1
|
Self-potent anti-microbial and anti-fouling action of silver nanoparticles derived from lichen-associated bacteria. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Olawale F, Ariatti M, Singh M. Biogenic Synthesis of Silver-Core Selenium-Shell Nanoparticles Using Ocimum tenuiflorum L.: Response Surface Methodology-Based Optimization and Biological Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2516. [PMID: 34684956 PMCID: PMC8539562 DOI: 10.3390/nano11102516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
Bimetallic nanoparticles (BNPs) have shown better biological potential compared to their monometallic counterparts owing to the synergistic effect produced by these alloys. In this study, selenium-capped silver nanoparticles (Ag@Se NPs) were synthesized using an Ocimum tenuiflorum extract. These BNPs were characterized using UV-visible, Fourier transform infrared spectroscopy, nanoparticle tracking analysis, electron microscopy and energy dispersive x-ray analysis. Response surface methodology was used to understand how extract volume and temperature influenced the zeta potential, hydrodynamic size and NP concentration. The phytoconstituents were identified using gas chromatography-mass spectrometry (GC-MS) and molecular docking studies were performed on B-DNA to determine possible genotoxicity. Antioxidant activities, in vitro cytotoxicity (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay), and genotoxicity (Allium cepa root cells) of these BNPs, were also evaluated. A surface plasmon resonance band around 420 nm confirmed BNP formation with significant quantities of silver and selenium. The Ag@Se NPs displayed good stability, dispersity, antioxidant activity, and compatibility at low concentrations but showed significant cytotoxicity and genotoxicity at high concentrations. Molecular docking analysis showed weak interactions between the plant constituents and B-DNA, suggesting no genotoxicity. These results provide an insight into the conditions required for optimal production of eco-friendly Ag@Se NPs with interesting biological properties.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (F.O.); (M.A.)
| |
Collapse
|
3
|
Cao H, Qin H, Li Y, Jandt KD. The Action-Networks of Nanosilver: Bridging the Gap between Material and Biology. Adv Healthc Mater 2021; 10:e2100619. [PMID: 34309242 PMCID: PMC11468843 DOI: 10.1002/adhm.202100619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Indexed: 01/06/2023]
Abstract
The emergence of nanosilver (silver in nanoscale shapes and their assemblies) benefits the landscape of modern healthcare; however, this brings about concerns over its safety issues associated with an ultrasmall size and high mobility. By reviewing previous reporting details about the synthesis and characterization of nanosilver and its biological responses, a gap between materials synthesis and their biomedical uses is characterized by the insufficient understanding of the interacting and interplaying nanoscale actions of silver. To improve reporting quality and advance clinical translations, it is suggested that researchers have a comprehensive recognition of the "Indications for use" before designing innovative nanosilver-based materials and an "Action-network" concept addressing the acting range and strength of those nanoscale actions is implemented. Although this discussion is specific to nanosilver, the idea of "Indications for use" centered design and synthesis is generally applicable to other biomedical nanomaterials.
Collapse
Affiliation(s)
- Huiliang Cao
- Lab of Low‐Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
- Shanghai Engineering Research Center of Hierarchical NanomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
- Chair of Materials ScienceOtto Schott Institute of Materials ResearchFriedrich Schiller University JenaJena07743Germany
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yongsheng Li
- Lab of Low‐Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
- Shanghai Engineering Research Center of Hierarchical NanomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Klaus D. Jandt
- Chair of Materials ScienceOtto Schott Institute of Materials ResearchFriedrich Schiller University JenaJena07743Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJena07743Germany
- Jena School for Microbial Communication (JSMC)Neugasse 23Jena07743Germany
| |
Collapse
|
4
|
Ruiz-Ruiz B, Arellano-García ME, Radilla-Chávez P, Salas-Vargas DS, Toledano-Magaña Y, Casillas-Figueroa F, Luna Vazquez-Gomez R, Pestryakov A, García-Ramos JC, Bogdanchikova N. Cytokinesis-Block Micronucleus Assay Using Human Lymphocytes as a Sensitive Tool for Cytotoxicity/Genotoxicity Evaluation of AgNPs. ACS OMEGA 2020; 5:12005-12015. [PMID: 32548379 PMCID: PMC7271025 DOI: 10.1021/acsomega.0c00149] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (AgNPs) are the most used nanomaterials worldwide due to their excellent antibacterial, antiviral, and antitumor activities, among others. However, there is scarce information regarding their genotoxic potential measured using human peripheral blood lymphocytes. In this work, we present the cytotoxic and genotoxic behavior of two commercially available poly(vinylpyrrolidone)-coated silver nanoparticle (PVP-AgNPs) formulations that can be identified as noncytotoxic and nongenotoxic by just evaluating micronuclei (MNi) induction and the mitotic index, but present enormous differences when other parameters such as cytostasis, apoptosis, necrosis, and nuclear damage (nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs)) are analyzed. The results show that Argovit (35 nm PVP-AgNPs) and nanoComposix (50 nm PVP-AgNPs), at concentrations from 0.012 to 12 μg/mL, produce no changes in the nuclear division index (NDI) or micronuclei (MNi) frequency compared with the values found on control cultures of human blood peripheral lymphocytes from a healthy donor. Still, 50 nm PVP-AgNPs significantly decrease the replication index and significantly increase cytostasis, apoptosis, necrosis, and the frequencies of nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs). These results provide evidence that the cytokinesis-block micronucleus (CBMN) assay using human lymphocytes and evaluating the eight parameters provided by the technique is a sensitive, fast, accurate, and inexpensive detection tool to support or discard AgNPs or other nanomaterials, which is worthwhile for continued testing of their effectiveness and toxicity for biomedical applications. In addition, it provides very important information about the role played by the [coating agent]/[metal] ratio in the design of nanomaterials that could reduce adverse effects as much as possible while retaining their therapeutic capabilities.
Collapse
Affiliation(s)
- Balam Ruiz-Ruiz
- Laboratorio
de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, C.P. 22860 Ensenada, Baja California, México
| | - María Evarista Arellano-García
- Laboratorio
de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, C.P. 22860 Ensenada, Baja California, México
| | - Patricia Radilla-Chávez
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - David Sergio Salas-Vargas
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Yanis Toledano-Magaña
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Francisco Casillas-Figueroa
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Roberto Luna Vazquez-Gomez
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Alexey Pestryakov
- Department
of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Juan Carlos García-Ramos
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Nina Bogdanchikova
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, C.P. 22879 Ensenada, Baja California, México
| |
Collapse
|
5
|
Koklesova L, Liskova A, Samec M, Qaradakhi T, Zulli A, Smejkal K, Kajo K, Jakubikova J, Behzadi P, Pec M, Zubor P, Biringer K, Kwon TK, Büsselberg D, Sarria GR, Giordano FA, Golubnitschaja O, Kubatka P. Genoprotective activities of plant natural substances in cancer and chemopreventive strategies in the context of 3P medicine. EPMA J 2020; 11:261-287. [PMID: 32547652 PMCID: PMC7272522 DOI: 10.1007/s13167-020-00210-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022]
Abstract
Severe durable changes may occur to the DNA structure caused by exogenous and endogenous risk factors initiating the process of carcinogenesis. By evidence, a large portion of malignancies have been demonstrated as being preventable. Moreover, the targeted prevention of cancer onset is possible, due to unique properties of plant bioactive compounds. Although genoprotective effects of phytochemicals have been well documented, there is an evident lack of articles which would systematically present the spectrum of anticancer effects by phytochemicals, plant extracts, and plant-derived diet applicable to stratified patient groups at the level of targeted primary (cancer development) and secondary (cancer progression and metastatic disease) prevention. Consequently, clinical implementation of knowledge accumulated in the area is still highly restricted. To stimulate coherent co-development of the dedicated plant bioactive compound investigation on one hand and comprehensive cancer preventive strategies on the other hand, the current paper highlights and deeply analyses relevant evidence available in the area. Key molecular mechanisms are presented to detail genoprotective and anticancer activities of plants and phytochemicals. Clinical implementation is discussed. Based on the presented evidence, advanced chemopreventive strategies in the context of 3P medicine are considered.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, VIC Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC Australia
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, 812 50 Bratislava, Slovakia
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Jana Jakubikova
- Biomedical Research Center SAS, Cancer Research Institute, Bratislava, Slovakia
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Pavol Zubor
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- OBGY Health & Care, Ltd., 01001 Zilina, Slovakia
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, 42601 Korea
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Gustavo R. Sarria
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
6
|
A Systematic Review of the Genotoxicity and Antigenotoxicity of Biologically Synthesized Metallic Nanomaterials: Are Green Nanoparticles Safe Enough for Clinical Marketing? ACTA ACUST UNITED AC 2019; 55:medicina55080439. [PMID: 31387257 PMCID: PMC6722661 DOI: 10.3390/medicina55080439] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/27/2023]
Abstract
Background and objectives: Although studies have elucidated the significant biomedical potential of biogenic metallic nanoparticles (MNPs), it is very important to explore the hazards associated with the use of biogenic MNPs. Evidence indicates that genetic toxicity causes mutation, carcinogenesis, and cell death. Materials and Methods: Therefore, we systematically review original studies that investigated the genotoxic effect of biologically synthesized MNPs via in vitro and in vivo models. Articles were systematically collected by screening the literature published online in the following databases; Cochrane, Web of Science, PubMed, Scopus, Science Direct, ProQuest, and EBSCO. Results: Most of the studies were carried out on the MCF-7 cancer cell line and phytosynthesis was the general approach to MNP preparation in all studies. Fungi were the second most predominant resource applied for MNP synthesis. A total of 80.57% of the studies synthesized biogenic MNPs with sizes below 50 nm. The genotoxicity of Ag, Au, ZnO, TiO2, Se, Cu, Pt, Zn, Ag-Au, CdS, Fe3O4, Tb2O3, and Si-Ag NPs was evaluated. AgNPs, prepared in 68.79% of studies, and AuNPs, prepared in 12.76%, were the two most predominant biogenic MNPs synthesized and evaluated in the included articles. Conclusions: Although several studies reported the antigenotoxic influence of biogenic MNPs, most of them reported biogenic MNP genotoxicity at specific concentrations and with a dose or time dependence. To the best of our knowledge, this is the first study to systematically evaluate the genotoxicity of biologically synthesized MNPs and provide a valuable summary of genotoxicity data. In conclusion, our study implied that the genotoxicity of biologically synthesized MNPs varies case-by-case and highly dependent on the synthesis parameters, biological source, applied assay, etc. The gathered data are required for the translation of these nanoproducts from research laboratories to the clinical market.
Collapse
|
7
|
Comparative Analysis of Toxicity Induced by Different Synthetic Silver Nanoparticles in Albino Mice. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00642-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Matić S, Katanić J, Stanić S, Mladenović M, Stanković N, Mihailović V, Boroja T. In vitro and in vivo assessment of the genotoxicity and antigenotoxicity of the Filipendula hexapetala and Filipendula ulmaria methanol extracts. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:287-292. [PMID: 26303017 DOI: 10.1016/j.jep.2015.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/24/2015] [Accepted: 08/20/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The two species of Filipendula genus, Filipendula hexapetala Gilib. and Filipendula ulmaria (L.) Maxim are a traditional herbal medicine widely used to treat haemorrhoids, diarrhoea, fever, rheumatism and arthritic pain, kidney problems, to stop bleeding, and the common cold, as well as food supplements. However, no scientific study has been performed to validate genotoxic and/or antigenotoxic potentials of these two Filipendula species. AIM OF THE STUDY The aim of the present study was to examine the genotoxic and possible in vitro and in vivo DNA protection potential of methanol extracts of F. hexapetala and F. ulmaria. MATERIALS AND METHODS The genotoxicity of different concentrations of F. hexapetala and F. ulmaria methanol extracts from roots and aerial parts (20, 40 and 80 mg/ml), mixed with standard food for Drosophila, was evaluated in vivo in the anterior midgut of Drosophila melanogaster using a modified alkaline comet assay. The protective effects of the highest dose of extracts were observed in somatic cells of third-instar larvae against ethyl methanesulphonate (EMS)-induced genotoxicity. Also, DNA protection activity of methanol extracts from F. hexapetala and F. ulmaria (100, 200, and 400 μg/ml) against hydroxyl radical-induced DNA damage was determined under in vitro conditions. RESULTS The results showed that methanol extracts from the root and aerial part of F. hexapetala at a concentration of 20mg/ml indicated the absence of genotoxicity. Also, there were no statistically significant differences in total scores between any of the groups treated with F. ulmaria root extract and the negative control group, while F. ulmaria aerial part extract possess weak genotoxic effects depending on the concentrations. The percentage reduction in DNA damage was more evident in the group of larvae simultaneously treated with EMS and the highest dose of F. hexapetala root or aerial part extracts and F. ulmaria root extract (91.02, 80.21, and 87.5%, respectively) and less expressive in the group simultaneously treated with F. ulmaria aerial part extract (54.7%). F. hexapetala root and aerial part extracts and F. ulmaria root extract possess strong capabilities to protect DNA from being damaged by hydroxyl radicals. CONCLUSIONS It can be concluded that F. hexapetala root and aerial part extracts and F. ulmaria root extract demonstrated the absence of genotoxic activity. The extracts appeared to have antigenotoxic effect, reducing the levels of DNA damage induced by EMS by more than 80%. Also, F. hexapetala root and aerial part extracts and F. ulmaria root extracts could effectively protect against hydroxyl radical-induced DNA damage.
Collapse
Affiliation(s)
- Sanja Matić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jelena Katanić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Snežana Stanić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milan Mladenović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nevena Stanković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Vladimir Mihailović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Tatjana Boroja
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
9
|
Brahmachari G, Sarkar S, Ghosh R, Barman S, Mandal NC, Jash SK, Banerjee B, Roy R. Sunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn. with enhanced antibacterial activity. Org Med Chem Lett 2014; 4:18. [PMID: 25621198 PMCID: PMC4297304 DOI: 10.1186/s13588-014-0018-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Nanotechnology is now regarded as a distinct field of research in modern science and technology with multifaceted areas including biomedical applications. Among the various approaches currently available for the generation of metallic nanoparticles, biogenic synthesis is of increasing demand for the purpose of green nanotechnology. Among various natural sources, plant materials are the most readily available template-directing matrix offering cost-effectiveness, eco-friendliness, and easy handling. Moreover, the inherent pharmacological potentials of these medicinal plant extracts offer added biomedical implementations of the synthesized metal nanoparticles. RESULTS A robust practical method for eco-friendly synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum (Tulsi) as both reducing and capping agent, under the influence of direct sunlight has been developed without applying any other chemical additives. The nanoparticles were characterized with the help of UV-visible spectrophotometer and transmission electron microscopy (TEM). The prepared silver nanoparticles exhibited considerable antibacterial activity. The effects were more pronounced on non-endospore-forming Gram-positive bacteria viz., Staphylococcus aureus, Staphylococcus epidermidis, and Listeria monocytogenes than endospore-forming species Bacillus subtilis. The nanoparticles also showed prominent activity on Gram-negative human pathogenic Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, and plant pathogenic Pantoea ananatis. A bactericidal mode of action was observed for both Gram-positive and Gram-negative bacteria by the nanoparticles. CONCLUSIONS We have developed a very simple, efficient, and practical method for the synthesis of silver nanoparticles using aqueous leaf extract of O. sanctum under the influence of direct sunlight. The biosynthesis of silver nanoparticles making use of such a traditionally important medicinal plant without applying any other chemical additives, thus offers a cost-effective and environmentally benign route for their large-scale commercial production. The nanoparticles dispersed in the mother solution showed promising antibacterial efficacy. Graphical AbstractSunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn. with enhanced antibacterial activity.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Department of Chemistry, Laboratory of Natural Products and Organic Synthesis, Visva-Bharati (a Central University), Santiniketan, 731 235 West Bengal India
| | - Sajal Sarkar
- Department of Chemistry, Laboratory of Natural Products and Organic Synthesis, Visva-Bharati (a Central University), Santiniketan, 731 235 West Bengal India
| | - Ranjan Ghosh
- Department of Botany, Microbiology and Plant Pathology Laboratory, Visva-Bharati (a Central University), Santiniketan, 731 235 West Bengal India
| | - Soma Barman
- Department of Botany, Microbiology and Plant Pathology Laboratory, Visva-Bharati (a Central University), Santiniketan, 731 235 West Bengal India
| | - Narayan C Mandal
- Department of Botany, Microbiology and Plant Pathology Laboratory, Visva-Bharati (a Central University), Santiniketan, 731 235 West Bengal India
| | - Shyamal K Jash
- Department of Chemistry, Laboratory of Natural Products and Organic Synthesis, Visva-Bharati (a Central University), Santiniketan, 731 235 West Bengal India
| | - Bubun Banerjee
- Department of Chemistry, Laboratory of Natural Products and Organic Synthesis, Visva-Bharati (a Central University), Santiniketan, 731 235 West Bengal India
| | - Rajiv Roy
- Department of Chemistry, Laboratory of Natural Products and Organic Synthesis, Visva-Bharati (a Central University), Santiniketan, 731 235 West Bengal India
| |
Collapse
|
10
|
Alaraby M, Hernández A, Annangi B, Demir E, Bach J, Rubio L, Creus A, Marcos R. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model. Nanotoxicology 2014; 9:749-59. [PMID: 25358738 DOI: 10.3109/17435390.2014.976284] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although in vitro approaches are the most used for testing the potential harmful effects of nanomaterials, in vivo studies produce relevant information complementing in vitro data. In this context, we promote the use of Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to nanomaterials exposure. The main aim of this study was to evaluate different biological effects associated to cerium oxide nanoparticles (Ce-NPs) and cerium (IV) sulphate exposure. The end-points evaluated were egg-to-adult viability, particles uptake through the intestinal barrier, gene expression and intracellular reactive oxygen species (ROS) production by haemocytes, genotoxicity and antigenotoxicity. Transmission electron microscopy images showed internalisation of Ce-NPs by the intestinal barrier and haemocytes, and significant expression of Hsp genes was detected. In spite of these findings, neither toxicity nor genotoxicity related to both forms of cerium were observed. Interestingly, Ce-NPs significantly reduced the genotoxic effect of potassium dichromate and the intracellular ROS production. No morphological malformations were detected after larvae treatment. This study highlights the importance of D. melanogaster as animal model in the study of the different biological effects caused by nanoparticulated materials, at the time that shows its usefulness to study the role of the intestinal barrier in the transposition of nanomaterials entering via ingestion.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra , Cerdanyola del Vallès, Barcelona , Spain
| | | | | | | | | | | | | | | |
Collapse
|