuts (p>0.05). After 9 days, off-flavor was not found in either cut, but higher off-flavor intensity was found in shoulder butt after 12 days. The shoulder butt was unacceptable for overall eating quality after 12 days while, belly still was acceptable after 12 days. CONCLUSION The belly showed a longer shelf life compared to the shoulder butt, and a shelf life of 9 and 12 days is recommended for the prepackaged retail-ready KNP shoulder butt and belly slices, respectively.
Collapse
Affiliation(s)
- Van-Ba Hoa
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Kuk-Hwan Seol
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Sun-Moon Kang
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Yun-Seok Kim
- R & D Performance Evaluation & Management Division, RDA, Jeonju 54875, Korea
| | - Soo-Hyun Cho
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea
| |
Collapse
|
11
|
Hearn K, Denzer M, Mitacek R, Maheswarappa NB, McDaniel C, Jadeja R, Mafi G, Beker A, Pezeshki A, Ramanathan R. Effects of Modified Atmospheric Packaging on Ground Chicken Color and Lipid Oxidation. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The objective of the current study was to evaluate the color changes and lipid oxidation of ground chicken patties packaged in polyvinyl chloride (PVC) film, high-oxygen (HiOx)–modified atmospheric packaging (MAP; 80% oxygen + 20% carbon dioxide [CO2]), and carbon monoxide (CO)-MAP (0.4% CO + 19.6% CO2 + 80% nitrogen) and stored at 2°C. Surface color was measured using a HunterLab MiniScan spectrophotometer on days 0, 1, 2, and 4. Lipid oxidation, pH, and aerobic plate count were determined on days 0 and 4 of storage. Fatty acid profiles were determined on day 0 to characterize saturated and unsaturated fatty acids. Patties packaged in PVC had greater (P < 0.05) pH than HiOx-MAP and CO-MAP. Gas chromatography analysis indicated that ground chicken has 72.8% unsaturated fatty acids and 27.2% saturated fatty acids (based on total lipids and fatty acid methyl ester). The formation of carboxymyoglobin on ground chicken patty surface was confirmed by peaks at 420 and 570 nm, whereas oxymyoglobin had peaks at 410 and 580 nm. Instrumental color analysis indicated both HiOx-MAP and CO-MAP had greater (P < 0.05) redness (a* values) than PVC on day 4 of storage. Patties packaged in HiOx-MAP had greater (P < 0.05) chroma values than CO-MAP and PVC on day 4 of storage. Visual panelists noted less (P < 0.05) surface discoloration in CO-MAP than PVC and HiOx-MAP on day 4 of storage. Lipid oxidation was greater (P < 0.05) in PVC and HiOx-MAP than CO-MAP. CO inclusion at 0.4% level effectively inhibited lipid oxidation and stabilized surface redness during refrigerated storage of ground chicken.
Collapse
Affiliation(s)
- Kathryn Hearn
- Oklahoma State University Department of Animal and Food Sciences
| | - Morgan Denzer
- Oklahoma State University Department of Animal and Food Sciences
| | - Rachel Mitacek
- Oklahoma State University Department of Animal and Food Sciences
| | | | - Conner McDaniel
- Oklahoma State University Department of Animal and Food Sciences
| | - Ravi Jadeja
- Oklahoma State University Department of Animal and Food Sciences
| | | | - Ali Beker
- Oklahoma State University Department of Animal and Food Sciences
| | - Adel Pezeshki
- Oklahoma State University Department of Animal and Food Sciences
| | | |
Collapse
|