1
|
Alhaj OA, Jrad Z, Oussaief O, Jahrami HA, Ahmad L, Alshuniaber MA, Mehta BM. The characterization of Lactobacillus strains in camel and bovine milk during fermentation: A comparison study. Heliyon 2024; 10:e40162. [PMID: 39583842 PMCID: PMC11582401 DOI: 10.1016/j.heliyon.2024.e40162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
This study aims to compare the characterization of three Lactobacillus strains (L. helveticus, L. acidophilus, and L. paracasei subsp. paracasei) in camel milk and bovine milk during fermentation. Our finding showed that the average total viable counts of all three Lactobacilli strains in both milk types reached more than 7.0 log CFU/mL after 16 h of fermentation and continued to increase significantly (p < 0.05) as fermentation increased, which is according to the FAO and WHO, higher than the minimum recommended daily probiotic dose to provide the potential health benefits. The total count of L. paracasei subsp. paracasei was greater in fermented camel and bovine milk (8.76 and 8.98 log CFU/mL, respectively) compared to L. helveticus, and L. acidophilus. The L. helveticus exhibited the highest significant (p < 0.05) acidifying ability for both camel and bovine milk; on the other hand, L. paracasei subsp. paracasei revealed the highest significant (p < 0.05) pH in both milk. The L. acidophilus strain exhibited significantly (p < 0.05) the highest levels of free amino acids groups (FAAGs) among other tested strains in camel milk. It is concluded that the growth, viability, and proteolytic activity of three Lactobacilli strains were found to be mainly dependent on incubation time, strain, and type of milk.
Collapse
Affiliation(s)
- Omar A. Alhaj
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Zeineb Jrad
- Livestock and Wildlife Laboratory, Arid Regions Institute (IRA) Médenine, University of Gabes, Gabes, 4100, Tunisia
| | - Olfa Oussaief
- Livestock and Wildlife Laboratory, Arid Regions Institute (IRA) Médenine, University of Gabes, Gabes, 4100, Tunisia
| | - Haitham A. Jahrami
- Government Hospitals, Manama, 329, Bahrain
- College of Medicine and Health Sciences, Arabian Gulf University, Manama, 329, Bahrain
| | - Leena Ahmad
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Mohammad A. Alshuniaber
- Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Bhavbhuti M. Mehta
- Dairy Chemistry Department, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| |
Collapse
|
2
|
Mudgil P, Gan CY, Yap PG, Redha AA, Alsaadi RHS, Mohteshamuddin K, Aguilar-Toalá JE, Vidal-Limon AM, Liceaga AM, Maqsood S. Exploring the dipeptidyl peptidase IV inhibitory potential of probiotic-fermented milk: An in vitro and in silico comprehensive investigation into peptides from milk of different farm animals. J Dairy Sci 2024:S0022-0302(24)01060-9. [PMID: 39122154 DOI: 10.3168/jds.2024-25108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Bioactive peptides produced via enzymatic hydrolysis have been widely investigated for their dipeptidyl peptidase-IV (DPP-IV) inhibitory properties. However, deficit of studies on fermentation as a mean to produce DPP-IV inhibitory peptides prompted us to draw a comparative study on DPP-IV inhibitory peptides generated from cow, camel, goat, and sheep milk using probiotic fermentation. Further, peptide identification, in silico molecular interactions with DPP-IV, and ensemble docking were performed. Results obtained suggested that goat milk consistently exhibited higher hydrolysis than other milk types. Further, Pediococcus pentosaceus (PP-957) emerged as a potent probiotic, with significantly lower DPP-IV-IC50 values 0.17, 0.12, and 0.25 µg/mL protein equivalent in fermented cow, camel, and goat milk, respectively. Overall, peptides (RPPPPVAM, CHNLDELKDTR, and VLSLSQPK) exhibited strong binding affinity with binding energies of -9.31, -9.18 and -8.9 Kcal·mol-1, respectively, suggesting their potential role as DPP-IV inhibitors. Overall, this study, offers valuable information toward antidiabetic benefits of fermented milk products via inhibition of DPP-IV.
Collapse
Affiliation(s)
- Priti Mudgil
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates..
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2 LU, United Kingdom; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QDPP-IVFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Reem H Sultan Alsaadi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Khaja Mohteshamuddin
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - José E Aguilar-Toalá
- Departamento de Ciencias de la Alimentación. División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma. Av. de las Garzas 10. Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico
| | - Abraham M Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico
| | - Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory. Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, USA
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.; Zayed Centre of Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
3
|
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Liu Z, Sarkar P, Hati S. Production and characterization of anti-hypertensive and anti-diabetic peptides from fermented sheep milk with anti-inflammatory activity: in vitro and molecular docking studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38855927 DOI: 10.1002/jsfa.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND The present study aimed to evaluate the anti-hypertensive and anti-diabetic activities from biologically active peptides produced by fermented sheep milk with Lacticaseibacillus paracasei M11 (MG027695), as well as to purify and characterize the angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic peptides produced from fermented sheep milk. RESULTS After 48 h of fermentation at 37 °C, sheep milk demonstrated significant changes in anti-diabetic effects and ACE-I effects, with inhibition percentages observed for ACE inhibition (76.32%), α-amylase (70.13%), α-glucosidase (70.11%) and lipase inhibition (68.22%). The highest level of peptides (9.77 mg mL-1) was produced by optimizing the growth conditions, which included an inoculation rate of 2.5% and a 48 h of incubation period. The comparison of molecular weight distributions among protein fractions was conducted through sodium dodecyl-sulfate polyacrylamide gel electrophoresis analysis, whereas spots were separated using 2D gel electrophoresis according to both the molecular weight and pH. Peptide characterization with ultra-filtration membranes at 3 and 10 kDa allowed the study to assess molecular weight-based separation. Nitric oxide generated by lipopolysaccharide and the secretion of pro-inflammatory cytokines in RAW 264.7 immune cells were both inhibited by sheep milk fermented with M11. Fourier-transform infrared spectroscopy was employed to assess changes in functional groups after fermentation, providing insights into the structural changes occurring during fermentation. CONCLUSION The present study demonstrates that fermentation with L. paracasei (M11) led to significant changes in fermented sheep milk, enhancing its bioactive properties, notably in terms of ACE inhibition and anti-diabetic activities, and the generation of peptides with bioactive properties has potential health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rinkal Pipaliya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, India
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Srichandan Padhi
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Amit Kumar Rai
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| |
Collapse
|
4
|
Wu N, Li P, Shuang Q, Wuhanqimuge. Screening and molecular dynamics simulation of ACE inhibitory tripeptides derived from milk fermented with Lactobacillus delbrueckii QS306. Food Funct 2024; 15:2655-2667. [PMID: 38362628 DOI: 10.1039/d3fo03320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Peptides in milk fermented with Lactobacillus delbrueckii QS306 before and after ultrahigh pressure treatment were identified using proteomics. Subsequently, 16 stable tripeptides were screened out based on activity score prediction, PeptideCutter analysis, and hydrophobicity calculations. Among them, WRP, WSR, and YRP showed the best angiotensin-converting enzyme (ACE) inhibitory activity, and their semi-inhibitory concentrations were 46.707, 300.121, and 89.555 μM, respectively. WRP and WSR were competitive inhibitors, whereas YRP was non-competitive. Gastrointestinal simulation revealed that WRP and YRP had better gastrointestinal stability. The values of RMSD, ΔGbind, ΔGpol, and RSMF obtained from molecular dynamics simulation indicated that the interaction of WRP and ACE was stable. Thus, Lactobacillus delbrueckii QS306-fermented milk can serve as an important source of ACE inhibitory peptides both before and after ultrahigh pressure treatment. The strategy of in silico screening, activity evaluation, and molecular dynamics simulation adopted in this study can be applied to the large-scale screening of novel peptides with high ACE inhibitory activity.
Collapse
Affiliation(s)
- Nan Wu
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, People's Republic of China.
| | - Puyu Li
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, People's Republic of China.
| | - Quan Shuang
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, People's Republic of China.
| | - Wuhanqimuge
- Experimental center, Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, Inner Mongolia, 010017, People's Republic of China.
| |
Collapse
|
5
|
Shukla P, Sakure A, Basaiawmoit B, Khakhariya R, Maurya R, Bishnoi M, Kondepudi KK, Liu Z, Padhi S, Rai AK, Hati S. Molecular binding mechanism and novel antidiabetic and anti-hypertensive bioactive peptides from fermented camel milk with anti-inflammatory activity in raw macrophages cell lines. Amino Acids 2023; 55:1621-1640. [PMID: 37749439 DOI: 10.1007/s00726-023-03335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
The investigation was to determine the effect of camel milk fermented with Limosilactobacillus fermentum KGL4 (MTCC 25515) on ACE-inhibiting, anti-inflammatory, and diabetes-preventing properties and also to release the novel peptides with antidiabetic and anti-hypertensive attributes with molecular interaction studies. Growth conditions were optimised on the basis of total peptide production by inoculating the culture in camel milk at different rates (1.5, 2.0, and 2.5%) along with different incubation periods (12, 24, 36, and 48 h). However, after 48 h of fermentation with a 2.5% rate of inoculum, the highest proteolytic activity was obtained. Reverse phase high-pressure liquid chromatography (RP-HPLC) was used to calculate the % Rpa from permeates of 3 kDa and 10 kDa fractions. Molecular weight distributions of fermented and unfermented camel milk protein fractions were compared using SDS-PAGE. Spots obtained from 2D gel electrophoresis were separated on the basis of pH and molecular weight. Spots obtained from 2D gel were digested with trypsin, and the digested samples were subjected to RP-LC/MS for the generation of peptide sequences. The inhibition of tumour necrosis factor alpha, interleukin-6, and interleukin-1 during fermentation was studied using RAW 264.7 macrophages. In the study, fermented camel milk with KGL4 (CMKGL4) inhibited LPS-induced nitric oxide (NO) production and pro-inflammatory cytokine production (TNF-α, IL-6, and IL-1β) by the murine macrophages. The results showed that the peptide structures (YLEELHRLNK and YLQELYPHSSLKVRPILK) exhibited considerable binding affinity against hPAM and hMGA during molecular interaction studies.
Collapse
Affiliation(s)
- Pratik Shukla
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, 388110, Gujarat, India
| | - Amar Sakure
- Department of Plant Biotechnology, B.A College of Agriculture, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Bethsheba Basaiawmoit
- Dept. of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, 794002, Meghalaya, India
| | - Ruchita Khakhariya
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, 388110, Gujarat, India
| | - Ruchika Maurya
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
- Regional Center for Biotechnology, Faridabad, 121001, Haryana, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, 18, Xi'an, 710021, China
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, 737102, Sikkim, India
| | - Amit Kumar Rai
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, 388110, Gujarat, India.
| |
Collapse
|
6
|
Heo SY, Kang N, Kim EA, Kim J, Lee SH, Ahn G, Oh JH, Shin AY, Kim D, Heo SJ. Purification and Molecular Docking Study on the Angiotensin I-Converting Enzyme (ACE)-Inhibitory Peptide Isolated from Hydrolysates of the Deep-Sea Mussel Gigantidas vrijenhoeki. Mar Drugs 2023; 21:458. [PMID: 37623739 PMCID: PMC10456528 DOI: 10.3390/md21080458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023] Open
Abstract
The objective of this study was to prepare an angiotensin I-converting enzyme (ACE)-inhibitory peptide from the hydrothermal vent mussel, Gigantidas vrijenhoeki. The G. vrijenhoeki protein was hydrolyzed by various hydrolytic enzymes. The peptic hydrolysate exhibited the highest ACE-inhibitory activity and was fractionated into four molecular weight ranges by ultrafiltration. The <1 kDa fraction exhibited the highest ACE inhibitory activity and was found to have 11 peptide sequences. Among the analyzed peptides, KLLWNGKM exhibited stronger ACE inhibitory activity and an IC50 value of 0.007 μM. To investigate the ACE-inhibitory activity of the analyzed peptides, a molecular docking study was performed. KLLWNGKM exhibited the highest binding energy (-1317.01 kcal/mol), which was mainly attributed to the formation of hydrogen bonds with the ACE active pockets, zinc-binding motif, and zinc ion. These results indicate that G. vrijenhoeki-derived peptides can serve as nutritional and pharmacological candidates for controlling blood pressure.
Collapse
Affiliation(s)
- Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-Y.H.); (N.K.); (E.-A.K.); (J.K.)
- Department of Marine Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Nalae Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-Y.H.); (N.K.); (E.-A.K.); (J.K.)
| | - Eun-A Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-Y.H.); (N.K.); (E.-A.K.); (J.K.)
| | - Junseong Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-Y.H.); (N.K.); (E.-A.K.); (J.K.)
| | - Seung-Hong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea;
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea;
| | - Je Hyeok Oh
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea; (J.H.O.); (A.Y.S.); (D.K.)
| | - A Young Shin
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea; (J.H.O.); (A.Y.S.); (D.K.)
| | - Dongsung Kim
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea; (J.H.O.); (A.Y.S.); (D.K.)
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-Y.H.); (N.K.); (E.-A.K.); (J.K.)
- Department of Marine Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Chen Z, Liang W, Liang J, Dou J, Guo F, Zhang D, Xu Z, Wang T. Probiotics: functional food ingredients with the potential to reduce hypertension. Front Cell Infect Microbiol 2023; 13:1220877. [PMID: 37465757 PMCID: PMC10351019 DOI: 10.3389/fcimb.2023.1220877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Hypertension is an increasingly pressing public health concern across the globe. It can be triggered by a variety of factors such as age and diet, as well as the stress of modern life. The traditional treatment of hypertension includes calcium ion blockers, angiotensin II receptor inhibitors and β-receptor blockers, but these drugs have at least some side effects. Recent studies have revealed that intestinal flora plays a vital role in maintaining and promoting human health. This is due to the type and amount of probiotics present in the flora. Probiotics can reduce hypertension symptoms through four mechanisms: regulating vascular oxidative stress, producing short-chain fatty acids, restoring endothelial cell function, and reducing inflammation. It has been reported that certain functional foods, using probiotics as their raw material, can modify the composition of intestinal flora, thus regulating hypertension symptoms. Consequently, utilizing the probiotic function of probiotics in conjunction with the properties of functional foods to treat hypertension is a novel, side-effect-free treatment method. This study seeks to summarize the various factors that contribute to hypertension, the mechanism of probiotics in mitigating hypertension, and the fermented functional foods with probiotic strains, in order to provide a basis for the development of functional foods which utilize probiotics as their raw material and may have the potential to reduce hypertension.
Collapse
Affiliation(s)
- Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Wanjie Liang
- Research and Development Department(R&D), Shandong Ande Healthcare Apparatus Co., Ltd., Zibo, China
| | - Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Daolei Zhang
- School of Bioengineering, Shandong Polytechnic, Jinan, China
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
8
|
Wang Z, Zhou Q, Liu S, Liao D, Liu P, Lan X. Anchoring of Polymer Loops on Enzyme-Immobilized Mesoporous ZIF-8 Enhances the Recognition Selectivity of Angiotensin-Converting Enzyme Inhibitory Peptides. Molecules 2023; 28:molecules28073117. [PMID: 37049880 PMCID: PMC10095817 DOI: 10.3390/molecules28073117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Immobilized angiotensin-converting enzyme (ACE) is a promising material for the rapid screening of antihypertensive drugs, but the nonspecific adsorption is a serious problem in separation processes involving complex biological products. In this study, triblock copolymers with dopamine (DA) block as anchors and PEG block as the main body (DA-PEGx-DA) were attached to an immobilized ACE (ACE@mZIF-8/PDA, AmZP) surface via the “grafting to” strategy which endowed them with anti-nonspecific adsorption. The influence of DA-PEGx-DA chain length on nonspecific adsorption was confirmed. The excellent specificity and reusability of the obtained ACE@mZIF-8/PDA/DA-PEG5000-DA (AmZPP5000) was validated by screening two known ACE inhibitory peptides Val-Pro-Pro (VPP, competitive inhibitory peptides of ACE) and Gly-Met-Lys-Cys-Ala-Phe (GF-6, noncompetitive inhibitory peptides of ACE) from a mixture containing active and inactive compounds. These results demonstrate that anchored polymer loops are effective for high-recognition selectivity and AmZPP5000 is a promising compound for the efficient separation of ACE inhibitors in biological samples.
Collapse
Affiliation(s)
- Zefen Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Institute of Biological Manufacturing Technology Co., Ltd., Guangxi Institute of Industrial Technology, Nanning 530002, China
| | - Qian Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Siyuan Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530006, China
| | - Dankui Liao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pengru Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530006, China
- Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Xiongdiao Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530006, China
- Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
9
|
Liu C, Liu LX, Yang J, Liu YG. Exploration and analysis of the composition and mechanism of efficacy of camel milk. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
10
|
Dharmisthaben P, Sakure A, Liu Z, Maurya R, Das S, Basaiawmoit B, Kumari R, Bishnoi M, Kondepudi KK, Gawai KM, Baba WN, Maqsood S, Hati S. Identification and molecular mechanisms of novel antioxidative peptides from fermented camel milk (Kachchi breed, India) with anti‐inflammatory activity in raw macrophages cell lines. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patel Dharmisthaben
- Department of Dairy Microbiology, SMC College of Dairy Science Kamdhenu University Anand 388110 Gujarat India
| | - Amar Sakure
- Department of Agriculture Biotechnology Anand Agricultural University Anand 388110 Gujarat India
| | - Zhenbin Liu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ruchika Maurya
- Regional Centre for Biotechnology Faridabad Haryana 121001 India
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division National Agri‐Food Biotechnology Institute Knowledge City, Sector 81 SAS Nagar Punjab 140306 India
| | - Sujit Das
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura campus Tura 794001 Meghalaya India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura campus Tura 794001 Meghalaya India
| | - Reena Kumari
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura campus Tura 794001 Meghalaya India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division National Agri‐Food Biotechnology Institute Knowledge City, Sector 81 SAS Nagar Punjab 140306 India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division National Agri‐Food Biotechnology Institute Knowledge City, Sector 81 SAS Nagar Punjab 140306 India
| | - Kunal M. Gawai
- Department of Dairy Microbiology, SMC College of Dairy Science Kamdhenu University Anand 388110 Gujarat India
| | - Waqas N. Baba
- Food Science Department, College of Agriculture and Veterinary Medicine United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science Kamdhenu University Anand 388110 Gujarat India
| |
Collapse
|
11
|
TASTEMIROVA U, MUKHTARKHANOVA R, ALIMARDANOVA M, ALIBEKOV R, SHINGISOV A. Impact of vacuum freeze-drying on the reconstituted camel milk composition. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.61722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|