1
|
Akash S, Sivaprakash B, Rajamohan N, Pandiyan CM, Vo DVN. Pesticide pollutants in the environment - A critical review on remediation techniques, mechanism and toxicological impact. CHEMOSPHERE 2022; 301:134754. [PMID: 35490750 DOI: 10.1016/j.chemosphere.2022.134754] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 05/28/2023]
Abstract
The excessive and unorganised utilisation of pesticides have posed negative impacts on soil and water at higher levels. Pesticides are a major class of persistent organic compounds with high resistance to natural biodegradation and enhanced tendency to bio accumulate. The severe health hazards imposed on the living organisms hinder the ecosystem and lead to chronic and irreversible health issues. Photocatalytic method is reported as a potential alternative with a variety of techniques and materials that are safer, easier, durable, cost-effective and efficient. Nanomaterials play a key role in this domain due to their versatility. In particular, nanostructured materials of organized shapes and morphological properties have gained enormous attention in research and real-time applications. Specifically, nanomaterials like nanotubes, nanorods and nanowires have unique properties and anisotropic structure that make them more suitable for treating pesticide wastes with photocatalysis. Variety of tuning methods and materials are emerging to enhance the activity of titanium and zinc based nanocatalysts in remediation methods. In the present article, four pesticides, namely, atrazine, chlorpyrifos, paraquat and naphthalene are chosen due to their common occurrence and usage in agricultural applications. These pesticides are highly toxic and need special attention to explore appropriate remediation methods. The report also details the latest innovations reported by several research studies in exploring the potential of specially synthesised nanoparticles for photocatalytic removal of pesticide pollutants from environment. For zinc-based hybrid nanomaterials, the maximum disintegration reported were 99%, 98%, 73.3% and 92.3% for atrazine, chlorpyrifos, paraquat and naphthalene, respectively.
Collapse
Affiliation(s)
- S Akash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| | - C Muruga Pandiyan
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
2
|
Abubakar HL, Tijani JO, Abdulkareem SA, Mann A, Mustapha S. A review on the applications of zinc tungstate (ZnWO 4) photocatalyst for wastewater treatment. Heliyon 2022; 8:e09964. [PMID: 35874051 PMCID: PMC9305394 DOI: 10.1016/j.heliyon.2022.e09964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
The monoclinic wolframite-phase structure of ZnWO4 materials has been frequently synthesised, characterised, and applied in optical fibres, environmental decontamination, electrochemistry, photonics, catalysis, and not limited to magnetic applications. However, the problems of crystal growth conditions and mechanisms, growth, the crystal quality, stability, and the role of synthesis parameters of ZnWO4 nanoparticles remain a challenge limiting its commercial applications. This review presents recent advances of ZnWO4 as an advanced multi-functional material for Industrial wastewater treatment. The review also examines the influence of the synthesis parameters on the properties of ZnWO4 and provides insight into new perspectives on ZnWO4-based photocatalyst. Many researches have shown significant improvement in the efficiency of ZnWO4 by mixing with polymers and doping with metals, nonmetals, and other nanoparticles. The review also provides information on the mechanism of doping ZnWO4 with metals, non-metals, metalloids, metals oxides, and polymers based on different synthesis methods for bandgap reduction and extension of its photocatalytic activity to the visible region. The doped ZnWO4 photocatalyst was a more effective and environmentally friendly material for removing organic and inorganic contaminants in industrial wastewater than ordinary ZnWO4 nanocrystalline under suitable growth conditions.
Collapse
Affiliation(s)
- Hassana Ladio Abubakar
- Department of Chemistry, Federal University of Technology, PMB, 65, Minna, Niger State, Nigeria.,Department of Chemistry, Nile University of Nigeria, Airport Road, Jabi, Abuja, Nigeria
| | - Jimoh Oladejo Tijani
- Department of Chemistry, Federal University of Technology, PMB, 65, Minna, Niger State, Nigeria.,Nanotechnology Research Group, African Centre of Excellence on Food Safety and Mycotoxins, Federal University of Technology, PMB 65, Bosso, Minna, Niger State, Nigeria
| | - Saka Ambali Abdulkareem
- Department of Chemical Engineering, Federal University of Technology, PMB, 65, Minna, Niger State, Nigeria.,Nanotechnology Research Group, African Centre of Excellence on Food Safety and Mycotoxins, Federal University of Technology, PMB 65, Bosso, Minna, Niger State, Nigeria
| | - Abdullahi Mann
- Department of Chemistry, Federal University of Technology, PMB, 65, Minna, Niger State, Nigeria
| | - Saheed Mustapha
- Department of Chemistry, Federal University of Technology, PMB, 65, Minna, Niger State, Nigeria.,Nanotechnology Research Group, African Centre of Excellence on Food Safety and Mycotoxins, Federal University of Technology, PMB 65, Bosso, Minna, Niger State, Nigeria
| |
Collapse
|
3
|
Palladium and Graphene Oxide Doped ZnO for Aqueous Acetamiprid Degradation under Visible Light. Catalysts 2022. [DOI: 10.3390/catal12070709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acetamiprid is a neonicotinoid insecticide widely used in pest control. In recent years, it has been considered as a contaminant in groundwater, lakes, and rivers. Photocatalysis under visible light radiation proved to be an effective process for getting rid of several organic pollutants. In the present work, photodegradation of aqueous acetamiprid was investigated over bare zinc oxide (ZnO) photocatalyst as well as ZnO doped with either palladium or palladium combined with graphene oxide. Both ZnO and doped-ZnO were synthesized via a microwave-assisted hydrothermal procedure. The obtained photocatalysts were characterized using different techniques. After 5 h of reaction at ambient temperature under visible light irradiation, acetamiprid conversions attained ca. 38, 82, and 98% in the presence of bare ZnO, Pd-doped ZnO and Pd-GO-doped ZnO photocatalysts, respectively, thus demonstrating the positive effect of Pd- and GO-doping on the photocatalytic activity of ZnO. In addition, Pd-GO-doped ZnO was shown to keep its activity even when it is recycled five times, thus proving its stability in the reaction medium.
Collapse
|
4
|
Abstract
This review aims to give a general overview of the recent use of tungsten-based catalysts for wide environmental applications, with first some useful background information about tungsten oxides. Tungsten oxide materials exhibit suitable behaviors for surface reactions and catalysis such as acidic properties (mainly Brønsted sites), redox and adsorption properties (due to the presence of oxygen vacancies) and a photostimulation response under visible light (2.6–2.8 eV bandgap). Depending on the operating condition of the catalytic process, each of these behaviors is tunable by controlling structure and morphology (e.g., nanoplates, nanosheets, nanorods, nanowires, nanomesh, microflowers, hollow nanospheres) and/or interactions with other compounds such as conductors (carbon), semiconductors or other oxides (e.g., TiO2) and precious metals. WOx particles can be also dispersed on high specific surface area supports. Based on these behaviors, WO3-based catalysts were developed for numerous environmental applications. This review is divided into five main parts: structure of tungsten-based catalysts, acidity of supported tungsten oxide catalysts, WO3 catalysts for DeNOx applications, total oxidation of volatile organic compounds in gas phase and gas sensors and pollutant remediation in liquid phase (photocatalysis).
Collapse
|
5
|
Khan I, Khan AA, Khan I, Usman M, Sadiq M, Ali F, Saeed K. Investigation of the photocatalytic potential enhancement of silica monolith decorated tin oxide nanoparticles through experimental and theoretical studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj00996b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodegradation of organic pollutants is considered to be the most suitable and cheaper technique to counter decontamination issues.
Collapse
Affiliation(s)
- Idrees Khan
- Department of Chemistry
- Bacha Khan University
- Khyber Pakhtunkhwa
- Pakistan
| | - Adnan Ali Khan
- Department of Chemistry
- University of Malakand
- Khyber Pakhtunkhwa
- Pakistan
| | - Ibrahim Khan
- Centre of Integrative Petroleum Research
- King Fahd University of Petroleum and Minerals
- Dhahran
- Kingdom of Saudi Arabia
| | - Muhammad Usman
- Centre of Research Excellence in Nanotechnology
- King Fahd University of Petroleum and Minerals
- Dhahran
- Kingdom of Saudi Arabia
| | - Muhammad Sadiq
- Department of Chemistry
- University of Malakand
- Khyber Pakhtunkhwa
- Pakistan
| | - Faiz Ali
- Department of Chemistry
- University of Malakand
- Khyber Pakhtunkhwa
- Pakistan
| | - Khalid Saeed
- Department of Chemistry
- Bacha Khan University
- Khyber Pakhtunkhwa
- Pakistan
| |
Collapse
|
6
|
Almeida Lage AL, Ribeiro JM, de Souza-Fagundes EM, Brugnera MF, Martins DCDS. Efficient atrazine degradation catalyzed by manganese porphyrins: Determination of atrazine degradation products and their toxicity evaluation by human blood cells test models. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120748. [PMID: 31226586 DOI: 10.1016/j.jhazmat.2019.120748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/16/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Atrazine (ATZ) is an herbicide that has been considered an environmental pollutant worldwide. ATZ contaminates groundwaters and can persist in soils for up to a year causing several environmental and health problems. This study aimed to investigate ATZ degradation catalyzed by manganese porphyrins as biomimetic cytochrome P450 models. We used PhIO, PhI(OAc)2, H2O2, t-BuOOH, m-CPBA, or Oxone® as oxidant under mild conditions and evaluated a range of manganese porphyrins as catalyst. Concerning oxidant, iodosylbenzene provided the best result-ATZ degradation catalyzed by one of the studied manganese porphyrins in acetonitrile was as high as 47%. We studied the same catalyst/oxidant systems in natural water from a Brazilian river as solvent and obtained up to 100% ATZ degradation when iodobenzene diacetate was the oxidant, regardless of the manganese porphyrin. Besides the already known ATZ degradation products, we also identified unexpected degradation compounds (ring-opening products). Toxicity tests showed that the latter products were capable of proliferate blood cells because they did not show toxicity under the evaluated conditions.
Collapse
Affiliation(s)
- Ana Luísa Almeida Lage
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Juliana Martins Ribeiro
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Elaine Maria de Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Michelle Fernanda Brugnera
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, MT, Brazil
| | - Dayse Carvalho da Silva Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|