1
|
Lakhani KG, Hamid R, Gupta S, Prajapati P, Prabha R, Patel S, Suthar KP. Exploring the therapeutic mechanisms of millet in obesity through molecular docking, pharmacokinetics, and dynamic simulation. Front Nutr 2024; 11:1453819. [PMID: 39494311 PMCID: PMC11528469 DOI: 10.3389/fnut.2024.1453819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Obesity, a prevalent global health concern, is characterized by excessive fat accumulation, which confers significant nutritional and health risks, including a shortened lifespan and diminished wellbeing. Central to the regulation of energy balance and food intake is the fat mass and obesity-associated (FTO) protein, which modulates the interplay between caloric consumption and energy expenditure. Given its pivotal role in obesity regulation, the identification of effective inhibitors targeting the FTO protein is imperative for developing therapeutic interventions. Currently available anti-obesity drugs are often plagued by undesirable side effects. In contrast, natural plant-derived bioactive compounds are gaining prominence in the pharmaceutical industry due to their efficacy and lower incidence of adverse effects. Little Millet, a traditional cereal known for its rich nutritional profile and high satiety index, was investigated in this study using molecular docking and dynamics simulation approach for its potential as an anti-obesity agent. Our research demonstrates that four bioactive compounds from Little Millet exhibit superior binding energies ranging from 7.22 to 8.83 kcal/mol, compared to the standard anti-obesity drug, orlistat, which has a binding energy of 5.96 kcal/mol. These compounds fulfilled all drug-like criteria, including the Lipinski, Ghose, Veber, Egan, and Muegge rules, and exhibited favorable profiles in terms of distribution, metabolism, and prolonged half-life without toxicity. Conversely, orlistat was associated with hepatotoxicity, a reduced half-life, and multiple violations of drug-likeness parameters, undermining its efficacy. Molecular dynamics simulations and Gibbs free energy assessments revealed that the four identified compounds maintain stable interactions with key residues in the FTO protein's active site. We propose further validation through extensive In vitro, In vivo, and clinical studies to ascertain the therapeutic potential of these compounds in combating obesity.
Collapse
Affiliation(s)
- Komal G. Lakhani
- Department of Plant Molecular Biology and Biotechnology, N. M. College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Rasmeih Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education, and Extension Organization (AREEO), Gorgan, Iran
| | - Sheetal Gupta
- Department of Genetics and Plant Breeding, Navsari Agricultural University, Navsari, India
| | - Poojaben Prajapati
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, India
| | - Ratna Prabha
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Saumya Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kirankumar P. Suthar
- Department of Plant Molecular Biology and Biotechnology, N. M. College of Agriculture, Navsari Agricultural University, Navsari, India
| |
Collapse
|
2
|
Macedo T, Paiva-Martins F, Valentão P, Pereira DM. In silico and in vitro chemometrics, cell toxicity and permeability of naringenin 8-sulphonate and derivatives. Front Pharmacol 2024; 15:1398389. [PMID: 39114352 PMCID: PMC11303286 DOI: 10.3389/fphar.2024.1398389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Background Sulphur containing natural compounds are among the most biologically relevant metabolites in vivo. Naringenin 8-sulphonate from Parinari excelsa Sabine was evaluated in a previous work, demonstrating ability to act as a natural anti-inflammatory. Although the interference of this molecule against different inflammatory mediators was described, there is no information regarding its potential toxicity and pharmacokinetics, which are essential for its capacity to reach its therapeutic targets. In fact, despite the existence of reports on naringenin ADMET properties, the influence of sulphation patterns on them remains unknown. Objectives This work aims to assess the in vitro pharmacokinetic and toxicological behavior of naringenin 8-sulphonate, as well as to understand the importance of the presence and position of the sulphur containing group for that. Methods Naringenin 8-sulphonate physicochemical and ADMET properties were investigated using in silico tools and cell-based in vitro models. At the same time, naringenin and naringenin 4'-O-sulphate were investigated to evaluate the impact of the sulphonate group on the results. ADMETlab 2.0 in silico tool was used to predict the compounds' physicochemical descriptors. Pharmacokinetic properties were determined experimentally in vitro. While MRC-5 lung fibroblasts and HaCaT keratinocytes were used to evaluate the cytotoxicity of samples through MTT and LDH assays, Caco-2 human intestinal epithelial cells were used for the determination of genotoxicity, through alkaline comet assay, and as a permeability model to assess the ability of compounds to cross biological barriers. Results Experimental determinations showed that none of the compounds was cytotoxic. In terms of genotoxicity, naringenin 8-sulphonate and naringenin caused significant DNA fragmentation, whereas naringenin 4'-O-sulphate did not. When it comes to permeability, the two sulphur-containing compounds with a sulphur containing group were clearly less capable to cross the Caco-2 cell barrier than naringenin. Conclusion In this study, we conclude that the sulphur containing group from naringenin 8-sulphonate is disadvantageous for the molecule in terms of ADMET properties, being particularly impactful in the permeability in intestinal barrier models. Thus, this work provides important insights regarding the role of flavonoids sulphation and sulphonation upon pharmacokinetics and toxicity.
Collapse
Affiliation(s)
- Tiago Macedo
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Abstract
![]()
Electronically interfacing with the
nervous system for the purposes
of health diagnostics and therapy, sports performance monitoring,
or device control has been a subject of intense academic and industrial
research for decades. This trend has only increased in recent years,
with numerous high-profile research initiatives and commercial endeavors.
An important research theme has emerged as a result, which is the
incorporation of semiconducting polymers in various devices that communicate
with the nervous system—from wearable brain-monitoring caps
to penetrating implantable microelectrodes. This has been driven by
the potential of this broad class of materials to improve the electrical
and mechanical properties of the tissue–device interface, along
with possibilities for increased biocompatibility. In this review
we first begin with a tutorial on neural interfacing, by reviewing
the basics of nervous system function, device physics, and neuroelectrophysiological
techniques and their demands, and finally we give a brief perspective
on how material improvements can address current deficiencies in this
system. The second part is a detailed review of past work on semiconducting
polymers, covering electrical properties, structure, synthesis, and
processing.
Collapse
Affiliation(s)
- Ivan B Dimov
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Maximilian Moser
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom.,King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Othman EM, Fayed EA, Husseiny EM, Abulkhair HS. Rationale design, synthesis, cytotoxicity evaluation, and in silico mechanistic studies of novel 1,2,3-triazoles with potential anticancer activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02061k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new set of 1,2,3-triazoles was designed and synthesized to evaluate their potential to inhibit the growth of cancer cells.
Collapse
Affiliation(s)
- Esraa M. Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Eman A. Fayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Ebtehal M. Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt
| |
Collapse
|
5
|
Khedr F, Ibrahim MK, Eissa IH, Abulkhair HS, El-Adl K. Phthalazine-based VEGFR-2 inhibitors: Rationale, design, synthesis, in silico, ADMET profile, docking, and anticancer evaluations. Arch Pharm (Weinheim) 2021; 354:e2100201. [PMID: 34411344 DOI: 10.1002/ardp.202100201] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/07/2023]
Abstract
In the designed compounds, a new linker was inserted in the form of fragments with verified VEGFR-2 inhibitory potential, including an α,β-unsaturated ketonic fragment, pyrazole, and pyrimidine. Also, new distal hydrophobic moieties were attached to these linkers that are expected to increase the hydrophobic interaction with VEGFR-2 and, consequently, the affinity. These structural optimizations have led us to identify the novel dihydropyrazole derivative 6e as a promising hit molecule. All the new derivatives were evaluated to assess their anticancer activity against three human cancer cell lines, including HepG2, HCT-116, and MCF-7. The results of the in vitro anticancer evaluation study revealed the moderate to excellent cytotoxicity of 6c , 6e , 6g , and 7b , with IC50 values in the low micromolar range. The inhibitory activity of VEGFR-2 was investigated for 16 of the designed compounds. The enzyme assay results of the new compounds were compared with those of sorafenib as a reference VEGFR-2 inhibitor. The obtained results demonstrated that our derivatives are potent VEGFR-2 inhibitors. The most potent derivatives 6c , 6e , 6g , and 7b showed IC50 values in the range of 0.11-0.22 µM. Molecular docking and pharmacokinetic studies were also conducted to rationalize the VEGFR-2 inhibitory activity and to evaluate the ability of the most potent derivatives to be developed as good drug candidates.
Collapse
Affiliation(s)
- Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
6
|
From triazolophthalazines to triazoloquinazolines: A bioisosterism-guided approach toward the identification of novel PCAF inhibitors with potential anticancer activity. Bioorg Med Chem 2021; 42:116266. [PMID: 34126285 DOI: 10.1016/j.bmc.2021.116266] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Inhibition of PCAF bromodomain has been validated as a promising strategy for the treatment of cancer. In this study, we report the bioisosteric modification of the first reported potent PCAF bromodomain inhibitor, L-45 to its triazoloquinazoline bioisosteres. Accordingly, three new series of triazoloquinazoline derivatives were designed, synthesized, and assessed for their anticancer activity against a panel of four human cancer cells. Three derivatives demonstrated comparable cytotoxic activity with the reference drug doxorubicin. Among them, compound 22 showed the most potent activity with IC50 values of 15.07, 9.86, 5.75, and 10.79 µM against Hep-G2, MCF-7, PC3, and HCT-116 respectively. Also, compound 24 exhibited remarkable cytotoxicity effects against the selected cancer cell lines with IC50 values of 20.49, 12.56, 17.18, and 11.50 µM. Compounds 22 and 25 were the most potent PCAF inhibitors (IC50, 2.88 and 3.19 μM, respectively) compared with bromosporine (IC50, 2.10 μM). Follow up apoptosis induction and cell cycle analysis studies revealed that the bioisostere 22 could induce apoptotic cell death and arrest the cell cycle of PC3 at the G2/M phase. The in silico molecular docking studies were additionally performed to rationalize the PCAF inhibitory effects of new triazoloquinazoline bioisosteres.
Collapse
|
7
|
Hassan A, Arafa RK. On the search for COVID-19 therapeutics: identification of potential SARS-CoV-2 main protease inhibitors by virtual screening, pharmacophore modeling and molecular dynamics. J Biomol Struct Dyn 2021; 40:7815-7828. [PMID: 33749545 DOI: 10.1080/07391102.2021.1902399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
COVID-19 also known as SARS-CoV-2 outbreak in late 2019 and its worldwide pandemic spread has taken the world by surprise. The minute-to-minute increasing coronavirus cases (>85 M) and progressive deaths (≈1.8 M) calls for finding a cure to this devastating pandemic. While there have been many attempts to find biologically active molecules targeting SARS-CoV-2 for treatment of this viral infection, none has found a way to the clinic yet. In this study, a 3-feature structure-based pharmacophore model was designed for SARS-CoV-2 main protease (MPro) that plays a vital role in the viral cellular penetration. High throughput virtual screening of the lead-like ZINC library was then performed to find a potent inhibitor employing the predesigned pharmacophore. In-silico pharmacokinetics/toxicity prediction study was subsequently applied towards the best hits. Finally, a 50 ns molecular dynamics simulation was carried out for the best hit and compared to the co-crystallized ligand where the hit compound displayed high binding and comparable interactions. The results identified new hits for SARS-CoV-2 MPro inhibition showing good docking score, pharmacokinetics and toxicity profile, drug-likeness, high binding energy in addition to a promising synthetic accessibility. Identifying new small compounds as potential leads for inhibiting SARS-CoV-2 is a very important step towards designing a synthesizing of promising drug candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afnan Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt.,Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt.,Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
8
|
Abulkhair HS, Elmeligie S, Ghiaty A, El-Morsy A, Bayoumi AH, Ahmed HEA, El-Adl K, Zayed MF, Hassan MH, Akl EN, El-Zoghbi MS. In vivo- and in silico-driven identification of novel synthetic quinoxalines as anticonvulsants and AMPA inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000449. [PMID: 33559320 DOI: 10.1002/ardp.202000449] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
The lack of effective therapies for epileptic patients and the potentially harmful consequences of untreated seizure incidents have made epileptic disorders in humans a major health concern. Therefore, new and more potent anticonvulsant drugs are continually sought after, to combat epilepsy. On the basis of the pharmacophoric structural specifications of effective α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists with an efficient anticonvulsant activity, the present work reports the design and synthesis of two novel sets of quinoxaline derivatives. The anticonvulsant activity of the synthesized compounds was evaluated in vivo according to the pentylenetetrazol-induced seizure protocol, and the results were compared with those of perampanel as a reference drug. Among the synthesized compounds, 24, 28, 32, and 33 showed promising activities with ED50 values of 37.50, 23.02, 29.16, and 23.86 mg/kg, respectively. Docking studies of these compounds suggested that AMPA binding could be the mechanism of action of these derivatives. Overall, the pharmacophore-based structural optimization, in vivo and in silico docking, and druglikeness studies indicated that the designed compounds could serve as promising candidates for the development of effective anticonvulsant agents with good pharmacokinetic profiles.
Collapse
Affiliation(s)
- Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, New Damietta, Egypt
| | - Salwa Elmeligie
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Adel Ghiaty
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Khaled El-Adl
- Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Mohamed F Zayed
- Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Memy H Hassan
- Pharmacy Department, College of Health Sciences, Taibah University, Madinah, Saudi Arabia.,Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Eman N Akl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, New Damietta, Egypt
| | - Mona S El-Zoghbi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Koum, Egypt
| |
Collapse
|
9
|
El-Shershaby MH, Ghiaty A, Bayoumi AH, Ahmed HEA, El-Zoghbi MS, El-Adl K, Abulkhair HS. 1,2,4-Triazolo[4,3-c]quinazolines: a bioisosterism-guided approach towards the development of novel PCAF inhibitors with potential anticancer activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj00710f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Targeting PCAF with small inhibitor molecules has emerged as a potential therapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
| | - Adel Ghiaty
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Ashraf H. Bayoumi
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Mona S. El-Zoghbi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy
- Menoufia University
- Shebin El-Koum
- Egypt
| | - Khaled El-Adl
- Department of Medicinal Chemistry & Drug Design, Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
- Department of Pharmaceutical Chemistry
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| |
Collapse
|
10
|
Sizochenko N, Syzochenko M, Fjodorova N, Rasulev B, Leszczynski J. Evaluating genotoxicity of metal oxide nanoparticles: Application of advanced supervised and unsupervised machine learning techniques. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109733. [PMID: 31580980 DOI: 10.1016/j.ecoenv.2019.109733] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Presence of missing data points in datasets is among main challenges in handling the toxicological data for nanomaterials. As the processing of missing data is an important part of data analysis, we have introduced a read-across approach that uses a combination of supervised and unsupervised machine learning techniques to fill the missing values. A series of classification models (supervised learning) was developed to predict class label, and self-organizing map approach (unsupervised learning) was used to estimate relative distances between nanoparticles and refine results obtained during supervised learning. In this study, genotoxicity of 49 silicon and metal oxide nanoparticles in Ames and Comet tests. Collected literature data did not demonstrate significant variations related to the change of size including selected bulk materials. Genotoxicity-related features of nanomaterials were represented by ionic characteristics. General tendencies found in the current study were convincingly linked to known theories of genotoxic action at nano-level. Mechanisms of primary and secondary genotoxic effects were discussed in the context of developed models.
Collapse
Affiliation(s)
- Natalia Sizochenko
- Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, MS, USA; Department of Computer Science, Dartmouth College, Hanover, 03755, NH, USA.
| | - Michael Syzochenko
- Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, MS, USA; Department of Computer Science, Dartmouth College, Hanover, 03755, NH, USA.
| | - Natalja Fjodorova
- Department of Chemoinformatics, National Institute of Chemistry, Ljubljana, 1000, Slovenia.
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, 58108, ND, USA.
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, MS, USA.
| |
Collapse
|