1
|
Duan Z, Wang Q, Wang T, Kong X, Zhu G, Qiu G, Yu H. Application of microbial agents in organic solid waste composting: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5647-5659. [PMID: 38318758 DOI: 10.1002/jsfa.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The rapid growth of organic solid waste has recently exacerbated environmental pollution problems, and its improper treatment has led to the loss of a large number of biomass resources. Here, we expound the advantages of microbial agents composting compared with conventional organic solid waste treatment technology, and review the important role of microbial agents composting in organic solid waste composting from the aspects of screening and identification, optimization of conditions, mechanism of action, combination with other technologies and ultra-high-temperature and ultra-low-temperature microbial composting. We discuss the value of microorganisms with different growth conditions in organic solid waste composting, and put forward a seasonal multi-temperature composite microbial composting technology. Provide new ideas for the all-round treatment of microbial agents in organic solid waste in the future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongxu Duan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Tianye Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiangfen Kong
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guopeng Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guankai Qiu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
2
|
Wani NR, Rather RA, Farooq A, Padder SA, Baba TR, Sharma S, Mubarak NM, Khan AH, Singh P, Ara S. New insights in food security and environmental sustainability through waste food management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17835-17857. [PMID: 36988800 PMCID: PMC10050807 DOI: 10.1007/s11356-023-26462-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Food waste has been identified as one of the major factors that constitute numerous anthropogenic activities, especially in developing countries. There is a growing problem with food waste that affects every part of the waste management system, from collection to disposal; finding long-term solutions necessitates involving all participants in the food supply chain, from farmers and manufacturers to distributors and consumers. In addition to food waste management, maintaining food sustainability and security globally is crucial so that every individual, household, and nation can always get food. "End hunger, achieve food security and enhanced nutrition, and promote sustainable agriculture" are among the main challenges of global sustainable development (SDG) goal 2. Therefore, sustainable food waste management technology is needed. Recent attention has been focused on global food loss and waste. One-third of food produced for human use is wasted every year. Source reduction (i.e., limiting food losses and waste) and contemporary treatment technologies appear to be the most promising strategy for converting food waste into safe, nutritious, value-added feed products and achieving sustainability. Food waste is also employed in industrial processes for the production of biofuels or biopolymers. Biofuels mitigate the detrimental effects of fossil fuels. Identifying crop-producing zones, bioenergy cultivars, and management practices will enhance the natural environment and sustainable biochemical process. Traditional food waste reduction strategies are ineffective in lowering GHG emissions and food waste treatment. The main contribution of this study is an inventory of the theoretical and practical methods of prevention and minimization of food waste and losses. It identifies the trade-offs for food safety, sustainability, and security. Moreover, it investigates the impact of COVID-19 on food waste behavior.
Collapse
Affiliation(s)
- Nazrana Rafique Wani
- Division of Food Science and Technology, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190025, India
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190025, India.
| | - Aiman Farooq
- Division of Food Science and Technology, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190025, India
| | - Shahid Ahmad Padder
- Division of Basic Science and Humanities, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190025, India
| | - Tawseef Rehman Baba
- Division of Fruit Science, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190025, India
| | - Sanjeev Sharma
- Centre for the Study of Regional Development (CSRD), School of Social Sciences-III, Jawaharlal Nehru University, 110 067, New Delhi, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Afzal Husain Khan
- Department of Civil Engineering, College of Engineering, Jazan University, PO Box. 706, Jazan, 45142, Saudi Arabia
| | | | - Shoukat Ara
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190025, India
| |
Collapse
|
3
|
Gallipoli A, Angelini F, Angelini S, Braguglia CM, Montecchio D, Tonanzi B, Gianico A. Thermally enhanced solid-liquid separation process in food waste biorefinery: modelling the anaerobic digestion of solid residues. Front Bioeng Biotechnol 2024; 12:1343396. [PMID: 38371422 PMCID: PMC10869513 DOI: 10.3389/fbioe.2024.1343396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
The biochemical valorization potential of food waste (FW) could be exploited by extracting decreasing added-value bio-based products and converting the final residues into energy. In this context, multi-purpose and versatile schemes integrating thermal and biochemical conversion processes will play a key role. An upstream thermal pretreatment + solid-liquid separation unit was here proposed to optimize the conversion of the liquid fraction of FW into valuable chemicals through semi-continuous fermentation process, and the conversion of the residual solid fraction into biomethane through anaerobic digestion. The solid residues obtained after thermal pretreatment presented a higher soluble COD fraction, which resulted in higher methane production with respect to the raw residues (0.33 vs. 0.29 Nm3CH4 kg-1VSfed) and higher risk of acidification and failure of methanogenesis when operating at lower HRT (20d). On the contrary, at HRT = 40 d, the pretreatment did not affect the methane conversion rates and both tests evidenced similar methane productions of 0.33 Nm3CH4 kg-1VSfed. In the reactor fed with pretreated residue, the association of hydrogenotrophic methanogens with syntrophic bacteria prevented the acidification of the system. Modelling proved the eligibility of the FW solid residues as substrates for anaerobic digestion, given their small inert fractions that ranged between 0% and 30% of the total COD content.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrea Gianico
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Rome, Italy
| |
Collapse
|
4
|
Gao Q, Li L, Zhao Q, Wang K, Zhou H, Wang W, Ding J. Insights into high-solids anaerobic digestion of food waste concomitant with sorbate: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2023; 381:129159. [PMID: 37164229 DOI: 10.1016/j.biortech.2023.129159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
High-solids anaerobic digestion (HS-AD) of food waste is increasingly applied commercially. Sorbate, a food preservative extensively used in the food industry, induces potential environmental risks. Results indicated sorbate at 0-10 mg/g VS slightly inhibited methane production, and the cumulative methane yield suggested a negative correlation with 25 mg/g VS sorbate, with a reduction of 15.0% compared to the control (from 285.7 to 253.6 mL CH4/g VS). The reduction in methane yield could be ascribed to the promotion of solubilization and inhibition of acidogenesis and methanogenesis with sorbate addition. Excessive sorbate (25 mg/g VS) resulted in the inhibition of aceticlastic metabolism and the key enzymes activities (e.g., acetate kinase and coenzyme F420). This study deeply elucidated the response mechanism of HS-AD to sorbate, supplemented the potential ecological risk assessment of sorbate, and could provide insights to further prevent the potential risk of sorbate in anaerobic digestion of FW.
Collapse
Affiliation(s)
- Qingwei Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lili Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huimin Zhou
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiye Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|