1
|
Furmanek Ł, Czarnota P, Tekiela A, Kapusta I, Seaward MRD. A spectrophotometric analysis of extracted water-soluble phenolic metabolites of lichens. PLANTA 2024; 260:40. [PMID: 38954049 PMCID: PMC11219455 DOI: 10.1007/s00425-024-04474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
MAIN CONCLUSION Rainwater most probably constitutes a relatively effective solvent for lichen substances in nature which have the potential to provide for human and environmental needs in the future. The aims were (i) to test the hypothesis on the potential solubility of lichen phenolic compounds using rainwater under conditions that partly reflect the natural environment and (ii) to propose new and effective methods for the water extraction of lichen substances. The results of spectrophotometric analyses of total phenolic metabolites in rainwater-based extracts from epigeic and epiphytic lichens, employing the Folin-Ciocalteu (F.-C.) method, are presented. The water solvent was tested at three pH levels: natural, 3, and 9. Extraction methods were undertaken from two perspectives: the partial imitation of natural environmental conditions and the potential use of extraction for economic purposes. From an ecological perspective, room-temperature water extraction ('cold' method) was used for 10-, 60-, and 120-min extraction periods. A variant of water extraction at analogous time intervals was an 'insolation' with a 100W light bulb to simulate the heat energy of the sun. For economic purposes, the water extraction method used the Soxhlet apparatus and its modified version, the 'tea-extraction' method ('hot' ones). The results showed that those extractions without an external heat source were almost ineffective, but insolation over 60- and 120-min periods proved to be more effective. Both tested 'hot' methods also proved to be effective, especially the 'tea-extraction' one. Generally, an increase in the concentration of phenolic compounds in water extracts resulted from an increasing solvent pH. The results show the probable involvement of lichen substances in biogeochemical processes in nature and their promising use for a variety of human necessities.
Collapse
Affiliation(s)
- Łukasz Furmanek
- Department of Ecology and Environmental Protection, University of Rzeszów, Zelwerowicza 4 Street, 35-601, Rzeszów, Poland.
- Unit for Assessment of Chemical, Pharmaceutical and Biological Documentation, Department for Assessment of Medicinal Products Documentation, The Office for Registration of Medicinal Products, Medical Devices and Biocidal Products, Al. Jerozolimskie 181C, Warsaw, Poland.
| | - Paweł Czarnota
- Department of Ecology and Environmental Protection, University of Rzeszów, Zelwerowicza 4 Street, 35-601, Rzeszów, Poland
| | - Agata Tekiela
- Department of Agroecology and Forest Utilization, University of Rzeszów, Ćwiklińskiej 1A Street, 35-601, Rzeszów, Poland
| | - Ireneusz Kapusta
- Department of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1 Street, 35-601, Rzeszów, Poland
| | - Mark R D Seaward
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
2
|
Mendili M, Khadhri A, Sabatini F, Degano I, Aschi-Smiti S. Parietin, the Vibrant Natural Dye in Xanthoria parietina. Chem Biodivers 2024; 21:e202301357. [PMID: 38072912 DOI: 10.1002/cbdv.202301357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024]
Abstract
The use of natural dyes in several areas is regulated by current European and non-European legislation, due to various problems with synthetic dyes. The analysis revealed that the lichen studied: Xanthoria parietina has potential natural dye sources and provides bright colors for extraction solvents. Furthermore, dyed wool and toile fabric have good fastness properties in ammonia fermentation and boiling water, both with and without mordants. The sample dyes with Xanthoria parietina were characterized by several analytical techniques: high-performance liquid chromatography with diode array detection (HPLC-DAD) and electrospray ionization with tandem mass spectrometry (HPLC-ESI-Q-ToF). As compounds from Xanthoria parietina form a complex with mordants and tissues, it is impossible to identify the molecules responsible for coloring using chromatographic techniques. However, we have evaluated the dyeing power of their major molecule, parietin. To further confirm the coloring power of the isolated parietin molecule, we performed a dye test with pure parietin. Thus, CIALAB analyses have shown parietin is the molecule responsible for the coloring obtained by Xanthoria parietina. The utilization of parietin derived from lichens facilitates the development of sustainable dyes for textile coloring, presenting an environmentally friendly alternative to synthetic dyes while simultaneously enriching lichen biodiversity.
Collapse
Affiliation(s)
- Mohamed Mendili
- Plant, soil, and environment interactions laboratory, Faculty of Sciences of Tunis, University of El Manar, Campus Academia, 2092, Tunis, Tunisia
| | - Ayda Khadhri
- Plant, soil, and environment interactions laboratory, Faculty of Sciences of Tunis, University of El Manar, Campus Academia, 2092, Tunis, Tunisia
| | - Francesca Sabatini
- Department of Chemistry and Industrial Chemistry, University of Pisa, I-56124, Pisa, Italy
| | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry, University of Pisa, I-56124, Pisa, Italy
| | - Samira Aschi-Smiti
- Plant, soil, and environment interactions laboratory, Faculty of Sciences of Tunis, University of El Manar, Campus Academia, 2092, Tunis, Tunisia
| |
Collapse
|
3
|
Studzińska-Sroka E, Bulicz M, Henkel M, Rosiak N, Paczkowska-Walendowska M, Szwajgier D, Baranowska-Wójcik E, Korybalska K, Cielecka-Piontek J. Pleiotropic Potential of Evernia prunastri Extracts and Their Main Compounds Evernic Acid and Atranorin: In Vitro and In Silico Studies. Molecules 2023; 29:233. [PMID: 38202817 PMCID: PMC10780513 DOI: 10.3390/molecules29010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Evernia prunastri is a lichen widely distributed in the Northern Hemisphere. Its biological properties still need to be discovered. Therefore, our paper focuses on studies of E. prunastri extracts, including its main metabolites evernic acid (EA) or atranorin (ATR). Phytochemical profiles using chromatographic analysis were confirmed. The antioxidant activity was evaluated using in vitro chemical tests and in vitro enzymatic cells-free tests, namely superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). The anti-inflammatory potential using cyclooxygenase-2 (COX-2) and hyaluronidase were determined. The neuroprotective potential using acetylcholinesterase, (AChE), butyrylcholinesterase (BChE), and tyrosinase (Tyr) was estimated. The hypoglycemic activity was also confirmed (α-glucosidase). Principal component analysis was performed to determine the relationship between the biological activity of extracts. The inhibitory effect of EA and ATR on COX-2 AChE, BChE, Tyr, and α-glucosidase was evaluated using molecular docking techniques and confirmed for EA and ATR (besides α-glucosidase). The penetration of EA and ATR from extracts through the blood-brain barrier was confirmed using the parallel artificial membrane permeability assay blood-brain barrier test. In conclusion, depending on chemical surroundings and the concentration, the E. prunastri extracts, EA or ATR, showed attractive pleiotropic properties, which should be further investigated.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Magdalena Bulicz
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Marika Henkel
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str., 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str., 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Katarzyna Korybalska
- Department of Patophysiology, Poznan University of Medical Science, Rokietnicka 8 Str., 60-806 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| |
Collapse
|
4
|
Norouzi H, Sohrabi M, Yousefi M, Boustie J. Tridepsides as potential bioactives: a review on their chemistry and the global distribution of their lichenic and non-lichenic natural sources. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1088966. [PMID: 37746133 PMCID: PMC10512237 DOI: 10.3389/ffunb.2023.1088966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/24/2023] [Indexed: 09/26/2023]
Abstract
Tridepsides, as fully oxidized polyketides, have been known to exist in lichens for more than a century. Recent studies have showed that these possible defensive lichenochemicals possess various biological activities. Also, a candidate biosynthetic gene cluster was recently reported for gyrophoric acid (GA), an important tridepside. The present study focused on biosynthesis, natural sources, biological activities, and bioanalytical methods of tridepside molecules. Our survey shows that, so far, lichenic tridepsides have been reported from 37 families, 111 genera, and 526 species of lichen. Because many of their species contain tridepsides, the families Parmeliaceae, Lobariaceae, and Peltigeraceae can be considered critical lichenic sources of tridepsides. Furthermore, several species of Hypotrachyna in Parmeliaceae family showed lichenic tridepsides, suggesting that this genus is a viable source of tridepsides. This research also explored tridepsides from non-lichenic sources, such as non-lichenized fungi, lichenicolous fungi, endophytes, parasites, and liverworts, which offer substantial potential as biotechnological sources to produce tridepsides, which are produced in small amounts in lichen thalli. Two lichenic tridepsides have also been detected in non-lichenic sources: GA and tenuiorin (TE). Additionally, no significant correlation was found between tridepside biosynthesis and geographical distribution patterns for several potentially tridepside-producing lichens. We further showed that GA is the most studied tridepside with various reported biological activities, including anticancer, wound healing, photoprotection, anti-aging, antioxidant, cardiovascular effect, DNA interaction, anti-diabetes, anti-Alzheimer's, anti-bacterial, and antifungal. Last but not least, this study provides an overview of some bioanalytical methods used to analyze tridepsides over the past few years.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Horticultural Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Sohrabi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Masoud Yousefi
- Department of Environmental Science, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Joel Boustie
- Univ Rennes, Centre National de la Recherche Scientifique (CNRS), ISCR (Institut des Sciences Chimiques de Rennes) - Mixed Research Unit (MRU) 6226, Rennes, France
| |
Collapse
|
5
|
Maulidiyah M, Rachman F, Mulkiyan LOMZ, Natsir M, Nohong N, Darmawan A, Salim LOA, Nurdin M. Antioxidant Activity of Usnic Acid Compound from Methanol Extract of Lichen Usnea sp. J Oleo Sci 2023; 72:179-188. [PMID: 36631103 DOI: 10.5650/jos.ess22315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lichen Usnea sp. is one of the sources of natural bioactive compounds which are currently being developed as medicinal ingredients. The purpose of this study was the isolation and identification of secondary metabolites from methanol extract, toxicity test and antioxidant activity of Usnea sp. Lichen was isolated by maceration using methanol solvent, then separated by liquid-liquid partition and separation using vacuum chromatography. Based on the results of the study, NMR-1D spectral data and FTIR spectrum is the presence of functional groups showed the presence of F15 compound is usnic acid consisting of 18 carbons with 3 carbons from the C=O carbonyl group. The results of the toxicity test showed that all of them were active against Artemia salina L. shrimp larvae with LC50 values of 0.820 µg/mL (Usnea sp.), 1.030 µg/mL (n-hexane), 1.056 µg/mL (ethyl acetate), and 1.236 µg/mL (methanol extract). The results of the antioxidant activity test showed that the inhibitory activity of usnic acid isolate was very active with an IC50 value of 11.696 µg/mL. Meanwhile, methanol extracts and ethyl acetate showed antioxidant activity with IC50 values of 18.098 and 26.917 µg/mL, respectively.
Collapse
Affiliation(s)
- Maulidiyah Maulidiyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - Faradillah Rachman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | | | - Muhammad Natsir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - Nohong Nohong
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - Akhmad Darmawan
- Research Center for Chemistry, Indonesian Institute of Sciences
| | - La Ode Agus Salim
- Department of Chemistry, Faculty of Science Technology and Health, Institut Sains Teknologi dan Kesehatan (ISTEK)
| | - Muhammad Nurdin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| |
Collapse
|
6
|
Furmanek Ł, Czarnota P, Seaward MRD. A review of the potential of lichen substances as antifungal agents: the effects of extracts and lichen secondary metabolites on Fusarium fungi. Arch Microbiol 2022; 204:523. [PMID: 35881248 PMCID: PMC9325835 DOI: 10.1007/s00203-022-03104-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
The present meta-analysis provides literature data on the effect of lichen extracts and single secondary metabolites used against Fusarium spp. moulds. Lichen extracts were obtained from 51 corticolous, 17 terricolous and 18 saxicolous lichen species and 37 secondary compounds were tested against eight fungal species, i.e., Fusarium acuminatum, F. avenaceum, F. culmorum, F. fujikuroi, F. oxysporum, F. roseum, F. solani and F. udum. The researchers used several test methods, mostly to determine MIC and IZ. Extracts were obtained using several solvents, mainly organic ones with use of the Soxhlet apparatus. The most frequently tested species was F. oxysporum, against which lichen substances from Alectoria sarmentosa, Cladonia mitis, C. rangiferina, Flavoparmelia caperata, Hypotrachyna cirrhata, Leucodermia leucomelos, Parmotrema austrosinense, P. reticulatum, Physcia aipolia, Pseudevernia furfuracea, Roccella montagnei and Umbilicaria nylanderiana and secondary metabolites such as 2-hydroxy-4-methoxy-3,6-dimethylbenzoic acid, atranorin, lecanoric and (+)-usnic acids showed the highest antifungal potential. These agencies could compete with the potential of fungicides, such as flucytosine and fluconazole. Other species have been poorly investigated. Statistical analysis of literature data showed that the fungistatic potential of lichen extracts is significantly different from individual secondary metabolites. Similarly, the potential of secondary metabolites often differs significantly from that of non-lichen substances. This meta-analysis indicates the potential of lichen substances as future anti-fusarial agents.
Collapse
Affiliation(s)
- Łukasz Furmanek
- Department of Ecology and Environmental Protection, University of Rzeszów, ul. Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Paweł Czarnota
- Department of Ecology and Environmental Protection, University of Rzeszów, ul. Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Mark R D Seaward
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
7
|
Della Greca M, Mendili M, Khadhri A, Ben Jemâa JM, Andolfi A, Tufano I, Aschi-smiti S. Anti‐Inflammatory Potential of Compounds Isolated from Tunisian Lichens Species. Chem Biodivers 2022; 19:e202200134. [DOI: 10.1002/cbdv.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Marina Della Greca
- University of Naples Federico II: Universita degli Studi di Napoli Federico II Chemical Sciences Complesso Univ. Mt. S. Angelovia Cintia, 4 80126 Napoli ITALY
| | - Mohamed Mendili
- University of Tunis El Manar: Universite de Tunis El Manar Sciences, Plant, Soil, Environment Interaction Laboratory Campus Academia Tunis TUNISIA
| | - Ayda Khadhri
- University of Tunis El Manar: Universite de Tunis El Manar Faculty of Sciences, Plant, Soil, Environment Interactions Laboratory Campus Academia Tunis TUNISIA
| | - Jouda Mediouni Ben Jemâa
- National Agricultural Research Institute Laboratory of Biotechnology Applied to Agriculture Rue Hedi Karray, El-Menzah Tunis TUNISIA
| | - Anna Andolfi
- University of Naples Federico II: Universita degli Studi di Napoli Federico II Chemical Sciences via Cinthia Naples ITALY
| | - Immacolata Tufano
- University of Naples Federico II: Universita degli Studi di Napoli Federico II Chemical Sciences via Cinthia Naples ITALY
| | - Samira Aschi-smiti
- University of Tunis El Manar: Universite de Tunis El Manar Sciences, Plant, Soil, Environment Interaction Laboratory Campus Academia Tunis TUNISIA
| |
Collapse
|
8
|
Al-Zaban M, Naghmouchi S, AlHarbi NK. HPLC-Analysis, Biological Activities and Characterization of Action Mode of Saudi Marrubium vulgare against Foodborne Diseases Bacteria. Molecules 2021; 26:molecules26175112. [PMID: 34500546 PMCID: PMC8434504 DOI: 10.3390/molecules26175112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aims to evaluate the chemical composition, metabolites secondary and pharmacology activities of methanolic extract of Marrubium vulgare collected from King Saudi Arabia. Moreover, the primary mode of action of the tested extract was studied here for the first time against E. coli and L. monocytogenes. HPLC analysis shows that the major components in the tested extract are luteolin-7-O-d-glucoside, ferulic acid and premarrubiin. Obtained data demonstrated that the investigated extract was richer in phenol (26.8 ± 0.01 mg/GAE g) than in flavonoids (0.61 ± 0.05 mg EC/mL). In addition, the methanolic extract showed an important antioxidant capacity against the DPPH (IC50 = 35 ± 0.01 µg/mL) and ABTS (IC50 = 25 ± 0.2 µg/mL) radical scavenging and a strong inhibition of acetylcholinesterase enzyme with an IC50 value corresponding to 0.4 mg/mL. The antibacterial activity demonstrated that the evaluated extract had significant activity against both Gram-positive and Gram-negative bacteria. The effect of time on cell integrity on E. coli and L. monocytogenes determined by time-kill and bacteriolysis tests showed that the M. vulgare extract reduced the viability of both strains after 8 and 10 h and had a bacteriolytic effect against two different categories of bacteria, Gram-positive and negative, which are not of the same potency. Based on obtained data, it can be concluded that Saudi M. vulgare has a high pharmacological importance and can be used in preparation of food or drugs.
Collapse
Affiliation(s)
- Mayasar Al-Zaban
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (S.N.); (N.K.A.)
- Correspondence:
| | - Souheila Naghmouchi
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (S.N.); (N.K.A.)
- National Research Institute of Rural Engineering, Water and Forestry, University of Tunis Carthage, Street of Hedi Karay BP N 10, Ariana 2080, Tunisia
| | - Nada K. AlHarbi
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (S.N.); (N.K.A.)
| |
Collapse
|
9
|
Mendili M, Seaward MRD, Khadhri A. Does the lichenicolous fungus Heterocephalacria bachmannii affect the antimicrobial potential of its host Cladonia foliacea? Nat Prod Res 2021; 36:3095-3099. [PMID: 34058928 DOI: 10.1080/14786419.2021.1933974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effects of the lichenicolous fungus Heterocephalacria bachmannii on the antimicrobial potential of the lichen Cladonia foliacea demonstrated that the extracts investigated have antimicrobial potential against gram-positive and negative bacteria, and yeast, and inhibit the germination of fungal spores. Inhibition activity varied considerably depending on the extract, the bacterial species, and the absence or presence of H. bachmannii; unparasitised C. foliacea has a higher antimicrobial activity. Methanol and acetone extracts of C. foliacea alone have higher inhibition diameters than C. foliacea with H. bachmannii against Enterobacter cloacae; the methanol extract of C. foliacea showed the best inhibition (250 µg/ml). C. foliacea also has a high lysozyme potential against Streptococcus agalactiae and Staphylococcus aureus. Fungal hyphae of Alternaria alternata were more affected by the methanol extract from C. foliacea.
Collapse
Affiliation(s)
- Mohamed Mendili
- Faculty of Sciences, Unit of Research of Plant Ecology, University of Tunis El-Manar II, Tunis, Tunisia
| | - Mark R D Seaward
- School of Archaeological & Forensic Sciences, University of Bradford, Bradford, UK
| | - Ayda Khadhri
- Faculty of Sciences, Unit of Research of Plant Ecology, University of Tunis El-Manar II, Tunis, Tunisia
| |
Collapse
|
10
|
Mendili M, Bannour M, Araújo MEM, Seaward MRD, Khadhri A. Lichenochemical Screening and Antioxidant Capacity of Four Tunisian Lichen Species. Chem Biodivers 2021; 18:e2000735. [DOI: 10.1002/cbdv.202000735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Mohamed Mendili
- University of Tunis El-Manar II Faculty of Sciences Plant Ecology Research Unit Campus Academia 2092 Tunis Tunisia
| | - Marwa Bannour
- University of Tunis El-Manar II Faculty of Sciences Plant Ecology Research Unit Campus Academia 2092 Tunis Tunisia
| | - Maria Eduarda M. Araújo
- Faculty of Sciences Center of Chemistry and Biochemistry University of Lisbon Lisboan Portugal
| | - Mark R. D. Seaward
- School of Archaeological and Forensic Sciences University of Bradford Bradford BD7 1DP UK
| | - Ayda Khadhri
- University of Tunis El-Manar II Faculty of Sciences Plant Ecology Research Unit Campus Academia 2092 Tunis Tunisia
| |
Collapse
|