1
|
Zhang Z, Yang X, Gao Z, Zhang M, Mu S, Cheng Y, Qu K. Effects of modification methods on the structural characteristics and functional properties of dietary fiber from cucumber. Food Chem X 2024; 24:101808. [PMID: 39310882 PMCID: PMC11415858 DOI: 10.1016/j.fochx.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Cucumbers produce by-products such as cucumber pomace during processing and most of them are discarded without being utilized. To effectively utilize the waste, cucumber pomace is used to extract both insoluble and soluble dietary fibers (DFs) using compound enzyme method (ME), High pressure processing assisted ME (HPP-ME), and dynamic high-pressure microfluidization-assisted ME (DHPM-ME). The results showed that DHPM-ME improved the extraction rate of soluble DFs most effectively, increasing it from 1.74 % to 4.08 %. The modified DFs exhibited enhanced hydration properties and functional properties after HPP-ME- and DHPM-ME-mediated auxiliary treatment. Additionally, the modified DFs exhibited improved thermal stability, increased absorption peaks in the infrared spectra, decreased crystallinity, improved glucose and cholesterol adsorption ability, and delayed glucose adsorption. The cucumber pomace-derived modified DFs can be used as a functional food additive in bakery, meat, dairy products, and beverages, and their effective use can further enhance the economic benefits.
Collapse
Affiliation(s)
- Zhiwei Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Xinyi Yang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Zhenhong Gao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Meiyue Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Shuaixue Mu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Yuying Cheng
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Kunsheng Qu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| |
Collapse
|
2
|
Ma C, Ni L, Sun M, Hu F, Guo Z, Zeng H, Sun W, Zhang M, Wu M, Zheng B. Enhancing the Hypolipidemic and Functional Properties of Flammulina velutipes Root Dietary Fiber via Steam Explosion. Foods 2024; 13:3621. [PMID: 39594038 PMCID: PMC11593700 DOI: 10.3390/foods13223621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Flammulina velutipes is an edible mushroom widely cultivated in China. As a by-product of Flammulina velutipes, the roots are rich in high-quality dietary fiber (DF). In order to obtain high-quality soluble dietary fiber (SDF), steam explosion (SE) is used as an effective modification method to improve the extraction rate and avoid the loss of active substances. Mounting evidence shows that SDF alleviates lipid metabolism disorders. However, it is not well understood how the influence of SDF with SE pretreatment could benefit lipid metabolism. In this study, we extracted a soluble dietary fiber from Flammulina velutipes root with an SE treatment, named SE-SDF, using enzymatic assisted extraction. The physicochemical and structural properties of the SE-SDF were investigated, and its hypolipidemic effects were also analyzed using oleic-acid-induced HepG2 cells. In addition, the anti-obesity and hypolipidemic effects of SE-SDF were investigated using a high-fat diet (HFD) mouse model. The results indicate that SE treatment (1.0 MPa, 105 s) increased the SDF content to 8.73 ± 0.23%. The SE-SDF was primarily composed of glucose, galactose, and mannose. In HFD-fed mice, SE-SDF significantly reduced weight gain and improved lipid profiles, while restoring liver function and reducing injury. This work provides an effective method for the processing of fungi waste and adds to its economic value. In future studies, the structural characteristics and the anti-obesity and gut microbiota regulation mechanisms of SE-SDF will be explored in depth, supporting its high-value utilization in healthcare products.
Collapse
Affiliation(s)
- Chao Ma
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.M.); (Z.G.); (H.Z.)
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China; (L.N.); (M.S.); (F.H.); (M.Z.)
| | - Liying Ni
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China; (L.N.); (M.S.); (F.H.); (M.Z.)
| | - Mengxue Sun
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China; (L.N.); (M.S.); (F.H.); (M.Z.)
| | - Fuxia Hu
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China; (L.N.); (M.S.); (F.H.); (M.Z.)
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.M.); (Z.G.); (H.Z.)
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.M.); (Z.G.); (H.Z.)
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
| | - Ming Zhang
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China; (L.N.); (M.S.); (F.H.); (M.Z.)
| | - Maoyu Wu
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China; (L.N.); (M.S.); (F.H.); (M.Z.)
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.M.); (Z.G.); (H.Z.)
| |
Collapse
|
3
|
Qiang Y, He M, Zhang S, Lin S, Guo Z, Zeng S, Zheng B. Pressure-controlled steam explosion as pretreatment for efficient extraction of Tremella fuciformis polysaccharide: Structure and bioactivity. Int J Biol Macromol 2024; 280:135766. [PMID: 39299434 DOI: 10.1016/j.ijbiomac.2024.135766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Tremella fuciformis (TF) is a mushroom with rich nutritional and medicinal value. This study aimed to develop an efficient extraction technique for TF polysaccharide (TFP) to enhance its health benefits. TF was subjected to steam explosion (SE) pretreatment at 0.5, 1.0, and 1.5 MPa for 60 s, followed by polysaccharide extraction. The extraction yield of TFP increased from 15.42 % to 50.16 % at 1.0 MPa. SE disrupted the dense structure of TFP, significantly improving total sugar and uronic acid contents, monosaccharide molar percentages of mannose and glucose, specific surface area, and ζ potential by 0.16, 0.4, 0.01, 0.83, 0.19, and 0.26 times at 0.5 MPa (P < 0.05). With increasing SE pressure, the thermal stability of TFP was enhanced, while its elasticity, viscosity, molecular weight, and particle size were reduced. TFP at 0.5 MPa significantly extended the lifespan of Drosophila melanogaster, with Tmax reaching 74 d for females and 60 d for males at a dosage of 0.015625 %, indicating a 0.32-fold enhancement. TFP enhanced climbing ability and antioxidant stress resistance, increased antioxidant enzyme activities and total antioxidant capacity, and reduced malondialdehyde levels, indicating its anti-aging effects. These findings provide theoretical and technical support for the high-value development and utilization of TFP.
Collapse
Affiliation(s)
- Yueyue Qiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Miaoyuan He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Shiyu Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China.
| |
Collapse
|
4
|
Huang Z, Qiang Y, Zhang S, Ou Y, Guo Z, Zheng B. Steam Explosion Pretreatment of Polysaccharide from Hypsizygus marmoreus: Structure and Antioxidant Activity. Foods 2024; 13:2086. [PMID: 38998592 PMCID: PMC11241018 DOI: 10.3390/foods13132086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 07/14/2024] Open
Abstract
This paper investigated the effects of steam explosion (SE) pretreatment on the structural characteristics and antioxidant activity of Hypsizygus marmoreus polysaccharides (HPS). Hypsizygus marmoreus samples were pretreated at different SE temperatures (120-200 °C) and polysaccharides were extracted using the water extraction and alcohol precipitation method. The results showed that SE pretreatment improved the extraction rate of HPS. Under the conditions of SE treatment time of 60 s and temperature of 160 °C, the extraction rate of HPS was the highest (8.78 ± 0.24%). After SE pretreatment, the structural changes of HPS tended to enhance the antioxidant activity, which showed that the content of Gal and Man in the monosaccharide composition increased and the molecular weight decreased. When testing antioxidant activity in vitro, the ability of SE-pretreated HPS to scavenge DPPH radicals, hydroxyl radicals, and superoxide anion radicals was better than that of HPS without SE pretreatment. Our findings shed light on SE pretreatment as an efficient method for extracting active polysaccharides, providing a new way to improve their extraction rate and biological activity.
Collapse
Affiliation(s)
- Zirong Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yueyue Qiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyu Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Huang Y, Li C, Zheng S, Fu X, Huang Q, Liu G, Chen Q. Influence of Three Modification Methods on the Structure, Physicochemical, and Functional Properties of Insoluble Dietary Fiber from Rosa roxburghii Tratt Pomace. Molecules 2024; 29:2111. [PMID: 38731600 PMCID: PMC11085671 DOI: 10.3390/molecules29092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Rosa roxburghii Tratt pomace is rich in insoluble dietary fiber (IDF). This study aimed to investigate the influence of three modification methods on Rosa roxburghii Tratt pomace insoluble dietary fiber (RIDF). The three modified RIDFs, named U-RIDF, C-RIDF, and UC-RIDF, were prepared using ultrasound, cellulase, and a combination of ultrasound and cellulase methods, respectively. The structure, physicochemical characteristics, and functional properties of the raw RIDF and modified RIDF were comparatively analyzed. The results showed that all three modification methods, especially the ultrasound-cellulase combination treatment, increased the soluble dietary fiber (SDF) content of RIDF, while also causing a transition in surface morphology from smooth and dense to wrinkled and loose structures. Compared with the raw RIDF, the modified RIDF, particularly UC-RIDF, displayed significantly improved water-holding capacity (WHC), oil-binding capacity (OHC), and swelling capacity (SC), with increases of 12.0%, 84.7%, and 91.3%, respectively. Additionally, UC-RIDF demonstrated the highest nitrite ion adsorption capacity (NIAC), cholesterol adsorption capacity (CAC), and bile salt adsorption capacity (BSAC). In summary, the combination of ultrasound and cellulase treatment proved to be an efficient approach for modifying IDF from RRTP, with the potential for developing a functional food ingredient.
Collapse
Affiliation(s)
- Yumeng Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.H.); (S.Z.); (X.F.); (Q.H.)
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.H.); (S.Z.); (X.F.); (Q.H.)
| | - Siyuan Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.H.); (S.Z.); (X.F.); (Q.H.)
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.H.); (S.Z.); (X.F.); (Q.H.)
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.H.); (S.Z.); (X.F.); (Q.H.)
| | - Guang Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China;
| | - Qing Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.H.); (S.Z.); (X.F.); (Q.H.)
- School of Food and Health, Guangzhou City Polytechnic, Guangzhou 510405, China
| |
Collapse
|
6
|
Chen Q, Su J, Zhang Y, Li C, Zhu S. Phytochemical Profile and Bioactivity of Bound Polyphenols Released from Rosa roxburghii Fruit Pomace Dietary Fiber by Solid-State Fermentation with Aspergillus niger. Molecules 2024; 29:1689. [PMID: 38675509 PMCID: PMC11052053 DOI: 10.3390/molecules29081689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the phytochemical profile, bioactivity, and release mechanism of bound polyphenols (BPs) released from Rosa roxburghii fruit pomace insoluble dietary fiber (RPDF) through solid-state fermentation (SSF) with Aspergillus niger. The results indicated that the amount of BPs released from RPDF through SSF was 17.22 mg GAE/g DW, which was significantly higher than that achieved through alkaline hydrolysis extraction (5.33 mg GAE/g DW). The BPs released through SSF exhibited superior antioxidant and α-glucosidase inhibitory activities compared to that released through alkaline hydrolysis. Chemical composition analysis revealed that SSF released several main compounds, including ellagic acid, epigallocatechin, p-hydroxybenzoic acid, quercetin, and 3,4-dihydroxyphenylpropionic acid. Mechanism analysis indicated that the disruption of tight structure, chemical bonds, and hemicellulose was crucial for the release of BPs from RPDF. This study provides valuable information on the potential application of SSF for the efficient release of BPs from RPDF, contributing to the utilization of RPDF as a functional food ingredient.
Collapse
Affiliation(s)
- Qing Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
- School of Food and Health, Guangzhou City Polytechnic, Guangzhou 510405, China
| | - Juan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
| | - Yue Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Siming Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| |
Collapse
|
7
|
Wang C, Lin M, Li Y, Guo Z. Improvement of soluble dietary fiber quality in Tremella fuciformis stem by steam explosion technology: An evaluation of structure and function. Food Chem 2024; 437:137867. [PMID: 37924764 DOI: 10.1016/j.foodchem.2023.137867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Edible fungi by-products are rich in dietary fiber (DF). In this study, we used steam explosion (SE) to modify Tremella fuciformis (T. fuciformis) stem DF. The SE conditions were optimized using response surface methodology (RSM), and the soluble dietary fiber (SDF) extraction rate increased 1.42-fold (from 23.33 ± 0.42 % to 33.21 ± 0.28 %) under optimized conditions. SE destroyed the dense structure of SDF, which improved the specific surface area and thermal stability. Furthermore, the structural changes induced by SE resulted in improved functional properties, and SDF had better hydration properties (water holding capacity, oil holding capacity, and swelling capacity increased by 1.23, 1.59, and 1.24 times, respectively) and hypoglycemic capacity (glucose adsorption capacity increased 1.84-fold at 100 mmol/L glucose). Therefore, SE is an excellent modification method for improving quality of edible fungi processing by-products SDF.
Collapse
Affiliation(s)
- Changrong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Mengfan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Yibin Li
- Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China.
| |
Collapse
|
8
|
Deng Y, Kan H, Li Y, Liu Y, Qiu X. Analysis of Volatile Components in Rosa roxburghii Tratt. and Rosa sterilis Using Headspace-Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. Molecules 2023; 28:7879. [PMID: 38067608 PMCID: PMC10708075 DOI: 10.3390/molecules28237879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Volatile organic compounds (VOCs) and flavor characteristics of Rosa roxburghii Tratt. (RR) and Rosa sterilis (RS) were analyzed using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The flavor network was constructed by combining relative odor activity values (ROAVs), and the signature differential flavor components were screened using orthogonal partial least squares discriminant analysis (OPLS-DA) and random forest (RF). The results showed that 61 VOCs were detected in both RR and RS: 48 in RR, and 26 in RS. There were six key flavor components (ROAVs ≥ 1) in RR, namely nonanal, ethyl butanoate, ethyl hexanoate, (3Z)-3-hexen-1-yl acetate, ethyl caprylate, and styrene, among which ethyl butanoate had the highest contribution, whereas there were eight key flavor components (ROAVs ≥ 1) in RS, namely 2-nonanol, (E)-2-hexenal, nonanal, methyl salicylate, β-ocimene, caryophyllene, α-ionone, and styrene, among which nonanal contributed the most to RS. The flavor of RR is primarily fruity, sweet, green banana, and waxy, while the flavor of RS is primarily sweet and floral. In addition, OPLS-DA and RF suggested that (E)-2-hexenal, ethyl caprylate, β-ocimene, and ethyl butanoate could be the signature differential flavor components for distinguishing between RR and RS. In this study, the differences in VOCs between RR and RS were analyzed to provide a basis for further development and utilization.
Collapse
Affiliation(s)
- Yuhang Deng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Forest Resources Exploitation and Utilization Engineering Research Center for Grand Health of Yunnan Provincial Universities, Kunming 650224, China
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Forest Resources Exploitation and Utilization Engineering Research Center for Grand Health of Yunnan Provincial Universities, Kunming 650224, China
| | - Yonghe Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xu Qiu
- Forest Resources Exploitation and Utilization Engineering Research Center for Grand Health of Yunnan Provincial Universities, Kunming 650224, China
| |
Collapse
|
9
|
Wang T, Xiao Z, Li T, Guo G, Chen S, Huang X. Improving the quality of soluble dietary fiber from Poria cocos peel residue following steam explosion. Food Chem X 2023; 19:100829. [PMID: 37780304 PMCID: PMC10534144 DOI: 10.1016/j.fochx.2023.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023] Open
Abstract
Poria cocos peel residue (PCPR) still contains much soluble dietary fiber (SDF), steam explosion (SE) treatment was applied to PCPR to create a superior SDF. Steam pressure of 1.2 MPa, residence period of 120 s, and moisture content of 13% were the optimized parameters for SE treatment of PCPR. Under optimized circumstances, SE treatment of PCPR enhanced its SDF yield from 5.24% to 23.86%. Compared to the original SDF, the SE-treated SDF displayed improved enzyme inhibition, including the inhibition of α-amylase and pancreatic lipase, also enhanced water holding, oil holding, water swelling, nutrient adsorption including cholesterol, nitrite ions, and glucose and antioxidant abilities. Additionally, it had a decreased molecular weight, improved thermal stability, and a rough surface with many pores of different sizes. Given that SDF had been improved physiochemical and functional characteristics thanks to SE treatment, it might be the excellent functional ingredient for the food business.
Collapse
Affiliation(s)
- Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Zhongshan Xiao
- Department of Pharmacy, Puyang Medical College, Puyang 457000, Henan, China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Ge Guo
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Suyun Chen
- College of Economics and Management, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| |
Collapse
|
10
|
Wang C, Lin M, Yang Q, Fu C, Guo Z. The Principle of Steam Explosion Technology and Its Application in Food Processing By-Products. Foods 2023; 12:3307. [PMID: 37685239 PMCID: PMC10486971 DOI: 10.3390/foods12173307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Steam explosion technology is an emerging pretreatment method that has shown great promise for food processing due to its ability to efficiently destroy the natural barrier structure of materials. This narrative review summarizes the principle of steam explosion technology, its similarities and differences with traditional screw extrusion technology, and the factors that affect the technology. In addition, we reviewed the applications in food processing by-products in recent years. The results of the current study indicate that moderate steam explosion treatment can improve the quality and extraction rate of the target products. Finally, we provided an outlook on the development of steam explosion technology with a reference for a wider application of this technology in the food processing field.
Collapse
Affiliation(s)
- Changrong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Mengfan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Qingyu Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Chenying Fu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
11
|
Tang X, Wang Z, Zheng J, Kan J, Chen G, Du M. Physicochemical, structure properties and in vitro hypoglycemic activity of soluble dietary fiber from adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) bran treated by steam explosion. Front Nutr 2023; 10:1124012. [PMID: 36819706 PMCID: PMC9937059 DOI: 10.3389/fnut.2023.1124012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
To enhance the content of adlay bran soluble dietary fiber (SDF) and improve its functionality, we investigated the influences of steam explosion (SE) on the physicochemical, structural properties, and in vitro hypoglycemic activities of adlay bran SDF. The cellulose, hemicellulose, and lignin contents of adlay bran decreased significantly after SE treatment. When the SE strength was 0.8 MPa for 3 min, the SDF content was 9.37%, which was a significant increase of 27.48% compared to the control. Under these conditions, SDF showed the highest oil-holding capacity (OHC) (2.18 g/g), cholesterol adsorption capacity (CAC) (27.29 mg/g), glucose adsorption capacity (GAC) (15.54 mg/g), glucose dialysis retardation index (GDRI) (36.57%), and α-Amylase activity inhibition ratio (α-AAIR) (74.14%). Compared with SDF from untreated adlay bran, SDF from SE-treated adlay bran showed lower weight molecular. In addition, differential scanning calorimetry (DSC) measurement showed that the peak temperature of SDF from adlay bran treated by SE increased by 4.19°C compared to the untreated SDF sample. The structure of SDF from adlay bran treated by SE showed that the SDF surface was rough and poriferous and the specific surface areas increased. In conclusion, SE pretreatment increases the content of SDF in adlay bran and improves its physicochemical, structural properties, and biological activities, which will be beneficial for the further exploitation of adlay bran.
Collapse
Affiliation(s)
- Xinjing Tang
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China,Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Zhirong Wang
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China
| | - Guangjing Chen
- College of Food Science, Southwest University, Chongqing, China,College of Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China,Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China,*Correspondence: Muying Du,
| |
Collapse
|
12
|
Ma C, Ni L, Guo Z, Zeng H, Wu M, Zhang M, Zheng B. Principle and Application of Steam Explosion Technology in Modification of Food Fiber. Foods 2022; 11:3370. [PMID: 36359983 PMCID: PMC9658468 DOI: 10.3390/foods11213370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Steam explosion is a widely used hydrothermal pretreatment method, also known as autohydrolysis, which has become a popular pretreatment method due to its lower energy consumption and lower chemical usage. In this review, we summarized the technical principle of steam explosion, and its definition, modification and application in dietary fiber, which have been explored by researchers in recent years. The principle and application of steam explosion technology in the modification of food dietary fiber were analyzed. The change in dietary fiber structure; physical, chemical, and functional characteristics; the advantages and disadvantages of the method; and future development trends were discussed, with the aim to strengthen the economic value and utilization of plants with high dietary fiber content and their byproducts.
Collapse
Affiliation(s)
- Chao Ma
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Liying Ni
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Zebin Guo
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Maoyu Wu
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Ming Zhang
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Baodong Zheng
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|