1
|
Mod B, Baskar AV, Bahadur R, Tavakkoli E, Van Zwieten L, Singh G, Vinu A. From cane to nano: advanced nanomaterials derived from sugarcane products with insights into their synthesis and applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2393568. [PMID: 39238510 PMCID: PMC11376298 DOI: 10.1080/14686996.2024.2393568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Sugarcane-based products are inherently rich in elements such as silicon, carbon and nitrogen. As such, these become ideal precursors for utilization in a wide array of application fields. One of the appealing areas is to transform them into nanomaterials of high interest that can be employed in several prominent applications. Among nanomaterials, sugarcane products based on silica nanoparticles (SNPs), carbon dots (CDs), metal/metal oxide-based NPs, nanocellulose, cellulose nanofibers (CNFs), and nano biochar are becoming increasingly reported. Through manipulation of the experimental conditions and choosing suitable starting precursors and elements, it is possible to devise these nanomaterials with highly desired properties suited for specific applications. The current review presents the findings from the recent literature wherein an effort has been made to convey new development in the field of sugarcane-based products for the synthesis of the above-mentioned nanomaterials. Various nanomaterials were systematically discussed in terms of their synthesis and application perspectives. Wherever possible, a comparative analysis was carried out to highlight the potential of sugarcane products for the intended purpose as compared to other biomass-based materials. This review is expected to stand out in delivering an up-to-date survey of the literature and provide readers with necessary directions for future research.
Collapse
Affiliation(s)
- Bhavya Mod
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| | - Arun V Baskar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| | - Ehsan Tavakkoli
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
| | - Lukas Van Zwieten
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
2
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
3
|
Jayarambabu N, Velupla S, Akshaykranth A, Anitha N, Rao TV. Bambusa arundinacea leaves extract-derived Ag NPs: evaluation of the photocatalytic, antioxidant, antibacterial, and anticancer activities. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2022; 129:13. [PMID: 36531186 PMCID: PMC9734976 DOI: 10.1007/s00339-022-06279-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/25/2022] [Indexed: 06/01/2023]
Abstract
Bio-fabrication has become a safe approach for silver nanoparticles (Ag NPs). The plant-mediated biosynthesized Ag NPs have emerged as a potential substitute for conventional chemical formation. The biosynthesized Ag NPs were analyzed in terms of crystalline nature, morphology, chemical composition, particle size, stability, size, and shape of the particles. The XRD, FTIR, and TEM analysis indicate the presence of the bioactive secondary metabolites compounds. The bamboo-mediated Ag NPs demonstrated a notable antibacterial efficacy against Gram-positive and Gram-negative pathogenic microorganisms and showed significant antioxidant activity against DPPH free radicals. The degradation of methylene blue at various intervals under solar light irradiation was used to evaluate the photocatalytic performance of Ag NPs. Further, Ag NPs conveyed potent anticancer activity against MCF-7 cell lines with a significant value IC50. The bamboo leaves-mediated Ag NPs synthesized Ag NPs signified strong antibacterial, antioxidant, and anticancer activity; hence, it can be used in various biomedical applications and face mask coating to prevent the coronavirus after successful clinical trials in research laboratories.
Collapse
Affiliation(s)
- N. Jayarambabu
- Department of Physics, National Institute of Technology, Warangal, 506004 India
| | - Suresh Velupla
- Department of Biochemistry, Osmania University, Hyderabad, 500007 India
| | - A. Akshaykranth
- Department of Physics, National Institute of Technology, Warangal, 506004 India
| | - N. Anitha
- Department of Physics, National Institute of Technology, Warangal, 506004 India
| | - T. Venkatappa Rao
- Department of Physics, National Institute of Technology, Warangal, 506004 India
| |
Collapse
|
4
|
Khan MR, Siddiqui ZA, Fang X. Potential of metal and metal oxide nanoparticles in plant disease diagnostics and management: Recent advances and challenges. CHEMOSPHERE 2022; 297:134114. [PMID: 35240149 DOI: 10.1016/j.chemosphere.2022.134114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/20/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Plant diseases caused by phytopathogens are a severe threat to global food production. Management of plant diseases mostly rely on the application of pesticides which have several adverse effects on the ecosystem. Innovative and high-performance diagnostic tools are useful for the early detection of phytopathogens. Emerging role of metal and metal oxides nanoparticles (NPs) in plant disease diagnostics to combat crop diseases has been described. These NPs constitute new weapons against plant pathogens and facilitate the early diagnosis/management of crop diseases specifically in resource-poor conditions. The interactions between NPs, phytopathogens and plants showed great diversity and multiplicity which reduces chances of the development of resistant pathogen strains. The present article discusses the available literature as well as challenges and research gaps that are essential in the successful utilization of metal and metal oxide NPs for precise and timely detection and management of plant diseases.
Collapse
Affiliation(s)
- Manzoor R Khan
- Plant Pathology & Nematology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India; Department of Botany, Government Degree College Kupwara, Kupwara, Jammu & Kashmir, 193222, India
| | - Zaki A Siddiqui
- Plant Pathology & Nematology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Xiangling Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
5
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
6
|
Saud MA, Saud NA, Hamad MA, Farhan Gar L. Role of Salvia officinalis Silver Nanoparticles in Attenuation Renal Damage in Rabbits Exposed to Methotrexate. ARCHIVES OF RAZI INSTITUTE 2022; 77:151-162. [PMID: 35891727 PMCID: PMC9288605 DOI: 10.22092/ari.2021.356313.1821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 06/15/2023]
Abstract
Nanomaterials are now considered in an extensive range of applications in various fields such as biotechnology and biomedicine. The present study aimed to investigate the protective role of Salvia officinalis Silver Nanoparticles (SOSNPs) as an anti-oxidant on nephrotic damage induced by methotrexate (MTX) in adult rabbits. Green silver nanoparticles were synthesized using alcoholic extract of Salvia officinalis (S. Officinalis) leaves and were characterized by UV-spectrophotometry and scanning electron microscope. The mixing of the plant extract of S. Officinalis with silver nitrate solution leads to the change of the reaction mixture color to yellowish within 1 h and dark brown after 8 h. For studying the protective role of SOSNPs, a total of 28 adult Wistar albino rabbits were divided into four groups and treated intramuscularly (twice per week) for 45 days as follows: T1: S. Officinalis (150 mg/kg B.W), T2: SOSNPs (150 mg/kg B.W); T3: MTX (0.25 mg/kg B.W) and SOSNPs (150 mg/kg B.W); T4: MTX (0.25 mg/kg B.W). Blood was collected at 0, 15, 30, and 45 days using retro-orbital sinus and cardiac puncture technique, and the serum factors including malondialdehyde (MDA), glutathione (GSH) in serum, creatinine, as well as blood urea nitrogen and uric acid concentrations were measured at the next step. The results indicated that MTX (T4) caused a case of oxidative stress by a significant decrease in GSH and MDA as well as an increase in serum creatinine, urea, and uric acid concentrations. On the other hand, the protective roles of S. Officinalis and SOSNPs given concurrently with MTX were clarified in T2 and T3 groups, where there was the alleviation of renal damage through the correction of the previously mentioned parameters as well as the correction of anti-oxidant status. Finally, the present study documented the anti-oxidant activity and renal protective effects of SOSNPs against the damaging effects of MTX in rabbits.
Collapse
Affiliation(s)
- M A Saud
- Biotechnology and Environmental Center, University of Al-Fallujah, Fallujah, Al Anbar, Iraq
| | - N A Saud
- College of Education for Pure Sciences, Department of Biology, University of Anbar, Ramadi, Al Anbar, Iraq
| | - M A Hamad
- Biotechnology and Environmental Center, University of Al-Fallujah, Fallujah, Al Anbar, Iraq
| | - L Farhan Gar
- Biotechnology and Environmental Center, University of Al-Fallujah, Fallujah, Al Anbar, Iraq
| |
Collapse
|
7
|
Rónavári A, Igaz N, Adamecz DI, Szerencsés B, Molnar C, Kónya Z, Pfeiffer I, Kiricsi M. Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules 2021; 26:844. [PMID: 33562781 PMCID: PMC7915205 DOI: 10.3390/molecules26040844] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The nanomaterial industry generates gigantic quantities of metal-based nanomaterials for various technological and biomedical applications; however, concomitantly, it places a massive burden on the environment by utilizing toxic chemicals for the production process and leaving hazardous waste materials behind. Moreover, the employed, often unpleasant chemicals can affect the biocompatibility of the generated particles and severely restrict their application possibilities. On these grounds, green synthetic approaches have emerged, offering eco-friendly, sustainable, nature-derived alternative production methods, thus attenuating the ecological footprint of the nanomaterial industry. In the last decade, a plethora of biological materials has been tested to probe their suitability for nanomaterial synthesis. Although most of these approaches were successful, a large body of evidence indicates that the green material or entity used for the production would substantially define the physical and chemical properties and as a consequence, the biological activities of the obtained nanomaterials. The present review provides a comprehensive collection of the most recent green methodologies, surveys the major nanoparticle characterization techniques and screens the effects triggered by the obtained nanomaterials in various living systems to give an impression on the biomedical potential of green synthesized silver and gold nanoparticles.
Collapse
Affiliation(s)
- Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary; (A.R.); (Z.K.)
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| | - Dóra I. Adamecz
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| | - Bettina Szerencsés
- Department of Microbiology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (B.S.); (I.P.)
| | - Csaba Molnar
- Broad Institute of MIT and Harvard, Cambridge, 415 Main St, Cambridge, MA 02142, USA;
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary; (A.R.); (Z.K.)
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1., H-6720 Szeged, Hungary
| | - Ilona Pfeiffer
- Department of Microbiology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (B.S.); (I.P.)
| | - Monika Kiricsi
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| |
Collapse
|
8
|
Li WQ, Qing T, Li CC, Li F, Ge F, Fei JJ, Peijnenburg WJGM. Integration of subcellular partitioning and chemical forms to understand silver nanoparticles toxicity to lettuce (Lactuca sativa L.) under different exposure pathways. CHEMOSPHERE 2020; 258:127349. [PMID: 32540544 DOI: 10.1016/j.chemosphere.2020.127349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
The current understanding of the biological impacts of silver nanoparticles (AgNPs) is restricted to the direct interactions of the particles with biota. Very little is known about their intracellular fate and subsequent toxic consequences. In this research we investigated the uptake, internal fate (i,e., Ag subcellular partitioning and chemical forms), and phytotoxicity of AgNPs in lettuce following foliar versus root exposure. At the same AgNP exposure concentrations, root exposure led to more deleterious effects than foliar exposure as evidenced by a larger extent of reduced plant biomass, elevated oxidative damage, as well as a higher amount of ultrastructural injuries, despite foliar exposure leading to 2.6-7.6 times more Ag bioaccumulation. Both Ag subcellular partitioning and chemical forms present within the plant appeared to elucidate this difference in toxicity. Following foliar exposure, high Ag in biologically detoxified metals pool (29.2-53.0% by foliar exposure vs. 12.8-45.4% by root exposure) and low Ag proportion in inorganic form (6.1-11.9% vs. 14.1-19.8%) potentially associated with AgNPs tolerance. Silver-containing NPs (24.8-38.6 nm, 1.5-2.3 times larger than the initial size) were detected in lettuce plants exposed to NPs and to dissolved Ag+, suggesting possible transformation and/or aggregation of AgNPs in the plants. Our observations show that the exposure pathway significantly affects the uptake and internal fate of AgNPs, and thus the associated phytotoxicity. The results are an important contribution to improve risk assessment of NPs, and will be critical to ensure food security.
Collapse
Affiliation(s)
- Wei-Qi Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Ting Qing
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Cheng-Cheng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Jun-Jie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, the Netherlands
| |
Collapse
|
9
|
Green Synthesis of Silver Nanoparticles from Caesalpinia pulcherrima Leaf Extract and Evaluation of Their Antimicrobial, Cytotoxic and Genotoxic Potential (3-in-1 System). J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01532-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Kalia A, Manchanda P, Bhardwaj S, Singh G. Biosynthesized silver nanoparticles from aqueous extracts of sweet lime fruit and callus tissues possess variable antioxidant and antimicrobial potentials. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1735420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Shiwani Bhardwaj
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Gurupkar Singh
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
11
|
Biogenic Synthesis of Silver Nanoparticles from Avicennia marina Seed Extract and Its Antibacterial Potential. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00612-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
|
13
|
Pudlarz AM, Czechowska E, Ranoszek-Soliwoda K, Tomaszewska E, Celichowski G, Grobelny J, Szemraj J. Immobilization of Recombinant Human Catalase on Gold and Silver Nanoparticles. Appl Biochem Biotechnol 2018; 185:717-735. [PMID: 29299755 DOI: 10.1007/s12010-017-2682-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/19/2017] [Indexed: 01/20/2023]
Abstract
Human catalase cDNA was cloned into a pEX-C-His vector. Purified recombinant catalase was immobilized on nanoparticles. Gold and silver nanoparticles were synthesized in a variety of sizes by chemical reduction; no agglomerates or aggregates were observed in any of the colloids during dynamic light scattering or scanning transmission electron microscopy analysis. After immobilization on gold nanoparticles, recombinant catalase activity was found to be lower than that of the same amount of enzyme in aqueous solution. However, after 10 days of storage at room temperature, the activity of catalase immobilized on gold nanoparticles (AuNPs) of 13 and 20 nm and coverage of 133% was 68 and 83% greater than catalase in aqueous solution, respectively. During 10 days of experiment, percentage activity of catalase immobilized on those gold nanoparticles was higher in comparison to CAT in aqueous solution. Catalase immobilized on silver nanoparticles did not lose activity as significantly as catalase immobilized on AuNPs. Those results confirm the ability to produce recombinant human enzymes in a bacterial expression system and its potential use while immobilized on silver or gold nanoparticles.
Collapse
Affiliation(s)
- Agnieszka Małgorzata Pudlarz
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Ewa Czechowska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Jarosław Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|