1
|
Zadshir M, Kim BW, Yin H. Bio-Based Phase Change Materials for Sustainable Development. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4816. [PMID: 39410387 PMCID: PMC11477495 DOI: 10.3390/ma17194816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
The increasing global population has intensified the demand for energy and food, leading to significant greenhouse gas (GHG) emissions from both sectors. To mitigate these impacts and achieve Sustainable Development Goals (SDGs), passive thermal storage methods, particularly using phase change materials (PCMs), have become crucial for enhancing energy efficiency and reducing GHG emissions across various industries. This paper discusses the state of the art of bio-based phase change materials (bio-PCMs), derived from animal fats and plant oils as sustainable alternatives to traditional paraffin-based PCMs, while addressing the challenges of developing bio-PCMs with suitable phase change properties for practical applications. A comprehensive process is proposed to convert bacon fats to bio-PCMs, which offer advantages such as non-toxicity, availability, cost-effectiveness, and stability, aligning with multiple SDGs. The synthesis process involves hydrolysis to break down fat molecules obtained from the extracted lipid, followed by three additional independent processes to further tune the phase change properties of PCMs. The esterification significantly decreases the phase transition temperatures while slightly improving latent heat; the UV-crosslinking moderately raises both the phase transition temperature and latent heat; the crystallization remarkably increases the both. The future research and guidelines are discussed to develop the large scale manufacturing with cost effectiveness, to optimize synthesis process by multiscale modeling, and to improve thermal conductivity and latent heat capacities at the same time.
Collapse
Affiliation(s)
- Mehdi Zadshir
- Department of Civil Engineering and Engineering Mechanics, Columbia University, 500 W 120th Street, New York, NY 10027, USA; (M.Z.); (H.Y.)
- PVT Clean Energy, 7 Industry Street, #5, Poughkeepsie, New York, NY 12603, USA
| | - Byung-Wook Kim
- Department of Civil Engineering and Engineering Mechanics, Columbia University, 500 W 120th Street, New York, NY 10027, USA; (M.Z.); (H.Y.)
| | - Huiming Yin
- Department of Civil Engineering and Engineering Mechanics, Columbia University, 500 W 120th Street, New York, NY 10027, USA; (M.Z.); (H.Y.)
| |
Collapse
|
2
|
Worland AM, Han Z, Maruwan J, Wang Y, Du ZY, Tang YJ, Su WW, Roell GW. Elucidation of triacylglycerol catabolism in Yarrowia lipolytica: How cells balance acetyl-CoA and excess reducing equivalents. Metab Eng 2024; 85:1-13. [PMID: 38942196 DOI: 10.1016/j.ymben.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Yarrowia lipolytica is an industrial yeast that can convert waste oil to value-added products. However, it is unclear how this yeast metabolizes lipid feedstocks, specifically triacylglycerol (TAG) substrates. This study used 13C-metabolic flux analysis (13C-MFA), genome-scale modeling, and transcriptomics analyses to investigate Y. lipolytica W29 growth with oleic acid, glycerol, and glucose. Transcriptomics data were used to guide 13C-MFA model construction and to validate the 13C-MFA results. The 13C-MFA data were then used to constrain a genome-scale model (GSM), which predicted Y. lipolytica fluxes, cofactor balance, and theoretical yields of terpene products. The three data sources provided new insights into cellular regulation during catabolism of glycerol and fatty acid components of TAG substrates, and how their consumption routes differ from glucose catabolism. We found that (1) over 80% of acetyl-CoA from oleic acid is processed through the glyoxylate shunt, a pathway that generates less CO2 compared to the TCA cycle, (2) the carnitine shuttle is a key regulator of the cytosolic acetyl-CoA pool in oleic acid and glycerol cultures, (3) the oxidative pentose phosphate pathway and mannitol cycle are key routes for NADPH generation, (4) the mannitol cycle and alternative oxidase activity help balance excess NADH generated from β-oxidation of oleic acid, and (5) asymmetrical gene expressions and GSM simulations of enzyme usage suggest an increased metabolic burden for oleic acid catabolism.
Collapse
Affiliation(s)
- Alyssa M Worland
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States
| | - Jessica Maruwan
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States
| | - Yu Wang
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States
| | - Zhi-Yan Du
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States.
| | - Garrett W Roell
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States.
| |
Collapse
|
3
|
Gómez-Vázquez EG, Sánchez Roque Y, Ibáñez-Duharte GR, Canseco-Pérez MA, Zenteno-Carballo AG, Berrones-Hernández R, Pérez-Luna YC. Molecular identification and lipolytic potential of filamentous fungi isolated from residual cooking oil. Biodivers Data J 2024; 12:e113698. [PMID: 38352121 PMCID: PMC10862348 DOI: 10.3897/bdj.12.e113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Filamentous fungi, microorganisms that develop and are located in different habitats, are considered important producers of enzymes and metabolites with potential for the biotechnology industry. The objective of this work was to isolate and identify filamentous fungi that grow in used oil. Two fungal species were characterised through their morphology and molecular identification. The DNA of each extracted strain was amplified by PCR using primers ITS1 and ITS4, obtaining sequences that were later in GenBank (NCBI). A white coloured strain (HB) with a cottony, white, hyaline morphology and irregular borders was observed; so too, a brown colony (HC) with a sandy surface, a well-defined border of beige colour in early growth until it became a dark brown colour. The identity result by homology of the sequences in the BLASTn database was 100% and 99.55%, indicating that they correspond to Cladosporiumtenuissimum and Fomitopsismeliae, respectively. Finally, the results in lipolytic activity show greater potential for Fomitopsismeliae with 0.61 U/l in residual oil. Thus, it is important to highlight the potential of this type of waste to favour the prospection of microorganisms for a sustainable alternative for future studies of biological conversion.
Collapse
Affiliation(s)
- Elvia G Gómez-Vázquez
- Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, MexicoUniversidad de Ciencias y Artes de ChiapasTuxtla GutiérrezMexico
| | - Yazmin Sánchez Roque
- Universidad Politécnica de Chiapas, Suchiapa, MexicoUniversidad Politécnica de ChiapasSuchiapaMexico
| | - Guillermo R Ibáñez-Duharte
- Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, MexicoUniversidad de Ciencias y Artes de ChiapasTuxtla GutiérrezMexico
| | - Miguel A Canseco-Pérez
- Universidad Politécnica de Chiapas, Suchiapa, MexicoUniversidad Politécnica de ChiapasSuchiapaMexico
| | - Ana G Zenteno-Carballo
- Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, MexicoUniversidad de Ciencias y Artes de ChiapasTuxtla GutiérrezMexico
| | | | - Yolanda C Pérez-Luna
- Universidad Politécnica de Chiapas, Suchiapa, MexicoUniversidad Politécnica de ChiapasSuchiapaMexico
| |
Collapse
|
4
|
Self-Healing and Reprocessable Oleic Acid-Based Elastomer with Dynamic S-S Bonds as Solvent-Free Reusable Adhesive on Copper Surface. Polymers (Basel) 2022; 14:polym14224919. [PMID: 36433046 PMCID: PMC9695700 DOI: 10.3390/polym14224919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, the application of dynamic covalent chemistry in the field of polymeric materials has become the subject of an increasing number of studies, gaining applicative relevance. This is due to the fact that polymers containing dynamic functions possess a structure that affords reprocessability, recyclability and peculiar self-healing properties inconceivable for "classic" polymer networks. Consequently, the synthesis of a dynamic covalent chemistry-based polymer and its chemical, thermal, and mechanical characterizations are reported in the present research. In particular, oleic acid has been used as starting material to follow the founding principles of the circular economy system and, thanks to the aromatic disulfide component, which is the foundation of the material dynamic characteristics, the obtained polymer resulted as being reprocessable and self-healable. Moreover, the polymer can strongly interact with copper surfaces through the formation of stable Cu-S bonds. Then, the application of the polymer as a solvent-free reusable adhesive for copper was investigated by lap joint shear tests and comparisons with the properties of an analogous material, devoid of the disulfide bonds, were conducted.
Collapse
|
5
|
Pettazzoni L, Leonelli F, Martinelli A, Migneco LM, Alfano S, Di Luca D, Celio L, Di Lisio V. Transamidation‐based vitrimers from renewable sources. J Appl Polym Sci 2022. [DOI: 10.1002/app.52408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Sara Alfano
- Department of Chemistry Sapienza Università di Roma Rome
| | | | - Lorenzo Celio
- Department of Chemistry Sapienza Università di Roma Rome
| | | |
Collapse
|
6
|
A novel and rapid method for fatty acid preparation by the lipase-catalyzed hydrolysis of Phoenix tree seeds. 3 Biotech 2018; 8:403. [PMID: 30221116 DOI: 10.1007/s13205-018-1426-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/04/2018] [Indexed: 01/30/2023] Open
Abstract
Fatty acids are the precursors for the production of fuels, oleochemicals and special health care products. In this study, a novel rapid method for fatty acid (FA) preparation by the enzymatic hydrolysis of Phoenix tree seed, an undeveloped woody oil seed, was developed. High-temperature GC with flame ionization detector (FID) and the hydrolysis ratio were used to monitor reaction progress. Enzyme screening and the effect of reaction variables on the hydrolysis of seeds were evaluated and optimized by response surface methodology. The results showed that among the tested enzymes, Lipozyme TLIM showed the greatest amount of hydrolysis of Phoenix tree seed. FAs can be rapidly prepared by one-step hydrolysis of Phoenix tree seeds using Lipozyme TLIM as the biocatalyst. Under the optimized conditions (6% enzyme load, 1:8 mass ratio of seed to water, 47.7 °C and 16 min), the maximum hydrolysis ratio (96.4 ± 1.1%) can be achieved. The effect of reaction variables on the hydrolysis decreased in the following order: reaction time > enzyme load > substrate ratio of seed to water > reaction temperature. This work provides a novel and rapid method for FA preparation from oil seeds.
Collapse
|
7
|
Hu J, Cai W, Wang C, Du X, Lin J, Cai J. Purification and characterization of alkaline lipase production by Pseudomonas aeruginosa HFE733 and application for biodegradation in food wastewater treatment. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1446764] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Jun Hu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, PR China
| | - Wenhao Cai
- Laboratory of Polymer Chemistry, College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Changgao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, PR China
| | - Xin Du
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, PR China
| | - Jianguo Lin
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, PR China
| | - Jun Cai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, PR China
| |
Collapse
|
8
|
Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, Sumana C. Recent advances on sources and industrial applications of lipases. Biotechnol Prog 2017; 34:5-28. [DOI: 10.1002/btpr.2581] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nipon Sarmah
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| | - D. Revathi
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - G. Sheelu
- Medicinal Chemistry and Pharmacology Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - K. Yamuna Rani
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - S. Sridhar
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - V. Mehtab
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - C. Sumana
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| |
Collapse
|
9
|
Priji P, Sajith S, Faisal PA, Benjamin S. Pseudomonas sp. BUP6 produces a thermotolerant alkaline lipase with trans-esterification efficiency in producing biodiesel. 3 Biotech 2017; 7:369. [PMID: 29067227 DOI: 10.1007/s13205-017-0999-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/25/2017] [Indexed: 11/28/2022] Open
Abstract
The present study describes the characteristics of a thermotolerant and alkaline lipase secreted by Pseudomonas sp. BUP6, a novel rumen bacterium isolated from Malabari goat, and its trans-esterification efficiency in producing biodiesel from used cooking oil (UCO). The extracellular lipase was purified to homogeneity (35.8 times purified with 14.8% yield) employing (NH4)2SO4 salt precipitation and Sephadex G-100 chromatography. The apparent molecular weight of this lipase on SDS-PAGE was 35 kDa, the identity of which was further confirmed by MALDI-TOF/MS. The purified lipase was found stable at a pH range of 7-9 with the maximum activity (707 U/ml) at pH 8.2; and was active at the temperature ranging from 35 to 50 °C with the optimum at 45 °C (891 U/ml). Triton X-100 and EDTA had no effect on the activity of lipase; whereas SDS, Tween-80 and β-mercaptoethanol inhibited its activity significantly. Moreover, Ca2+ (1.0 mM) enhanced the activity of lipase (1428 U/ml) by 206% vis-à-vis initial activity; while Zn2+, Fe2+ and Cu2+ decreased the activity significantly. Using para-nitrophenyl palmitate as substrate, the Km (11.6 mM) and Vmax [668.9 μmol/(min/mg)] of the purified lipase were also determined. Crude lipase was used for analyzing its trans-esterification efficiency with used cooking oil and methanol which resulted in the worthy yield of fatty acid methyl esters, FAME (45%) at 37 °C, indicating its prospects in biodiesel industry. Thus, the lipase secreted by the rumen bacterium, Pseudomonas sp. BUP6, offers great potentials to be used in various industries including the production of biodiesel by trans-esterification.
Collapse
Affiliation(s)
- Prakasan Priji
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, School of Biosciences, University of Calicut, Malappuram, Kerala 673635 India
| | - Sreedharan Sajith
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, School of Biosciences, University of Calicut, Malappuram, Kerala 673635 India
| | - Panichikkal Abdul Faisal
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, School of Biosciences, University of Calicut, Malappuram, Kerala 673635 India
| | - Sailas Benjamin
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, School of Biosciences, University of Calicut, Malappuram, Kerala 673635 India
| |
Collapse
|
10
|
Kumar S, Negi S, Maiti P. Biological and analytical techniques used for detection of polyaromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25810-25827. [PMID: 29032529 DOI: 10.1007/s11356-017-0415-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons contain two or more fused benzene rings that are considered as cosmo-pollutants ubiquitously found in the environment. The identification and monitoring of polycyclic aromatic hydrocarbons (PAHs) are of great interests for rapid and on-site detection. Therefore, many analytical and biological techniques have been proposed for the qualitative and quantitative assessments of PAHs. Non-biological analytical techniques such as infrared, Raman, and fluorescence spectroscopies are commonly exploited as non-destructive techniques while gas chromatography (GC) and high-performance liquid chromatography (HPLC) with multiple detectors are extensively employed for the separation and detection of an analyte. Even though spectroscopy and chromatography are more accurate, convenient, and feasible techniques, often, these methods are expensive and sophisticated which require high maintenance cost. On the other hand, biological approaches, i.e., immunoassay, PCR, and microarray, offer comprehensive high-throughput specificity and sensitivity for a similar analyte. Biosensor- and immunoassay-mediated detections of PAHs have opened up new avenues in terms of low cost, rapid determination, and higher sensitivity. In this review, we have discussed the strengths and limitations of biological and analytical techniques that were explored for precise evaluation and were trusted at both the legislation and research levels.
Collapse
Affiliation(s)
- Sunil Kumar
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| | - Sangeeta Negi
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, 221004, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| |
Collapse
|
11
|
Kumari A, Ahmad R, Negi S, Khare SK. Biodegradation of waste grease by Penicillium chrysogenum for production of fatty acid. BIORESOURCE TECHNOLOGY 2017; 226:31-38. [PMID: 27978437 DOI: 10.1016/j.biortech.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
The aim of present work was to effectively remediate grease waste by Penicillium chrysogenum. For efficient degradation, grease waste was pre-treated using various lipases, among them lipolase was the best. The pretreated grease was used as a substrate by P. chrysogenum resulting into the production of fatty acids. Process was optimized by response surface methodology (RSM) using four variables viz; FeCl2 (mM), spore concentration (spores/ml), time period (days) and amount of grease (g). The optimized conditions viz; FeCl2 1.25mM, culture amount 5×1011spores/ml and time period 16days led to the production of 6.6mg/g fatty acid from 10.0g of pre-treated grease mixed with 5.0g wheat bran in 10.0ml czapek-dox medium under solid state fermentation. The fermented media was extracted with hexane and subjected to GCMS analysis, which showed the presence of higher amount of palmitic acid. It was purified by crystallization method and 2.8g of palmitic acid was recovered from 1.0kg grease waste in tray fermentation.
Collapse
Affiliation(s)
- Arti Kumari
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Sangeeta Negi
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP 211004, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|