1
|
Shishparenok AN, Gladilina YA, Zhdanov DD. Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production. Int J Mol Sci 2023; 24:15220. [PMID: 37894901 PMCID: PMC10607044 DOI: 10.3390/ijms242015220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
2
|
Shahabadi N, Zendehcheshm S, Mahdavi M, Khademi F. Repurposing FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, and remdesivir as potential inhibitors against RNA dependent RNA polymerase of SARS-CoV-2: A comparative in silico perspective. INFORMATICS IN MEDICINE UNLOCKED 2023; 36:101147. [PMID: 36510496 PMCID: PMC9729590 DOI: 10.1016/j.imu.2022.101147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Vaccines are undoubtedly the most effective means of combating viral diseases like COVID-19. However, there are risks associated with vaccination, such as incomplete viral deactivation or potential adverse effects in humans. However, designing and developing a panel of new drug molecules is always encouraged. In an emergency, drug repurposing research is one of the most potent and rapid options. RdRp (RNA-dependent RNA polymerase) has been discovered to play a pivotal role in viral replication. In this study, FDA-approved drugs bexarotene, diiodohydroxyquinoline, abiraterone, cetilistat, and remdesivir were repurposed against the RdRp by molecular modeling, docking, and dynamic simulation. Furthermore, to validate the potency of these drugs, we compared them to the antiviral remdesivir, which inhibits RdRp. Our finding indicated that the selected drugs have a high potential to be developed as RdRp inhibitors and, with further validation studies, could serve as potential drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran,Corresponding author. Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Saba Zendehcheshm
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahdavi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Shahabadi N, Mahdavi M, Zendehcheshm S. Can polyoxometalates (POMs) prevent of coronavirus 2019-nCoV cell entry? Interaction of POMs with TMPRSS2 and spike receptor domain complexed with ACE2 (ACE2-RBD): Virtual screening approaches. INFORMATICS IN MEDICINE UNLOCKED 2022; 29:100902. [PMID: 35284620 PMCID: PMC8896857 DOI: 10.1016/j.imu.2022.100902] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
The unexpected appearance and global spread of COVID-19 create significant difficulties for healthcare systems and present an unusual challenge for the fast discovery of medicines to combat this fatal disease. Screening metallodrugs libraries from the medicinal inorganic chemistry society may expand the studied ‘chemical space’ and improve the probability of discovering effective anti-COVID drugs, including polyoxometalates. POMs are an oxygen-rich family of inorganic cluster systems that have previously been tested for antiviral action against different types of viruses. Human angiotensin-converting enzyme 2 (ACE2), human transmembrane protease serine 2 (TMPRSS2), and the SARS-CoV-2 spike glycoprotein are required for host cell-mediated viral entrance. Targeting these proteins demonstrates potential possibilities for preventing infections and transmissions in the initial stage. As a result, POMs with known antiviral effects were investigated for this purpose using molecular docking and dynamic simulations. This research shows that POMs can prevent SARS CoV-2 from entering cells by blocking TMPRSS2, which SARS-CoV-2 uses for spike glycoprotein priming. They may also engage with ACE2 and the spike glycoprotein and disrupt their binding by blocking the active sites. We think that a thorough investigation of POMs as possible anti-COVID-19 drugs will provide significant opportunities.
Collapse
|
4
|
Shahabadi N, Zendehcheshm S, Mahdavi M, Khademi F. Inhibitory activity of FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, remdesivir, and hydroxychloroquine on COVID-19 main protease and human ACE2 receptor: A comparative in silico approach. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100745. [PMID: 34568544 PMCID: PMC8455240 DOI: 10.1016/j.imu.2021.100745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
By September 1, 2021, SARS-CoV-2, a respiratory virus that prompted Coronavirus Disease in 2019, had infected approximately 218,567,442 patients and claimed 4,534,151 lives. There are currently no specific treatments available for this lethal virus, although several drugs, including remdesivir and hydroxychloroquine, have been tested. The purpose of this study is to assess the activity of FDA-approved drugs cetilistat, abiraterone, diiodohydroxyquinoline, bexarotene, remdesivir, and hydroxychloroquine as potential SARS-CoV-2 main protease inhibitors. Additionally, this study aims to provide insight into the development of potential inhibitors that may inhibit ACE2, thereby preventing SARS-CoV-2 entry into the host cell and infection. To this end, remdesivir and hydroxychloroquine were used as comparator drugs. The calculations revealed that cetilistat, abiraterone, diiodohydroxyquinoline, and bexarotene inhibit main protease and ACE2 receptors more effectively than the well-known drug hydroxychloroquine when used against COVID-19. Meanwhile, bexarotene and cetilistat bind more tightly to the SARS-CoV-2 main protease and the ACE2 receptor, respectively, than remdesivir, a potential treatment for COVID-19 that is the first FDA-approved drug against this virus. As a result, the molecular dynamic simulations of these two drugs in the presence of proteins were investigated. The MD simulation results demonstrated that these drugs interact to stabilize the systems, allowing them to be used as effective inhibitors of these proteins. Meanwhile, bexarotene, abiraterone, cetilistat, and diiodohydroxyquinoline's systemic effects should be further investigated in suitable ex vivo human organ culture or organoids, animal models, or clinical trials.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Zendehcheshm
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahdavi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Basit A, Ali T, Rehman SU. Truncated human angiotensin converting enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent. J Biomol Struct Dyn 2021. [PMID: 32396773 DOI: 10.1080/07391102.07392020.01768150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
The current pandemic of Covid-19 caused by SARS-CoV-2 is continued to spread globally and no potential drug or vaccine against it is available. Spike (S) glycoprotein is the structural protein of SARS-CoV-2 located on the envelope surface, involve in interaction with angiotensin converting enzyme 2 (ACE2), a cell surface receptor, followed by entry into the host cell. Thereby, blocking the S glycoprotein through potential inhibitor may interfere its interaction with ACE2 and impede its entry into the host cell. Here, we present a truncated version of human ACE2 (tACE2), comprising the N terminus region of the intact ACE2 from amino acid position 21-119, involved in binding with receptor binding domain (RBD) of SARS-CoV-2. We analyzed the in-silico potential of tACE2 to compete with intact ACE2 for binding with RBD. The protein-protein docking and molecular dynamic simulation showed that tACE2 has higher binding affinity for RBD and form more stabilized complex with RBD than the intact ACE2. Furthermore, prediction of tACE2 soluble expression in E. coli makes it a suitable candidate to be targeted for Covid-19 therapeutics. This is the first MD simulation based findings to provide a high affinity protein inhibitor for SARS-CoV-2 S glycoprotein, an important target for drug designing against this unprecedented challenge.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Tanveer Ali
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Shafiq Ur Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Basit A, Ali T, Rehman SU. Truncated human angiotensin converting enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent. J Biomol Struct Dyn 2020; 39:3605-3614. [PMID: 32396773 PMCID: PMC7256354 DOI: 10.1080/07391102.2020.1768150] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current pandemic of Covid-19 caused by SARS-CoV-2 is continued to spread globally and no potential drug or vaccine against it is available. Spike (S) glycoprotein is the structural protein of SARS-CoV-2 located on the envelope surface, involve in interaction with angiotensin converting enzyme 2 (ACE2), a cell surface receptor, followed by entry into the host cell. Thereby, blocking the S glycoprotein through potential inhibitor may interfere its interaction with ACE2 and impede its entry into the host cell. Here, we present a truncated version of human ACE2 (tACE2), comprising the N terminus region of the intact ACE2 from amino acid position 21-119, involved in binding with receptor binding domain (RBD) of SARS-CoV-2. We analyzed the in-silico potential of tACE2 to compete with intact ACE2 for binding with RBD. The protein-protein docking and molecular dynamic simulation showed that tACE2 has higher binding affinity for RBD and form more stabilized complex with RBD than the intact ACE2. Furthermore, prediction of tACE2 soluble expression in E. coli makes it a suitable candidate to be targeted for Covid-19 therapeutics. This is the first MD simulation based findings to provide a high affinity protein inhibitor for SARS-CoV-2 S glycoprotein, an important target for drug designing against this unprecedented challenge.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Tanveer Ali
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Shafiq Ur Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Pola M, Rajulapati SB, Potla Durthi C, Erva RR, Bhatia M. In silico modelling and molecular dynamics simulation studies on L-Asparaginase isolated from bacterial endophyte of Ocimum tenuiflorum. Enzyme Microb Technol 2018; 117:32-40. [PMID: 30037549 DOI: 10.1016/j.enzmictec.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023]
Abstract
Bioactive compounds from endophytes have been used to treat various diseases. In the present study, L-Asparaginase producing endophytes were isolated from Ocimum tenuiflorum (Tulasi) from NIT Warangal, Telangana, India to treat Acute Lymphoblastic Leukemia (ALL) in which L-Asparagine (L-Asn) deamination plays a vital role in ALL treatment. 20 (bacteria and fungi) out of 35 endophytes have been screened for L-Asparaginase production using rapid plate assay technique, in which four strains produced high amounts of L-Asparaginase. 16 s Ribosomal RNA sequencing studies were performed, Bacillus stratosphericus organism was identified, and purified L-Asparaginase sequence has been tailored using MALDI/TOF (Applied Biosystems). The homology model was developed by using MODELLER 9.15v as the endophyte lacks crystal structure of L-Asparaginase enzyme and validated by dint of quality index tools. Docking studies were performed using iGemdock 2.1v. In comparison, free energy binding efficiency of receptor towards L-Asparagine (L-Asn) is good with lesser energy -71.6 kcal/mol in comparison to L-Glutamine (L-Gln) having -67.7 kcal/mol. In order to find the stability of the docked complexes in dynamics environment, molecular dynamics and simulation studies were performed using GROMACS V4.6.5. The trajectory analysis for 10 ns shows the better RMSD, RMSF, Rg and average number of hydrogen bonds for complex 1 (L-Asparaginase + L-Asn docked complex). Hence, complex 1 was found to be more stable than Complex 2 (L-Asparaginase + L-Gln docked complex).
Collapse
Affiliation(s)
- Madhuri Pola
- National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | | | | | | | - Mayuri Bhatia
- National Institute of Technology Warangal, Warangal 506004, Telangana, India
| |
Collapse
|
8
|
Multi level statistical optimization of l-asparaginase from Bacillus subtilis VUVD001. 3 Biotech 2018; 8:24. [PMID: 29279817 DOI: 10.1007/s13205-017-1020-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022] Open
Abstract
Physical and chemical factors influencing the anti-leukemic l-asparaginase enzyme production by Bacillus subtilis VUVD001 were optimized using multi-stage optimization on the basis of preliminary experimental outcomes obtained by conventional one-factor-at-a-time approach using shake flasks. Process variables namely carbon, nitrogen sources, pH and temperature were taken into consideration during response surface methodology (RSM) optimization. The finest enzyme activity of 0.51 IUml-1 obtained by OFAT method was enhanced by 3.2 folds using RSM optimization. Artificial neural network (ANN) modelling and genetic algorithm (GA) based optimizations were further carried out to improve the enzyme drug yield. Results were also validated by conducting experiments at optimum conditions determined by RSM and GA optimization methods. The novel bacterium yielded in 2.88 IUml-1 of enzyme activity at optimum process variables determined by GA optimization, i.e., 0.5% glucose, 8.0% beef extract, 8.3 pH and 49.9 °C temperature. The study explored the optimized culture conditions for better yielding of anti-leukemic enzyme drug from a new bacterial source namely Bacillus subtilis VUVD001.
Collapse
|