1
|
Narenkumar J, Das B, Abilaji S, Sathishkumar K, AlSalhi MS, Devanesan S, Rajasekar A, Malik T. Biosurfactant-assisted bio-electrokinetic enhanced remediation of heavy metal-contaminated soil. Front Microbiol 2024; 15:1458369. [PMID: 39380679 PMCID: PMC11458532 DOI: 10.3389/fmicb.2024.1458369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 10/10/2024] Open
Abstract
Background Environmental soil contamination is a serious problem for humans worldwide, as it causes many diseases. Methods The present study focuses on utilizing biosurfactants produced by Pseudomonas stutzeri (P. stutzeri) NA3 and Bacillus cereus (B. cereus) EN6, as an electrolyte for removing chromium (Cr) from contaminated soil using the electrokinetic (EK) process. Results As a result, biosurfactants produced by P. stutzeri NA3 and B. cereus EN6, being lipopeptides, increase heavy metal mobility in the EK process. The Cr removal efficiency of a novel electrolyte (biosurfactants) in the EK process was compared with that of NA3 and EN6 biosurfactants. The EK results revealed a maximum Cr removal of 75 and 70% by NA3 and EN6, respectively, at the end of 7 days. Discussion The biosurfactant aids in the breaking down of the heavy metals that are present deeper into the soil matrix. From the metagenomics analysis, it was identified that biosurfactant changes the microbial community with an enhanced ability to remove heavy metals. The phytotoxicity assay confirms that NA3 biosurfactant solution showed 95% seed germination and can lower hazardous pollutants in the soil. Conclusion The application of biosurfactants as a potent electrolyte for the remediation of hazardous pollutants is an integrated process. Overall, the results of this study suggest that biosurfactants can serve as an economic and efficient electrolyte in the EK process to remove Cr from polluted soil.
Collapse
Affiliation(s)
- Jayaraman Narenkumar
- Department of Environmental & Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, India
| | - Bhaskar Das
- Department of Environmental & Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, India
| | - Subramani Abilaji
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohamad S. AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Adjunct Faculty, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Biocides with Controlled Degradation for Environmentally Friendly and Cost-Effective Fecal Sludge Management. BIOLOGY 2022; 12:biology12010045. [PMID: 36671737 PMCID: PMC9855048 DOI: 10.3390/biology12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Didecyldimethylammonium chloride (DDAC) and polyhexamethylene guanidine (PHMG) exhibit high antimicrobial activity and are widely used as biocidal agents in chemical toilet additives for the management of fecal sludge (FS). Disposal of such biocide-treated FS to a wastewater treatment plant (WWTP) is a major environmental problem. It is possible to reduce environmental damage through the use of biocidal agents, which easily decompose after performing their main biocidal functions. In this work, it is proposed to use the fact of a gradual increase in pH of FS from the initial 7.5 to 9.0-10.0 due to the decomposition of urea. Six biocidal compounds were selected that are capable of rapidly degrading in an alkaline environment and one that naturally degrades upon prolonged incubation. Four of them: bronopol (30 mg/L), DBNPA (500 mg/L), Sharomix (500 mg/L), and sodium percarbonate (6000 mg/L) have shown promise for environmentally friendly management of FS. In selected dosage, they successfully reduced microbial activity under both aerobic and anaerobic conditions and are cost-effective. After 10 days of incubation, degradation of the biocide occurred as measured by biological oxygen demand (BOD5) in biocide-treated FS. Such FS can be discharged to WWTP without severe damage to the activated sludge process, the need for dilution and additional procedures to neutralize toxicity.
Collapse
|
3
|
Suganya M, Preethi PS, Narenkumar J, Prakash AA, Devanesan S, AlSalhi MS, Rajasekar A, Nanthini AUR. Synthesis of silver nanoparticles from Indian red yeast rice and its inhibition of biofilm in copper metal in cooling water environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77800-77808. [PMID: 35688976 DOI: 10.1007/s11356-022-21219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The development of environmentally acceptable benign techniques using purely natural methods is a cost-effective procedure with long-term benefits in all areas. With this consideration, myco synthesized silver nano particles (AgNPs) were studied and it acted as an impending corrosion inhibitor in the environment. Initially, AgNPs were evaluated by physical and surface characterizations and this evidence demonstrated that RYRE's water-soluble molecules played an essential role in the synthesis of AgNPs in nano spherical size. The myco synthesized of AgNPs has showed an antibacterial activity against corrosive bacteria in cooling water system (CWS). Hence, the AgNPs were used in biocorrosion studies as an anticorrosive agent along with AgNO3 and RYRE was also checked. For this experiment, the copper (Cu) metal (CW024) which is commonly used was selected, the result of corrosion rate was decreased, and inhibition efficiency (82%) was higher in the presence of AgNPs in system IV. Even though, AgNO3 and RYRE had contributed significant inhibition efficiency on Cu at 47% and 61%, respectively. According to XRD, the reaction of AgNPs on Cu metal resulted in the formation of a protective coating of Fe2O3 against corrosion. EIS data also indicated that it could reduce the corrosion on the Cu metal surface. All of these findings point out the possibility that the myco-synthesized AgNPs were an effective copper metal corrosion inhibitor. As a result, we encourage the development of myco-synthesized AgNPs, which could be useful in the industrial settings.
Collapse
Affiliation(s)
- Muthukumar Suganya
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, 624101, India
| | | | - Jayaraman Narenkumar
- Centre for materials engineering and regenerative medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| | - Arumugam Arul Prakash
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
| | - Sandhanasamy Devanesan
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science,, King Saud University, P.O. Box; 2455, Riyadh, 11451, Saudi Arabia.
| | - Mohamad S AlSalhi
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science,, King Saud University, P.O. Box; 2455, Riyadh, 11451, Saudi Arabia
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
| | | |
Collapse
|
4
|
Characterizing the Mechanisms of Metalaxyl, Bronopol and Copper Sulfate against Saprolegnia parasitica Using Modern Transcriptomics. Genes (Basel) 2022; 13:genes13091524. [PMID: 36140692 PMCID: PMC9498376 DOI: 10.3390/genes13091524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Saprolegniasis, which is caused by Saprolegnia parasitica, leads to considerable economic losses. Recently, we showed that metalaxyl, bronopol and copper sulfate are good antimicrobial agents for aquaculture. In the current study, the efficacies of metalaxyl, bronopol and copper sulfate are evaluated by in vitro antimicrobial experiments, and the mechanism of action of these three antimicrobials on S. parasitica is explored using transcriptome technology. Finally, the potential target genes of antimicrobials on S. parasitica are identified by protein–protein interaction network analysis. Copper sulfate had the best inhibitory effect on S. parasitica, followed by bronopol. A total of 1771, 723 and 2118 DEGs upregulated and 1416, 319 and 2161 DEGs downregulated S. parasitica after three drug treatments (metalaxyl, bronopol and copper sulfate), separately. Additionally, KEGG pathway analysis also determined that there were 17, 19 and 13 significantly enriched metabolic pathways. PPI network analysis screened out three important proteins, and their corresponding genes were SPRG_08456, SPRG_03679 and SPRG_10775. Our results indicate that three antimicrobials inhibit S. parasitica growth by affecting multiple biological functions, including protein synthesis, oxidative stress, lipid metabolism and energy metabolism. Additionally, the screened key genes can be used as potential target genes of chemical antimicrobial drugs for S. parasitica.
Collapse
|
5
|
Narenkumar J, Devanesan S, AlSalhi MS, Kokilaramani S, Ting YP, Rahman PK, Rajasekar A. Biofilm formation on copper and its control by inhibitor/biocide in cooling water environment. Saudi J Biol Sci 2021; 28:7588-7594. [PMID: 34867063 PMCID: PMC8626344 DOI: 10.1016/j.sjbs.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022] Open
Abstract
The present study has successfully identified the nitrate reducing bacteria present in the cooling water system and also investigated the performance of industrially applied biocide and inhibitor on the bacterial inhibition. In order to carry out the objective of this study, facilities and methods such as 16S rRNA gene sequencing, Lowry assay, SEM, EIS, ICP-MS and weight loss analysis were being utilized. In this study, two out of the five morphologically dis- similar colonies identified through 16S rRNA gene sequencing, namely the Massilia timonae and the Pseudomonas, were being utilized in the biocorrosion study on copper metal. From the surface analysis using SEM demonstrated the phenomenon of biofilm formation on the copper surface. 2-methylbenzimidazole has the addition of methyl group in the diazole ring position of benzimidazole it has create basicity environment and inhibit the metal deterioration. Meanwhile, it is also deducible from the EIS and protein analysis that com- bination of biocide with either of the inhibitors gives rise to better biocorrosion suppression (0.00178 mpy and 0.00171mpy) as compared to the sole effect of either biocide or inhibitor (0.00219 mpy, 0.00162 and 0.00143). Biocorrosion system biocide with MBM was found to exhibit 65% corrosion inhibition efficiency. Moreover, adoption of 2-Methylbenzimidazole seems to display better performance as compared to Multionic 8151, which is adopted in cooling water system.
Collapse
Affiliation(s)
- Jayaraman Narenkumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, Kingdom of Saudi Arabia, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamad S. AlSalhi
- Department of Physics and Astronomy, College of Science, Kingdom of Saudi Arabia, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Seenivasan Kokilaramani
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
| | - Yen-Peng Ting
- Department of Chemical and Biomolecular Engineering, National University of Singapore, engineering Drive, Singapore 117576, Singapore
| | | | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
- Corresponding author.
| |
Collapse
|
6
|
Narenkumar J, AlSalhi MS, Arul Prakash A, Abilaji S, Devanesan S, Rajasekar A, Alfuraydi AA. Impact and Role of Bacterial Communities on Biocorrosion of Metals Used in the Processing Industry. ACS OMEGA 2019; 4:21353-21360. [PMID: 31867530 PMCID: PMC6921611 DOI: 10.1021/acsomega.9b02954] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/15/2019] [Indexed: 05/04/2023]
Abstract
In the present study, the effects of the corrosive bacterial community and the biofilm on cooling water systems made from mild steel (MS) and brass (BR) were studied under field exposure conditions using electrochemical impedance spectroscopy measurements, scanning electron microscope, and X-ray diffraction methods. Results from16S rRNA gene sequences showed that the predominant bacteria species detected in the biofilm of MS and BR metals during 360 days of exposure were Bacillus cereus EN14, Achromobacter xylosoxidans EN15, A. xylosoxidans EN16, and B. cereus EN17. The weight loss results revealed that a higher corrosion rate was observed in MS (0.7 ± 0.1 mm/y) compared with that in BR (0.17 ± 0.05 mm/y) at the end of the exposure period. This can be explained by the bacterial communities enhancing the corrosion rates by creating a local corrosive environment. Scanning electron microscope images revealed the adsorption of biofilm on the MS and BR surfaces following180 days of exposure. From the electrochemical impedance study, a higher charge transfer resistance (R ct) was obtained for BR (119.6 Ω cm2) when compared with that of MS (43.4 Ω cm2). This study explains the role of bacterial communities and their mechanisms in the corrosion of MS and BR in cooling water systems.
Collapse
Affiliation(s)
- Jayaraman Narenkumar
- Environmental Molecular Microbiology
Research
Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamilnadu, India
- Shenyang
National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| | - Mohamad S. AlSalhi
- Department
of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- E-mail: , (M.S.A.)
| | - Arumugam Arul Prakash
- Environmental Molecular Microbiology
Research
Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamilnadu, India
| | - Subramani Abilaji
- Environmental Molecular Microbiology
Research
Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamilnadu, India
| | - Sandhanasamy Devanesan
- Department
of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology
Research
Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamilnadu, India
- E-mail: , (A.R.)
| | - Akram A. Alfuraydi
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Electrochemical, morphological and theoretical studies of an oxadiazole derivative as an anti-corrosive agent for kerosene reservoirs in Iraqi refineries. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-01022-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Preethi PS, Narenkumar J, Prakash AA, Abilaji S, Prakash C, Rajasekar A, Nanthini AUR, Valli G. Myco-Synthesis of Zinc Oxide Nanoparticles as Potent Anti-corrosion of Copper in Cooling Towers. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01600-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Effect of nano-zerovalent iron incorporated polyvinyl-alginate hybrid hydrogel matrix on inhibition of corrosive bacteria in a cooling tower water environment. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0443-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
10
|
Li XL, Narenkumar J, Rajasekar A, Ting YP. Biocorrosion of mild steel and copper used in cooling tower water and its control. 3 Biotech 2018; 8:178. [PMID: 29556432 PMCID: PMC5847642 DOI: 10.1007/s13205-018-1196-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 03/03/2018] [Indexed: 01/16/2023] Open
Abstract
The present study describes the biocorrosion of mild steel (MS1010) and pure copper (Cu) in cooling water environments (both field and lab study). Electrochemical and surface analyses of both metals were carried out to confirm the corrosion susceptibility in the presence of bacteria and inhibitor. Surface analysis of the MS and Cu coupons revealed that biofilm was developed with increasing exposure time in the field study. In the lab study, accumulation of extracellular polymeric substance over the metal surface was noticed and led to the severe pitting type of corrosion on both metal surfaces. Besides, the anti-corrosive study was carried out using the combinations of commercial corrosion inhibitor (S7653-10 ppm) with biocide (F5100-5 ppm), and the results reveal that the corrosion rate of MS and Cu was highly reduced to 0.0281 and 0.0021 mm/year (inhibitor system) than 0.1589 and 0.0177 mm/year (control system). Inhibition efficiency for both metals in the presence of inhibitor with biocide was found as 82 and 88% for MS and Cu, respectively. The present study concluded that MS was very susceptible to biocorrosion, compared to copper metal in cooling water environment. Further, the combination of the both inhibitor and biocide was effectively inhibiting the biocorrosion which was due to its antibacterial and anti-corrosive properties.
Collapse
Affiliation(s)
- Xiao Lei Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117576 Singapore
| | - Jayaraman Narenkumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632 115 India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632 115 India
| | - Yen-Peng Ting
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117576 Singapore
| |
Collapse
|