1
|
Birkelbach J, Seyfert CE, Walesch S, Müller R. Harnessing Gram-negative bacteria for novel anti-Gram-negative antibiotics. Microb Biotechnol 2024; 17:e70032. [PMID: 39487848 PMCID: PMC11531245 DOI: 10.1111/1751-7915.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
Natural products have proven themselves as a valuable resource for antibiotics. However, in view of increasing antimicrobial resistance, there is an urgent need for new, structurally diverse agents that have the potential to overcome resistance and treat Gram-negative pathogens in particular. Historically, the search for new antibiotics was strongly focussed on the very successful Actinobacteria. On the other hand, other producer strains have been under-sampled and their potential for the production of bioactive natural products has been underestimated. In this mini-review, we highlight prominent examples of novel anti-Gram negative natural products produced by Gram-negative bacteria that are currently in lead optimisation or preclinical development. Furthermore, we will provide insights into the considerations and strategies behind the discovery of these agents and their putative applications.
Collapse
Affiliation(s)
- Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Saarland University Department of PharmacySaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover‐BraunschweigBraunschweigGermany
| | - Carsten E. Seyfert
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Saarland University Department of PharmacySaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover‐BraunschweigBraunschweigGermany
| | - Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Saarland University Department of PharmacySaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover‐BraunschweigBraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Saarland University Department of PharmacySaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover‐BraunschweigBraunschweigGermany
| |
Collapse
|
2
|
Sajnaga E, Kazimierczak W, Karaś MA, Jach ME. Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics. Molecules 2024; 29:5151. [PMID: 39519791 PMCID: PMC11547657 DOI: 10.3390/molecules29215151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Xenorhabdus and Photorhabdus bacteria, which live in mutualistic symbiosis with entomopathogenic nematodes, are currently recognised as an important source of bioactive compounds. During their extraordinary life cycle, these bacteria are capable of fine regulation of mutualism and pathogenesis towards two different hosts, a nematode and a wide range of insect species, respectively. Consequently, survival in a specific ecological niche favours the richness of biosynthetic gene clusters and respective metabolites with a specific structure and function, providing templates for uncovering new agrochemicals and therapeutics. To date, numerous studies have been published on the genetic ability of Xenorhabdus and Photorhabdus bacteria to produce biosynthetic novelty as well as distinctive classes of their metabolites with their activity and mechanism of action. Research shows diverse techniques and approaches that can lead to the discovery of new natural products, such as extract-based analysis, genetic engineering, and genomics linked with metabolomics. Importantly, the exploration of members of the Xenorhabdus and Photorhabdus genera has led to encouraging developments in compounds that exhibit pharmaceutically important properties, including antibiotics that act against Gram- bacteria, which are extremely difficult to find. This article focuses on recent advances in the discovery of natural products derived from these nematophilic bacteria, with special attention paid to new valuable leads for therapeutics.
Collapse
Affiliation(s)
- Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Waldemar Kazimierczak
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Magdalena Anna Karaś
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland;
| |
Collapse
|
3
|
Tomar P, Thakur N, Singh S, Kumar S, Rustagi S, Rai AK, Shreaz S, Yadav N, Rai PK, Yadav AN. Soil inhabiting bacto-helmith complex in insect pest management: Current research and future challenges. Heliyon 2024; 10:e36365. [PMID: 39253146 PMCID: PMC11381765 DOI: 10.1016/j.heliyon.2024.e36365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Pesticides have health consequences for humans, living organisms, and ecosystems. Research on biological management, with a primary focus on entomopathogens, has been accelerated by the rise in issues such as pesticide residue, soil degradation, and pest resistance. Entomopathogenic nematodes (EPNs) are among the most frequently used and commercialised biopesticides. However, they are restricted in their infectivity, persistence, storage, and cost of production. The nematodes, along with their endosymbiotic bacteria, combine to form a nemato-bacterial complex. This complex is responsible for causing mortality in insect pests due to the production of insecticidal compounds. The adaptation of EPNs is an eco-friendly method, economical, and safer for the environment as well as non-target organisms. Moreover, it's a better alternative to synthetic chemical pesticides, as it can be helpful in overcoming pest resistance and resurgence issues. Application of nematode juveniles is a cost-effective method, but the necessity of refrigeration and transportation may enhance their cost. This review emphasised the diversity of entomopathogenic nematodes and their endosymbiotic bacteria, the exploration of the biocontrol potential of insect pests by under-utilisation of nematodes, the development of nematode-based formulations, and the discussion of critical issues and required research in the future.
Collapse
Affiliation(s)
- Preety Tomar
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour-173101, Himachal Pradesh, India
| | - Neelam Thakur
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour-173101, Himachal Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Depratment of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P. O. Box 24885, 13109, Safat, Kuwait
| | - Neelam Yadav
- Centre of Research Impact and Outcome, Chitkara University, Rajpura-140401, Punjab, India
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh-174103, India
| | - Pankaj Kumar Rai
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur-173101, Himachal Pradesh, India
| |
Collapse
|
4
|
Chaudhary S, Ali W, Yadav M, Singh G, Gupta N, Grover S, Ghosh C, Chandra S, Rathore JS. Computational exploration of the genomic assignments, molecular structure, and dynamics of the ccdABXn2 toxin-antitoxin homolog with its bacterial target, the DNA gyrase, in the entomopathogen Xenorhabdus nematophila. J Biomol Struct Dyn 2024:1-15. [PMID: 38321949 DOI: 10.1080/07391102.2024.2311337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Toxin-antitoxin (TA) modules, initially discovered on bacterial plasmids and subsequently identified within chromosomal contexts, hold a pivotal role in the realm of bacterial physiology. Among these, the pioneering TA system, ccd (Control of Cell Death), primarily localized on the F-plasmid, is known for its orchestration of plasmid replication with cellular division. Nonetheless, the precise functions of such systems within bacterial chromosomal settings remain a compelling subject that demands deeper investigation. To bridge this knowledge gap, our study focuses on exploring ccdABXn2, a chromosomally encoded TA module originating from the entomopathogenic bacterium Xenorhabdus nematophila. We meticulously delved into the system's genomic assignments, structural attributes, and functional interplay. Our findings uncovered intriguing patterns-CcdB toxin homologs exhibited higher conservation levels compared to their CcdA antitoxin counterparts. Moreover, we constructed secondary as well as tertiary models for both the CcdB toxin and CcdA antitoxin using threading techniques and subsequently validated their structural integrity. Our exploration extended to the identification of key interactions, including the peptide interaction with gyrase for the CcdB homolog and CcdB toxin interactions for the CcdA homolog, highlighting the intricate TA interaction network. Through docking and simulation analyses, we unequivocally demonstrated the inhibition of replication via binding the CcdB toxin to its target, DNA gyrase. These insights provide valuable knowledge about the metabolic and physiological roles of the chromosomally encoded ccdABXn2 TA module within the context of X. nematophila, significantly enhancing our comprehension of its functional significance within the intricate ecosystem of the bacterial host.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shobhi Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Waseem Ali
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Nomita Gupta
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Sonam Grover
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Chaitali Ghosh
- Department of Zoology, Gargi College, University of Delhi, New Delhi, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, India
| | | |
Collapse
|
5
|
Trejo‐Meléndez VJ, Ibarra‐Rendón J, Contreras‐Garduño J. The evolution of entomopathogeny in nematodes. Ecol Evol 2024; 14:e10966. [PMID: 38352205 PMCID: PMC10862191 DOI: 10.1002/ece3.10966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding how parasites evolved is crucial to understand the host and parasite interaction. The evolution of entomopathogenesis in rhabditid nematodes has traditionally been thought to have occurred twice within the phylum Nematoda: in Steinernematidae and Heterorhabditidae families, which are associated with the entomopathogenic bacteria Xenorhabdus and Photorhabdus, respectively. However, nematodes from other families that are associated with entomopathogenic bacteria have not been considered to meet the criteria for "entomopathogenic nematodes." The evolution of parasitism in nematodes suggests that ecological and evolutionary properties shared by families in the order Rhabditida favor the convergent evolution of the entomopathogenic trait in lineages with diverse lifestyles, such as saprotrophs, phoretic, and necromenic nematodes. For this reason, this paper proposes expanding the term "entomopathogenic nematode" considering the diverse modes of this attribute within Rhabditida. Despite studies are required to test the authenticity of the entomopathogenic trait in the reported species, they are valuable links that represent the early stages of specialized lineages to entomopathogenic lifestyle. An ecological and evolutionary exploration of these nematodes has the potential to deepen our comprehension of the evolution of entomopathogenesis as a convergent trait spanning across the Nematoda.
Collapse
Affiliation(s)
- V. J. Trejo‐Meléndez
- Edificio de Investigación I, ENES, Unidad Morelia, UNAMMoreliaMichoacánMexico
- Posgrado en Ciencias Biológicas, ENES, Unidad Morelia, UNAMMoreliaMichoacánMexico
| | - J. Ibarra‐Rendón
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) – IrapuatoIrapuatoGuanajuatoMexico
| | - J. Contreras‐Garduño
- Edificio de Investigación I, ENES, Unidad Morelia, UNAMMoreliaMichoacánMexico
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| |
Collapse
|
6
|
Son DJ, Kim GG, Choo HY, Chung NJ, Choo YM. Functional Comparison of Three Chitinases from Symbiotic Bacteria of Entomopathogenic Nematodes. Toxins (Basel) 2024; 16:26. [PMID: 38251242 PMCID: PMC10821219 DOI: 10.3390/toxins16010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Xenorhabdus and Photorhabdus, bacterial symbionts of entomopathogenic nematodes Steinernema and Heterorhabditis, respectively, have several biological activities including insecticidal and antimicrobial activities. Thus, XnChi, XhChi, and PtChi, chitinases of X. nematophila, X. hominickii, and P. temperata isolated from Korean indigenous EPNs S. carpocapsae GJ1-2, S. monticolum GJ11-1, and H. megidis GJ1-2 were cloned and expressed in Escherichia coli BL21 to compare their biological activities. Chitinase proteins of these bacterial symbionts purified using the Ni-NTA system showed different chitobiosidase and endochitinase activities, but N-acetylglucosamidinase activities were not shown in the measuring of chitinolytic activity through N-acetyl-D-glucosarmine oligomers. In addition, the proteins showed different insecticidal and antifungal activities. XnChi showed the highest insecticidal activity against Galleria mellonella, followed by PtChi and XhChi. In antifungal activity, XhChi showed the highest half-maximal inhibitory concentration (IC50) against Fusarium oxysporum with 0.031 mg/mL, followed by PtChi with 0.046 mg/mL, and XnChi with 0.072 mg/mL. XhChi also showed the highest IC50 against F. graminearum with 0.040 mg/mL, but XnChi was more toxic than PtChi with 0.055 mg/mL and 0.133 mg/mL, respectively. This study provides an innovative approach to the biological control of insect pests and fungal diseases of plants with the biological activity of symbiotic bacterial chitinases of entomopathogenic nematodes.
Collapse
Affiliation(s)
- Da-Jeong Son
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea;
- Division of Research and Development, Jinju Bioindustry Foundation, Jinju 52839, Republic of Korea
| | - Geun-Gon Kim
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Ho-Yul Choo
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Nam-Jun Chung
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Young-Moo Choo
- Division of Research and Development, Jinju Bioindustry Foundation, Jinju 52839, Republic of Korea
| |
Collapse
|
7
|
Wang Z, Dhakal M, Vandenbossche B, Dörfler V, Barg M, Strauch O, Ehlers RU, Molina C. Enhancing mass production of Heterorhabditis bacteriophora: influence of different bacterial symbionts (Photorhabdus spp.) and inoculum age on dauer juvenile recovery. World J Microbiol Biotechnol 2023; 40:13. [PMID: 37953398 DOI: 10.1007/s11274-023-03803-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
The entomopathogenic nematode Heterorhabditis bacteriophora (Nematoda: Rhabditidae) is used in biological insect control. Their dauer juveniles (DJs) are free-living and developmentally arrested, invading host insects. They carry cells of their bacterial symbiont Photorhabdus spp. in the intestine. Once inside the insect´s hemolymph the DJs perceive a food signal, triggering them to exit the DJ stage and regurgitate the Photorhabdus cells into the insect's haemocoel, which kill the host and later provide essential nutrients for nematode reproduction. The exit from the DJ stage is called "recovery". For commercial pest control, nematodes are industrially produced in monoxenic liquid cultures. Artificial media are incubated with Photorhabdus before DJs are added. In absence of the insect's food signal, DJs depend on unknown bacterial food signals to trigger exit of the DJ stage. A synchronized and high DJ recovery determines the success of the industrial in vitro production and can significantly vary between nematode strains, inbred lines and mutants. In this study, fourteen bacterial strains from H. bacteriophora were isolated and identified as P. laumondii, P. kayaii and P. thracensis. Although the influence of bacterial supernatants on the DJ recovery of three inbred lines and two mutants differed significantly, the bacterial impact on recovery has a subordinate role whereas nematode factors have a superior influence. Recovery of inbred lines decreased with age of the DJs. One mutant (M31) had very high recovery in bacterial supernatant and spontaneous recovery in Ringer solution. Another mutant (M88) was recovery defective.
Collapse
Affiliation(s)
- Zhen Wang
- Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel, Hermann- Rodewald-Str. 4, 24118, Kiel, Germany
- e-nema GmbH, Klausdorfer Str. 28-36, 24223, Schwentinental, Germany
| | - Manoj Dhakal
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
- Prime Minister Agriculture Modernization Project (PMAMP), Vegetable Superzone, Kaski, Nepal
| | | | - Verena Dörfler
- e-nema GmbH, Klausdorfer Str. 28-36, 24223, Schwentinental, Germany
| | - Mike Barg
- e-nema GmbH, Klausdorfer Str. 28-36, 24223, Schwentinental, Germany
| | - Olaf Strauch
- e-nema GmbH, Klausdorfer Str. 28-36, 24223, Schwentinental, Germany
| | - Ralf-Udo Ehlers
- Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel, Hermann- Rodewald-Str. 4, 24118, Kiel, Germany
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Carlos Molina
- e-nema GmbH, Klausdorfer Str. 28-36, 24223, Schwentinental, Germany.
| |
Collapse
|
8
|
Maushe D, Ogi V, Divakaran K, Verdecia Mogena AM, Himmighofen PA, Machado RAR, Towbin BD, Ehlers RU, Molina C, Parisod C, Maud Robert CA. Stress tolerance in entomopathogenic nematodes: Engineering superior nematodes for precision agriculture. J Invertebr Pathol 2023:107953. [PMID: 37336478 DOI: 10.1016/j.jip.2023.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles locate and infect a host in which they will grow and multiply until resource depletion. During their free-living stage, EPNs face a series of internal and environmental stresses. Their ability to overcome these challenges is crucial to determine their infection success and survival. In this review, we provide a comprehensive overview of EPN response to stresses associated with starvation, low/elevated temperatures, desiccation, osmotic stress, hypoxia, and ultra-violet light. We further report EPN defense strategies to cope with biotic stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the genetic and biochemical basis of these strategies to the nematode model Caenorhabditis elegans, we provide new avenues and targets to select and engineer precision nematodes adapted to specific field conditions.
Collapse
Affiliation(s)
- Dorothy Maushe
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vera Ogi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Keerthi Divakaran
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | | - Paul Anton Himmighofen
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Ricardo A R Machado
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Benjamin Daniel Towbin
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Ralf-Udo Ehlers
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Carlos Molina
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
9
|
Stefanovska T, Luckhart S, Ripa L, Stevens G, Lewis E. Steinernema carpocapsae. Trends Parasitol 2023; 39:400-401. [PMID: 36682940 DOI: 10.1016/j.pt.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/22/2023]
Affiliation(s)
- Tatyana Stefanovska
- Department of Entomology, Integrated Pest Management and Plant Quarantine, The National University of Life and Environmental Sciences, Kyiv, Ukraine
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho 83844, USA
| | - Lucas Ripa
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho 83844, USA
| | - Glen Stevens
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho 83844, USA
| | - Edwin Lewis
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho 83844, USA.
| |
Collapse
|
10
|
Gallan DZ, Penteriche AB, Henrique MO, Silva-Filho MC. Sugarcane multitrophic interactions: Integrating belowground and aboveground organisms. Genet Mol Biol 2022; 46:e20220163. [PMID: 36512714 DOI: 10.1590/1678-4685-gmb-2022-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
Sugarcane is a crop of major importance used mainly for sugar and biofuel production, and many additional applications of its byproducts are being developed. Sugarcane cultivation is plagued by many insect pests and pathogens that reduce sugarcane yields overall. Recently emerging studies have shown complex multitrophic interactions in cultivated areas, such as the induction of sugarcane defense-related proteins by insect herbivory that function against fungal pathogens that commonly appear after mechanical damage. Fungi and viruses infecting sugarcane also modulate insect behavior, for example, by causing changes in volatile compounds responsible for insect attraction or repelling natural vector enemies via a mechanism that increases pathogen dissemination from infected plants to healthy ones. Interestingly, the fungus Fusarium verticillioides is capable of being vertically transmitted to insect offspring, ensuring its persistence in the field. Understanding multitrophic complexes is important to develop better strategies for controlling pathosystems affecting sugarcane and other important crops and highlights the importance of not only studying binary interactions but also adding as many variables as possible to effectively translate laboratory research to real-life conditions.
Collapse
Affiliation(s)
- Diego Z Gallan
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Augusto B Penteriche
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Maressa O Henrique
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| |
Collapse
|
11
|
Bhat CG, Budhwar R, Godwin J, Dillman AR, Rao U, Somvanshi VS. RNA-Sequencing of Heterorhabditis nematodes to identify factors involved in symbiosis with Photorhabdus bacteria. BMC Genomics 2022; 23:741. [PMCID: PMC9639317 DOI: 10.1186/s12864-022-08952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
Background Nematodes are a major group of soil inhabiting organisms. Heterorhabditis nematodes are insect-pathogenic nematodes and live in a close symbiotic association with Photorhabdus bacteria. Heterorhabditis-Photorhabdus pair offers a powerful and genetically tractable model to study animal-microbe symbiosis. It is possible to generate symbiont bacteria free (axenic) stages in Heterorhabditis. Here, we compared the transcriptome of symbiotic early-adult stage Heterorhabditis nematodes with axenic early-adult nematodes to determine the nematode genes and pathways involved in symbiosis with Photorhabdus bacteria. Results A de-novo reference transcriptome assembly of 95.7 Mb was created for H. bacteriophora by using all the reads. The assembly contained 46,599 transcripts with N50 value of 2,681 bp and the average transcript length was 2,054 bp. The differentially expressed transcripts were identified by mapping reads from symbiotic and axenic nematodes to the reference assembly. A total of 754 differentially expressed transcripts were identified in symbiotic nematodes as compared to the axenic nematodes. The ribosomal pathway was identified as the most affected among the differentially expressed transcripts. Additionally, 12,151 transcripts were unique to symbiotic nematodes. Endocytosis, cAMP signalling and focal adhesion were the top three enriched pathways in symbiotic nematodes, while a large number of transcripts coding for various responses against bacteria, such as bacterial recognition, canonical immune signalling pathways, and antimicrobial effectors could also be identified. Conclusions The symbiotic Heterorhabditis nematodes respond to the presence of symbiotic bacteria by expressing various transcripts involved in a multi-layered immune response which might represent non-systemic and evolved localized responses to maintain mutualistic bacteria at non-threatening levels. Subject to further functional validation of the identified transcripts, our findings suggest that Heterorhabditis nematode immune system plays a critical role in maintenance of symbiosis with Photorhabdus bacteria. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08952-4.
Collapse
Affiliation(s)
- Chaitra G. Bhat
- grid.418196.30000 0001 2172 0814Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012 India
| | - Roli Budhwar
- Bionivid Technology Private Limited, 209, 4th Cross Rd., B. Channasandra, Kasturi Nagar, Bengaluru, Karnataka 560043 India
| | - Jeffrey Godwin
- Bionivid Technology Private Limited, 209, 4th Cross Rd., B. Channasandra, Kasturi Nagar, Bengaluru, Karnataka 560043 India
| | - Adler R. Dillman
- grid.266097.c0000 0001 2222 1582Department of Nematology, University of California, Riverside, 92521 USA
| | - Uma Rao
- grid.418196.30000 0001 2172 0814Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012 India
| | - Vishal S. Somvanshi
- grid.418196.30000 0001 2172 0814Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012 India
| |
Collapse
|
12
|
Baazeem A, Alotaibi SS, Khalaf LK, Kumar U, Zaynab M, Alharthi S, Darwish H, Alghamdi A, Jat SK, Al-Barty A, Albogami B, Noureldeen A, Ravindran B. Identification and environment-friendly biocontrol potential of five different bacteria against Aphis punicae and Aphis illinoisensis (Hemiptera: Aphididae). Front Microbiol 2022; 13:961349. [PMID: 36386662 PMCID: PMC9640465 DOI: 10.3389/fmicb.2022.961349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
The current work is aimed at isolating and identifying new Entomopathogenic bacterium (EPB) strains associated with Steinernema feltiae and assessing the EPB’s biocontrol potential on Aphis punicae and Aphis illinoisensis adults in the laboratory. From S. feltiae, five bacterial isolates were isolated and molecularly characterized. Lysinibacillus xylanilyticus strain TU-2, Lysinibacillus xylanilyticus strain BN-13, Serratia liquefaciens strain TU-6, Stenotrophomonas tumulicola strain T5916-2-1b, and Pseudochrobactrum saccharolyticum strain CCUG are the strains. Pathogenicity tests demonstrated that bacterial cells were more toxic against the two aphid species than bacterial cell-free supernatants. S. tumulicola strain T5916-2-1b cells and filtrate were reported to have the strongest potential to kill A. punicae and A. illinoisensis individuals within 6 h after treatment, with 100% mortality of both insects 24 and 48 h after treatment. Based on the results of the study, it looked like endogenous Steinernema-associated EPB could be used directly as a biocontrol agent for A. punicae and A. illinoisensis.
Collapse
Affiliation(s)
- Alaa Baazeem
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Luaay Kahtan Khalaf
- Department of Plant Protection, College of Agricultural Engineering Science, University of Baghdad, Baghdad, Iraq
| | - Uttam Kumar
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Akram Alghamdi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Suresh Kumar Jat
- Department of Plant Protection, College of Horticulture and Forestry, Agriculture University, Kota, India
| | - Amal Al-Barty
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Bander Albogami
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed Noureldeen
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- *Correspondence: Ahmed Noureldeen,
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Suwon, South Korea
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
- Balasubramani Ravindran,
| |
Collapse
|
13
|
Muangpat P, Meesil W, Ngoenkam J, Teethaisong Y, Thummeepak R, Sitthisak S, Tandhavanant S, Chantratita N, Bode HB, Vitta A, Thanwisai A. Genome analysis of secondary metabolite‑biosynthetic gene clusters of Photorhabdus akhurstii subsp. akhurstii and its antibacterial activity against antibiotic-resistant bacteria. PLoS One 2022; 17:e0274956. [PMID: 36129957 PMCID: PMC9491552 DOI: 10.1371/journal.pone.0274956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022] Open
Abstract
Xenorhabdus and Photorhabdus can produce a variety of secondary metabolites with broad spectrum bioactivity against microorganisms. We investigated the antibacterial activity of Xenorhabdus and Photorhabdus against 15 antibiotic-resistant bacteria strains. Photorhabdus extracts had strong inhibitory the growth of Methicillin-resistant Staphylococcus aureus (MRSA) by disk diffusion. The P. akhurstii s subsp. akhurstii (bNN168.5_TH) extract showed lower minimum inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC). The interaction between either P. akhurstii subsp. akhurstii (bNN141.3_TH) or P. akhurstii subsp. akhurstii (bNN168.5_TH) or P. hainanensis (bNN163.3_TH) extract in combination with oxacillin determined by checkerboard assay exhibited partially synergistic interaction with fractional inhibitory concentration index (FICI) of 0.53. Time-killing assay for P. akhurstii subsp. akhurstii (bNN168.5_TH) extract against S. aureus strain PB36 significantly decreased cell viability from 105 CFU/ml to 103 CFU/ml within 30 min (P < 0.001, t-test). Transmission electron microscopic investigation elucidated that the bNN168.5_TH extract caused treated S. aureus strain PB36 (MRSA) cell membrane damage. The biosynthetic gene clusters of the bNN168.5_TH contained non-ribosomal peptide synthetase cluster (NRPS), hybrid NRPS-type l polyketide synthase (PKS) and siderophore, which identified potentially interesting bioactive products: xenematide, luminmide, xenortide A-D, luminmycin A, putrebactin/avaroferrin and rhizomide A-C. This study demonstrates that bNN168.5_TH showed antibacterial activity by disrupting bacterial cytoplasmic membrane and the draft genome provided insights into the classes of bioactive products. This also provides a potential approach in developing a novel antibacterial agent.
Collapse
Affiliation(s)
- Paramaporn Muangpat
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
| | - Wipanee Meesil
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
| | - Jatuporn Ngoenkam
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
| | - Yothin Teethaisong
- Faculty of Allied Health Sciences, Department of Biomedical Sciences, Burapha University, Chonburi, Thailand
- Research Unit for Sensor Inovation (RUSI), Burapha University, Chon Buri, Thailand
| | - Rapee Thummeepak
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
| | - Sutthirat Sitthisak
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
| | - Sarunporn Tandhavanant
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Helge B. Bode
- Molekulare Biotechnologie, Goethe Universität Frankfurt, Frankfurt am Main, Germany
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Apichat Vitta
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
- Faculty of Sciences, Center of Excellence for Biodiversity, Naresuan University, Phitsanulok, Thailand
- Faculty of Medical Science, Centre of Excellence in Medical Biotechnology (CEMB), Naresuan University, Phitsanulok, Thailand
| | - Aunchalee Thanwisai
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
- Faculty of Sciences, Center of Excellence for Biodiversity, Naresuan University, Phitsanulok, Thailand
- Faculty of Medical Science, Centre of Excellence in Medical Biotechnology (CEMB), Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
14
|
Abd-Elgawad MMM. Xenorhabdus spp.: An Overview of the Useful Facets of Mutualistic Bacteria of Entomopathogenic Nematodes. Life (Basel) 2022; 12:1360. [PMID: 36143397 PMCID: PMC9503066 DOI: 10.3390/life12091360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/17/2022] Open
Abstract
Mounting concern over the misuse of chemical pesticides has sparked broad interest for safe and effective alternatives to control plant pests and pathogens. Xenorhabdus bacteria, as pesticidal symbionts of the entomopathogenic nematodes Steinernema species, can contribute to this solution with a treasure trove of insecticidal compounds and an ability to suppress a variety of plant pathogens. As many challenges face sound exploitation of plant-phytonematode interactions, a full useful spectrum of such interactions should address nematicidal activity of Xenorhabdus. Steinernema-Xenorhabdus complex or Xenorhabdus individually should be involved in mechanisms underlying the favorable side of plant-nematode interactions in emerging cropping systems. Using Xenorhabdus bacteria should earnestly be harnessed to control not only phytonematodes, but also other plant pests and pathogens within integrated pest management plans. This review highlights the significance of fitting Xenorhabdus-obtained insecticidal, nematicidal, fungicidal, acaricidal, pharmaceutical, antimicrobial, and toxic compounds into existing, or arising, holistic strategies, for controlling many pests/pathogens. The widespread utilization of Xenorhabdus bacteria, however, has been slow-going, due to costs and some issues with their commercial processing. Yet, advances have been ongoing via further mastering of genome sequencing, discovering more of the beneficial Xenorhabdus species/strains, and their successful experimentations for pest control. Their documented pathogenicity to a broad range of arthropods and pathogens and versatility bode well for useful industrial products. The numerous beneficial traits of Xenorhabdus bacteria can facilitate their integration with other tactics for better pest/disease management programs.
Collapse
Affiliation(s)
- Mahfouz M M Abd-Elgawad
- Plant Pathology Department, Agricultural and Biological Research Division, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
15
|
Abd El-Raheem AM, Abdelazeem Elmasry AM, Elbrense H, Vergara-Pineda S. Photorhabdus and Xenorhabdus as Symbiotic Bacteria for Bio-Control Housefly ( Musca domestica L.). Pak J Biol Sci 2022; 25:586-601. [PMID: 36098165 DOI: 10.3923/pjbs.2022.586.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
<b>Background and Objective:</b> The housefly poses a threat to the public health of humans and domestic animals since it can carry and transmit pathogens. Despite there are many attempts to control this insect, most of them depend on conventional pesticides. Thus, the current study aimed to evaluate the efficacy of whole-cell suspension, cell-free supernatant and crude cells of the symbiotic bacteria <i>Photorhabdus</i> sp. and <i>Xenorhabdus</i> sp., as bio-control agents for housefly stages. <b>Materials and Methods:</b> The <i>Photorhabdus</i> sp. and <i>Xenorhabdus</i> sp., were isolated from the entomopathogenic nematodes, <i>Heterorhabditis indica</i> and <i>Steinernema feltiae</i>, respectively. The phenotypic, as well as the enzymatic characterizations of both bacteria, were determined. In addition, histopathological changes of the alimentary canal of <i>M. domestica</i> adults treated with whole-cell suspensions (at 3×10<sup>8 </sup>cells mL<sup></sup><sup>1</sup>) of both bacteria were carefully examined using transmission electron microscopy. <b>Results:</b> The results showed that both symbiotic bacteria significantly suppressed larvae, pupae and adults of <i>M. domestica</i>, particularly when they were applied as whole-cell suspensions. For example, the highest concentration of whole-cell suspension, cell-free supernatant and crude cells of <i>Photorhabdus</i> sp., induced larval mortalities by 94.7, 64.0 and 45.3%, while those of <i>Xenorhabdus</i> sp., induced larval mortalities by 58.7, 46.7 and 30.7% at 96 hrs, respectively. The results also showed that whole-cell suspensions of both symbiotic bacteria caused severe histopathological changes in the ultrastructure of the treated adults' alimentary canal. <b>Conclusion:</b> Both symbiotic bacteria can be effectively used, particularly the whole-cell suspension, as bio-control agents against the housefly either in the larval or adult stage.
Collapse
|
16
|
Ramakrishnan J, Salame L, Nasser A, Glazer I, Ment D. Survival and efficacy of entomopathogenic nematodes on exposed surfaces. Sci Rep 2022; 12:4629. [PMID: 35301390 PMCID: PMC8931053 DOI: 10.1038/s41598-022-08605-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Abstract
Entomopathogenic nematodes (EPN) species differ in their capability to withstand rapid desiccation (RD). Infective juveniles of Steinernema carpocapsae are a better adaptable and tolerant than Steinernema feltiae or Heterorhabditis bacteriophora as, an optimal RH of > 90% is required by S. feltiae and H. bacteriophora while maintaining RH equivalent to 74% could sustain survival of S. carpocapsae under RD. Our findings from infectivity suggest that following application, shrunk IJs are acquired passively by the larvae, probably rehydrate and resume infection within the insect gut. Water loss rate is a key factor affecting survival of S. carpocapsae on exposed surfaces. The present study provides the foundation for characterizing mechanism of rapid rate of water loss in EPN. ATR-FTIR is a rapid and reliable method for analysis of water loss. Changes in peak intensity was observed at 3100-3600 cm-1 (OH bonds of water), 2854 cm-1 (CH stretching of symmetric CH2, acyl chains), 2924 cm-1 (CH stretching of anti-symmetric CH2, lipid packing heterogeneity), 1634 cm-1 (amide I bonds) indicate major regions for hydration dependent changes in all EPN species. FTIR data also indicates that, S. carpocapsae contains strong water interacting regions in their biochemical profile, which could be an influencing factor in their water holding capacity under RD. ATR-FTIR were correlated to water content determined gravimetrically by using Partial Least square -Regression and FTIR multivariate method, which could be used to screen a formulation's potential to maintain or delay the rate of water loss in a rapid and efficient manner.
Collapse
Affiliation(s)
- Jayashree Ramakrishnan
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Institute, 7505101, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food & Environment the Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Liora Salame
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Ahmed Nasser
- Inter-Institutional Analytical Unit, Agricultural Research Organization (ARO), Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Itamar Glazer
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Institute, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
17
|
Rivera-Ramírez A, Salgado-Morales R, Jiménez-Pérez A, Pérez-Martínez R, García-Gómez BI, Dantán-González E. Comparative Genomics and Pathogenicity Analysis of Two Bacterial Symbionts of Entomopathogenic Nematodes: The Role of the GroEL Protein in Virulence. Microorganisms 2022; 10:microorganisms10030486. [PMID: 35336062 PMCID: PMC8950339 DOI: 10.3390/microorganisms10030486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Bacteria of the genera Xenorhabdus and Photorhabdus are symbionts of entomopathogenic nematodes. Despite their close phylogenetic relationship, they show differences in their pathogenicity and virulence mechanisms in target insects. These differences were explored by the analysis of the pangenome, as it provides a framework for characterizing and defining the gene repertoire. We performed the first pangenome analysis of 91 strains of Xenorhabdus and Photorhabdus; the analysis showed that the Photorhabdus genus has a higher number of genes associated with pathogenicity. However, biological tests showed that whole cells of X. nematophila SC 0516 were more virulent than those of P. luminescens HIM3 when both were injected into G. mellonella larvae. In addition, we cloned and expressed the GroEL proteins of both bacteria, as this protein has been previously indicated to show insecticidal activity in the genus Xenorhabdus. Among these proteins, Cpn60-Xn was found to be the most toxic at all concentrations tested, with an LC50 value of 102.34 ng/larva. Sequence analysis suggested that the Cpn60-Xn toxin was homologous to Cpn60-Pl; however, Cpn60-Xn contained thirty-five differentially substituted amino acid residues that could be responsible for its insecticidal activity.
Collapse
Affiliation(s)
- Abraham Rivera-Ramírez
- Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, Mexico;
| | - Rosalba Salgado-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, Mexico; (R.S.-M.); (R.P.-M.)
| | - Alfredo Jiménez-Pérez
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle Ceprobi No. 8, San Isidro, Yautepec 62739, Morelos, Mexico;
| | - Rebeca Pérez-Martínez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, Mexico; (R.S.-M.); (R.P.-M.)
| | - Blanca Inés García-Gómez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico;
| | - Edgar Dantán-González
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, Mexico; (R.S.-M.); (R.P.-M.)
- Correspondence: ; Tel.: +52-777-329-7000
| |
Collapse
|
18
|
García-Sánchez AM, Miller AZ, Caldeira AT, Cutillas C. Bacterial communities from Trichuris spp. A contribution to deciphering the role of parasitic nematodes as vector of pathogens. Acta Trop 2022; 226:106277. [PMID: 34919951 DOI: 10.1016/j.actatropica.2021.106277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/25/2023]
Abstract
Microbiome taxa associated with parasitic nematodes is unknown. These invertebrate parasites could act not only as reservoirs and vectors for horizontally transferred virulence factors, but could also provide a potential pool of future emerging pathogens. Trichuris trichiura and Trichuris suis are geohelminths parasitizing the caecum of primates, including humans, and pigs, respectively. The present work is a preliminary study to evaluate the bacterial communities associated with T. trichiura and T. suis, using High Throughput Sequencing and checking the possible presence of pathogens in these nematodes, to determine whether parasitic helminths act as vectors for bacterial pathogens in human and animal hosts. Five T. trichiura adult specimens were obtained from the caecum of macaque (Macaca sylvanus) and two T. suis adults were collected from the caecum of swine (Sus scrofa domestica). The 16S rRNA gene HTS approach was employed to investigate the composition and diversity of bacterial communities in Trichuris spp., with special emphasis at its intestinal level. All samples showed a rich colonization by bacteria, included, preferently, in the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria and Verrucomicrobia. A total of 36 phyla and more than 200 families were identified in the samples. Potential pathogen bacteria were detected in these helminths related to the genera Bartonella, Mycobacterium, Rickettsia, Salmonella, Escherichia/Shigella, Aeromonas and Clostridium. The presence of pathogenic bacteria in Trichuris spp. would position these species as a new threat to humans since these nematodes could spread new diseases. This study will also contribute to the understanding of the host-microbiota relation.
Collapse
|
19
|
Booysen E, Malan AP, Dicks LM. Colour of Heterorhabditis zealandica-infected-Galleria mellonella dependent on the Photorhabdus symbiont, with two new nematode-symbiotic associations reported. J Invertebr Pathol 2022; 189:107729. [DOI: 10.1016/j.jip.2022.107729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
20
|
Dutta TK, Veeresh A, Mathur C, Phani V, Mandal A, Sagar D, Nebapure SM. The induced knockdown of GmCAD receptor protein encoding gene in Galleria mellonella decreased the insect susceptibility to a Photorhabdus akhurstii oral toxin. Virulence 2021; 12:2957-2971. [PMID: 34882066 PMCID: PMC8667893 DOI: 10.1080/21505594.2021.2006996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/12/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
Photorhabdus bacteria secrete a repertoire of protein toxins that can kill the host insect. Among them, toxin complex (Tc) proteins have gained significant attention due to their wider conservation across the different bacterial genera. In our laboratory, a C-terminal domain of TcaB protein was characterized from P. akhurstii bacterium that conferred the potent oral insecticidal effect on Galleria mellonella. However, the role of insect gut receptors in the TcaB intoxication process was yet to be investigated. In the current study, we examined the transcription of candidate midgut receptors in TcaB-infected larvae and subsequently cloned a cadherin-like gene, GmCAD, from G. mellonella. GmCAD was highly transcribed in the fourth-instar larval stage and specifically in the midgut tissues. Our ligand blot and binding ELISA assays indicated that TcaB binds to the truncated peptides from the GmCAD transmembrane-proximal region with greater affinity than that from the transmembrane-distal region. Oral administration of bacterially expressed GmCAD dsRNA in G. mellonella severely attenuated the expression of target mRNA, which in turn alleviated the negative effect of TcaB on insect survival (TcaB-induced mortality in CAD dsRNA pretreated larvae reduced by 72-83% compared to control), implying the association of GmCAD in the TcaB intoxication process. Present findings form a basis of future research related to the insect gut receptor interactions with Photorhabdus toxins.
Collapse
Affiliation(s)
- Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arudhimath Veeresh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chetna Mathur
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, India
| | - Abhishek Mandal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Doddachowdappa Sagar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh M. Nebapure
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
21
|
Acquisition of bioluminescent trait by non-luminous organisms from luminous organisms through various origins. Photochem Photobiol Sci 2021; 20:1547-1562. [PMID: 34714534 DOI: 10.1007/s43630-021-00124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Bioluminescence is a natural light emitting phenomenon that occurs due to a chemical reaction between luciferin and luciferase. It is primarily an innate and inherited trait in most terrestrial luminous organisms. However, most luminous organisms produce light in the ocean by acquiring luminous symbionts, luciferin (substrate), and/or luciferase (enzyme) through various transmission pathways. For instance, coelenterazine, a well-known luciferin, is obtained by cnidarians, crustaceans, and deep-sea fish through multi-level dietary linkages from coelenterazine producers such as ctenophores, decapods, and copepods. In contrast, some non-luminous Vibrio bacteria became bioluminescent by obtaining lux genes from luminous Vibrio species by horizontal gene transfer. Various examples detailed in this review show how non-luminescent organisms became luminescent by acquiring symbionts, dietary luciferins and luciferases, and genes. This review highlights three modes (symbiosis, ingestion, and horizontal gene transfer) that allow organisms lacking genes for autonomous bioluminescent systems to obtain the ability to produce light. In addition to bioluminescence, this manuscript discusses the acquisition of other traits such as pigments, fluorescence, toxins, and others, to infer the potential processes of acquisition.
Collapse
|
22
|
Photorhabdus spp.: An Overview of the Beneficial Aspects of Mutualistic Bacteria of Insecticidal Nematodes. PLANTS 2021; 10:plants10081660. [PMID: 34451705 PMCID: PMC8401807 DOI: 10.3390/plants10081660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022]
Abstract
The current approaches to sustainable agricultural development aspire to use safer means to control pests and pathogens. Photorhabdus bacteria that are insecticidal symbionts of entomopathogenic nematodes in the genus Heterorhabditis can provide such a service with a treasure trove of insecticidal compounds and an ability to cope with the insect immune system. This review highlights the need of Photorhabdus-derived insecticidal, fungicidal, pharmaceutical, parasiticidal, antimicrobial, and toxic materials to fit into current, or emerging, holistic strategies, mainly for managing plant pests and pathogens. The widespread use of these bacteria, however, has been slow, due to cost, natural presence within the uneven distribution of their nematode partners, and problems with trait stability during in vitro culture. Yet, progress has been made, showing an ability to overcome these obstacles via offering affordable mass production and mastered genome sequencing, while detecting more of their beneficial bacterial species/strains. Their high pathogenicity to a wide range of arthropods, efficiency against diseases, and versatility, suggest future promising industrial products. The many useful properties of these bacteria can facilitate their integration with other pest/disease management tactics for crop protection.
Collapse
|
23
|
Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii. Appl Microbiol Biotechnol 2021; 105:5517-5528. [PMID: 34250572 DOI: 10.1007/s00253-021-11435-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Xenorhabdus and Photorhabdus spp. are enteric bacterial symbionts of Steinernema and Heterorhabditis nematodes, respectively. These bacteria produce an extensive set of natural products (NPs) with antibacterial, antifungal, antiprotozoal, insecticidal, or other bioactivities when vectored into insect hemocoel by nematodes. We assessed the in vitro activity of different Xenorhabdus and Photorhabdus cell-free supernatants against important fungal phytopathogens, viz., Cryphonectria parasitica, Fusarium oxysporum, Rhizoctonia solani, and Sclerotinia sclerotiorum and identified the bioactive antifungal compound/s present in the most effective bacterial supernatant using the easyPACId (easy promoter-activated compound identification) approach against chestnut blight C. parasitica. Our data showed that supernatants from Xenorhabdus species were comparatively more effective than extracts from Photorhabdus in suppressing the fungal pathogens; among the bacteria assessed, Xenorhabdus szentirmaii was the most effective species against all tested phytopathogens especially against C. parasitica. Subsequent analysis revealed fabclavines as antifungal bioactive compounds in X. szentirmaii, generated by a polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) hybrid system. Fabclavines are broad-spectrum, heat-stable NPs that have great potential as biological control compounds against fungal plant pathogens. More studies are needed to assess the potential phytotoxicity of these compounds and their effects on non-target organisms before commercialization. KEY POINTS: • Chemical fungicides have toxic effects on humans and other non-target organisms. • Alternatives with novel modes of action to supplant current fungicide are needed. • A novel bioactive antifungal compound from Xenorhabdus szentirmaii was identified.
Collapse
|
24
|
Zhao C, Miao S, Yin Y, Zhu Y, Nabity P, Bansal R, Liu C. Tripartite parasitic and symbiotic interactions as a possible mechanism of horizontal gene transfer. Ecol Evol 2021; 11:7018-7028. [PMID: 34141272 PMCID: PMC8207144 DOI: 10.1002/ece3.7550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/03/2022] Open
Abstract
Herbivory is a highly sophisticated feeding behavior that requires abilities of plant defense suppression, phytochemical detoxification, and plant macromolecule digestion. For plant-sucking insects, salivary glands (SGs) play important roles in herbivory by secreting and injecting proteins into plant tissues to facilitate feeding. Little is known on how insects evolved secretory SG proteins for such specialized functions. Here, we investigated the composition and evolution of secretory SG proteins in the brown marmorated stink bug (Halyomorpha halys) and identified a group of secretory SG phospholipase C (PLC) genes with highest sequence similarity to the bacterial homologs. Further analyses demonstrated that they were most closely related to PLCs of Xenorhabdus, a genus of Gammaproteobacteria living in symbiosis with insect-parasitizing nematodes. These suggested that H. halys might acquire these PLCs from Xenorhabdus through the mechanism of horizontal gene transfer (HGT), likely mediated by a nematode during its parasitizing an insect host. We also showed that the original HGT event was followed by gene duplication and expansion, leading to functional diversification of the bacterial-origin PLC genes in H. halys. Thus, this study suggested that an herbivore might enhance adaptation through gaining genes from an endosymbiont of its parasite in the tripartite parasitic and symbiotic interactions.
Collapse
Affiliation(s)
- Chaoyang Zhao
- Department of Botany and Plant SciencesUniversity of California RiversideRiversideCAUSA
| | - Shaoming Miao
- Sino‐American Biological Control LaboratoryInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yanfang Yin
- Sino‐American Biological Control LaboratoryInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yanjuan Zhu
- Sino‐American Biological Control LaboratoryInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Paul Nabity
- Department of Botany and Plant SciencesUniversity of California RiversideRiversideCAUSA
| | - Raman Bansal
- USDA‐ARSSan Joaquin Valley Agricultural Sciences CenterParlierCAUSA
| | - Chenxi Liu
- Sino‐American Biological Control LaboratoryInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
25
|
Nanopore-Sequencing Characterization of the Gut Microbiota of Melolontha melolontha Larvae: Contribution to Protection against Entomopathogenic Nematodes? Pathogens 2021; 10:pathogens10040396. [PMID: 33806200 PMCID: PMC8067285 DOI: 10.3390/pathogens10040396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
This study focused on the potential relationships between midgut microbiota of the common cockchafer Melolontha melolontha larvae and their resistance to entomopathogenic nematodes (EPN) infection. We investigated the bacterial community associated with control and unsusceptible EPN-exposed insects through nanopore sequencing of the 16S rRNA gene. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant bacterial phyla within the complex and variable midgut microbiota of the wild M. melolontha larvae. The core microbiota was found to include 82 genera, which accounted for 3.4% of the total number of identified genera. The EPN-resistant larvae differed significantly from the control ones in the abundance of many genera belonging to the Actinomycetales, Rhizobiales, and Clostridiales orders. Additionally, the analysis of the microbiome networks revealed different sets of keystone midgut bacterial genera between these two groups of insects, indicating differences in the mutual interactions between bacteria. Finally, we detected Xenorhabdus and Photorhabdus as gut residents and various bacterial species exhibiting antagonistic activity against these entomopathogens. This study paves the way to further research aimed at unravelling the role of the host gut microbiota on the output of EPN infection, which may contribute to enhancement of the efficiency of nematodes used in eco-friendly pest management.
Collapse
|
26
|
Ahuja A, Kushwah J, Mathur C, Chauhan K, Dutta TK, Somvanshi VS. Identification of Galtox, a new protein toxin from Photorhabdus bacterial symbionts of Heterorhabditis nematodes. Toxicon 2021; 194:53-62. [PMID: 33610634 DOI: 10.1016/j.toxicon.2021.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 01/25/2023]
Abstract
The Gram-negative bacteria Photorhabdus lives in a symbiotic relationship with the insect-pathogenic Heterorhabditis nematodes and produces numerous hydrolytic enzymes, secondary metabolites and protein toxins. Seven Photorhabdus strains were previously isolated from the Heterorhabditis nematodes collected from different geographical regions of India. The strains IARI-SGMG3, IARI-SGHR2, IARI-SGHR4, IARI-SGMS1 and IARI-SGGJ2 were identified as P. akhurstii, whereas IARI-SGLDK1 and IARI-SGHP1 were identified as P. laumondii subsp. laumondii and P. laumondii subsp. clarkeii, respectively. A new and previously unreported 35 kDa molecular weight protein toxin 'Galtox' was identified from these Photorhabdus strains. The nucleotide sequences of the toxin gene from seven Photorhabdus strains were PCR amplified, sequenced, cloned into pET protein expression vector, and the protein toxin was expressed and purified. The Galtox sequence from various strains showed variations in sequence and toxicity against Galleria mellonella. The injection of purified Galtox protein into the 4th instar larvae showed median lethal dose (LD50) values of 2.39-26.08 ng toxin/g G. mellonella bodyweight after 48 h. The protein injection killed the insects quickly and exhibited a median lethal time (LT50) of 12-60 h when injected at the rate of 3.1-31.2 ng toxin/g G. mellonella bodyweight. Galtox protein sequence analysis indicated similarity to several bacterial toxin-related protein domains, such as 6rgnA domain of Bordetella membrane targeting toxin BteA, 6gy6 domain of Xenorhabdus α-Xenorhabdolysins, 4mu6A and 4xa9a domains similar to effector protein LegC3 from Legionella pneumophila and 1cv8.1 domain of staphylococcal cysteine proteinase staphopain B. The mode of action of Galtox needs to be understood to enable its use for the management of agricultural insect-pests.
Collapse
Affiliation(s)
- Amit Ahuja
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyoti Kushwah
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Chetna Mathur
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Khushbu Chauhan
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Tushar Kanti Dutta
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vishal Singh Somvanshi
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
27
|
Migunova VD, Sasanelli N. Bacteria as Biocontrol Tool against Phytoparasitic Nematodes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020389. [PMID: 33670522 PMCID: PMC7922938 DOI: 10.3390/plants10020389] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 05/04/2023]
Abstract
Phytoparasitic nematodes cause severe damage and yield losses to numerous agricultural crops. Considering the revision of the EU legislation on the use of pesticides on agricultural crops, control strategies with low environmental impact are required. The approach based on the use of bacteria seems particularly promising as it also helps to reduce the applied amounts of chemicals and stabilize ecological changes. This paper gives an overview of the main types of bacteria that can be used as biological control agents against plant parasitic nematodes and their interrelationships with plants and other organisms. Many experiments have given positive results of phytoparasitic nematode control by bacteria, showing possible prospects for their application. In vitro, greenhouse and field experiments have shown that bacteria can regulate the development of ecto- and endoparasitic nematodes by different modes of action. Triggering the induction of plant defense mechanisms by bacteria is seen as the optimum tool because the efficacy of bacterial treatment can be higher than that of chemical pesticides or at least close to it. Moreover, bacterial application produces additional positive effects on growth stimulation, raises yields and suppresses other pathogenic microorganisms. Commercial formulations, both as single bacterial strains and bacterial complexes, are examined.
Collapse
Affiliation(s)
- Varvara D. Migunova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
- Correspondence:
| | - Nicola Sasanelli
- Institute for Sustainable Plant Protection, CNR, Via G. Amendola 122/D, 70126 Bari, Italy;
| |
Collapse
|
28
|
Heryanto C, Eleftherianos I. Nematode endosymbiont competition: Fortune favors the fittest. Mol Biochem Parasitol 2020; 238:111298. [PMID: 32621939 DOI: 10.1016/j.molbiopara.2020.111298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/20/2023]
Abstract
Endosymbiotic bacteria that obligately associate with entomopathogenic nematodes as a complex are a unique model system to study competition. These nematodes seek an insect host and provide entry for their endosymbionts. Through their natural products, the endosymbionts nurture their nematodes by eliminating secondary infection, providing nutrients through bioconversion of the insect cadaver, and facilitating reproduction. On one hand, they cooperatively colonize the insect host and neutralize other opportunistic biotic threats. On the other hand, inside the insect cadaver as a fighting pit, they fiercely compete for the fittest partnership that will grant them the reproductive dominance. Here, we review the protective and nurturing nature of endosymbiotic bacteria for their nematodes and how their selective preference shapes the superior nematode-endosymbiont pairs as we know today.
Collapse
Affiliation(s)
- Christa Heryanto
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| |
Collapse
|