1
|
Dreger M, Adamczak A, Foksowicz-Flaczyk J. Antibacterial and Antimycotic Activity of Epilobium angustifolium L. Extracts: A Review. Pharmaceuticals (Basel) 2023; 16:1419. [PMID: 37895890 PMCID: PMC10609845 DOI: 10.3390/ph16101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this work was to provide an overview of available information on the antibacterial and antifungal properties of Epilobium angustifolium extracts. A literature search of Scopus, PubMed/Medline, and Google Scholar for peer-reviewed articles published between January 2000 and June 2023 was undertaken. A total of 23 studies were eligible for inclusion in this review. Significant variation of antimicrobial activity depending on the tested species and strains, type of extract solvent, or plant organs utilized for the extract preparation was found. E. angustifolium extracts were active against both Gram-positive and Gram-negative bacteria and showed antimycotic effects against the fungi of Microsporum canis and Trichophyton tonsurans and the dermatophytes Arthroderma spp. Greater susceptibility of Gram-positive than Gram-negative bacteria to fireweed extracts was found. A strong antibacterial effect was recorded for Staphylococcus aureus, Bacillus cereus, Micrococcus luteus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii including multi-drug resistant strains. E. angustifolium extract might find practical application as an antimicrobial in wound healing, components of cosmetic products for human and animals, or as food preservatives.
Collapse
Affiliation(s)
- Mariola Dreger
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Artur Adamczak
- Department of Breeding and Botany of Useful Plants, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland;
| | - Joanna Foksowicz-Flaczyk
- Department of Bioproducts Engineering, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland;
| |
Collapse
|
2
|
Deng L, Huang Y, Chen S, Han Z, Han Z, Jin M, Qu X, Wang B, Wang H, Gu S. Bacterial cellulose-based hydrogel with antibacterial activity and vascularization for wound healing. Carbohydr Polym 2023; 308:120647. [PMID: 36813339 DOI: 10.1016/j.carbpol.2023.120647] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Skin wounds need an appropriate wound dressing to help prevent bacterial infection and accelerate wound closure. Bacterial cellulose (BC) with a three-dimensional (3D) network structure is an important commercial dressing. However, how to effectively load antibacterial agents and balance the antibacterial activity is a lingering issue. Herein, this study aims to develop a functional BC hydrogel containing silver-loaded zeolitic imidazolate framework-8 (ZIF-8) antibacterial agent. The tensile strength of the prepared biopolymer dressing is >1 MPa, the swelling property is over 3000 %, the temperature can reach 50 °C in 5 min with near-infrared (NIR) and the release of Ag+ and Zn2+ is stable. In vitro investigation shows that the hydrogel displays enhanced antibacterial activity, and the bacteria survival ratios are only 0.85 % and 0.39 % against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In vitro cell experiments present that BC/polydopamine/ZIF-8/Ag (BC/PDA/ZIF-8/Ag) shows satisfactory biocompatibility and promising angiogenic ability. In vivo study, the full-thickness skin defect on rats demonstrates remarkably wound healing ability and accelerated skin re-epithelialization. This work presents a competitive functional dressing with effective antibacterial properties and accelerative angiogenesis activities for wound repair.
Collapse
Affiliation(s)
- Lili Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yinjun Huang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, PR China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Zhiliang Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhengzhe Han
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Mengtian Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiangyang Qu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Baoxiu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Song Gu
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, PR China.
| |
Collapse
|
3
|
Idris FN, Nadzir MM. Multi-drug resistant ESKAPE pathogens and the uses of plants as their antimicrobial agents. Arch Microbiol 2023; 205:115. [PMID: 36917278 PMCID: PMC10013289 DOI: 10.1007/s00203-023-03455-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
Infections by ESKAPE (Enterococcus sp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens cause major concern due to their multi-drug resistance (MDR). The ESKAPE pathogens are frequently linked to greater mortality, diseases, and economic burden in healthcare worldwide. Therefore, the use of plants as a natural source of antimicrobial agents provide a solution as they are easily available and safe to use. These natural drugs can also be enhanced by incorporating silver nanoparticles and combining them with existing antibiotics. By focussing the attention on the ESKAPE organisms, the MDR issue can be addressed much better.
Collapse
Affiliation(s)
- Farhana Nazira Idris
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, 14300, Pulau Pinang, Malaysia
| | - Masrina Mohd Nadzir
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, 14300, Pulau Pinang, Malaysia.
| |
Collapse
|
4
|
Bio-nanobactericides: an emanating class of nanoparticles towards combating multi-drug resistant pathogens. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0715-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
5
|
Baker S, Prudnikova SV, Shumilova AA, Perianova OV, Zharkov SM, Kuzmin A. Bio-functionalization of phytogenic Ag and ZnO nanobactericides onto cellulose films for bactericidal activity against multiple drug resistant pathogens. J Microbiol Methods 2019; 159:42-50. [DOI: 10.1016/j.mimet.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/28/2022]
|