1
|
Ahmed SA, Kamel EM, Mahmoud AM, Nasr HMD, Hassan HM, Alanazi MM, Rateb ME, Hozayen WG, Ahmed SA. Phytochemical Analysis, and Antioxidant and Hepatoprotective Activities of Chamaerops humilis L. Leaves; A Focus on Xanthine Oxidase. Chem Biodivers 2024; 21:e202400865. [PMID: 38867399 DOI: 10.1002/cbdv.202400865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Chamaerops humilis L. is clumping palm of the family Arecaceae with promising health-promoting effects. Parts of this species are utilized as food and employed in folk medicine to treat several disorders. This study investigated the phytochemical constituents of C. humilis leaves and their antioxidant and xanthine oxidase (XO) inhibitory activities in vitro and in vivo in acetaminophen (APAP)-induced hepatotoxicity in rats. The chemical structure of the isolated phytochemicals was determined using data obtained from UV, MS, IR, and 1H-, 13C-NMR spectroscopic tools as well as comparison with authentic markers. Eleven compounds, including tricin 7-O-β-rutinoside, vicenin, tricin, astragalin, borassoside D, pregnane-3,5,6,16-tetrol, oleanolic acid, β-sitosterol and campesterol were isolated from C. humilis ethanolic extract (CHEE). CHEE and the butanol, n-hexane, and dichloromethane fractions exhibited in vitro radical scavenging and XO inhibitory efficacies. The computational findings revealed the tendency of the isolated compounds towards the active site of XO. In vivo, CHEE ameliorated liver function markers and prevented tissue injury induced by APAP in rats. CHEE suppressed hepatic XO, decreased serum uric acid and liver malondialdehyde (MDA), and enhanced reduced glutathione (GSH), superoxide dismutase (SOD), and catalase in APAP-treated rats. CHEE ameliorated serum tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β in APAP-treated rats. Thus, C. humilis is rich in beneficial phytochemicals that possess binding affinity towards XO. C. humilis exhibited potent in vitro antioxidant and XO inhibitory activities, and prevented APAP hepatotoxicity by attenuating tissue injury, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Shimaa A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Seuf, 62514, Egypt
| | - Emadeldin M Kamel
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Seuf, 62514, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Hamdi M D Nasr
- Department of Chemistry, Faculty of Science, Al-Azhar University (Assiut), Assiut, 71524, Egypt
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mostafa E Rateb
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Walaa G Hozayen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Seuf, 62514, Egypt
| | - Sayed A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Seuf, 62514, Egypt
| |
Collapse
|
2
|
Li R, Ru Y, Feng L, Wang Z, He X, Zhang X. A comparative study of nutrient composition, bioactive properties and phytochemical characteristics of Stauntonia obovatifoliola flesh and pericarp. Front Nutr 2022; 9:1013971. [PMID: 36159481 PMCID: PMC9501892 DOI: 10.3389/fnut.2022.1013971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
A comparative study was conducted among the flesh (SOF) and pericarp (SOP) of Stauntonia obovatifoliola, a wild edible fruit in China. The nutrient composition of both these tissues was firstly quantified, and liquid-liquid extraction was then used to separate their methanolic extracts to get petroleum ether, chloroform, ethyl acetate, n-butanol, and residual aqueous fractions, which were evaluated for their total phenol content (TPC), total flavonoid content (TFC), antioxidant capacities, and α-glucosidase and acetylcholinesterase inhibition abilities. Finally, high-performance liquid chromatography (HPLC) was used to analyze their phytochemical composition. The results revealed the excellent nutritional properties of both SOF and SOP, especially SOP (total dietary fiber, 15.50 g/100 g; total amino acids, 0.80 g/100 g; vitamin C, 18.00 mg/100 g; Ca, 272.00 mg/kg; K, 402.00 mg/100 g). For both tissues, their ethyl acetate fractions showed the highest TPC (355.12 and 390.99 mg GAE/g DE) and TFC (306.58 and 298.48 mg RE/g DE). Surprisingly, the ethyl acetate fraction of SOP exhibited the strongest DPPH and ABTS radical scavenging capacity with 1046.94 and 1298.64 mg Trolox/g, respectively, which were higher than that of controls Vc and BHT. In contrast, their chloroform fractions exhibited the strongest ferric reducing antioxidant power (1903.05 and 1407.11 mg FeSO4/g DE) and oxygen radical absorbance capacity (951.12 and 1510.21 mg Trolox/g DE). In addition, the ethyl acetate fraction of SOF displayed superior α-glucosidase inhibition ability with the IC50 value of 0.19 mg/mL, which was comparable to control acarbose. In comparison, the ethyl acetate fraction of SOP had the best acetylcholinesterase inhibition ability with the IC50 value of 0.47 mg/mL. The HPLC analysis results demonstrated that the ethyl acetate fraction of SOP showed significantly higher phenolic content, particularly for phenolic acids (p-hydroxybenzoic acid, 8.00 ± 0.65 mg/g) and flavonoids (epicatechin, 28.63 ± 1.26 mg/g), as compared to other samples. The above results suggest that Stauntonia obovatifoliola, especially its pericarp, had excellent nutrient compositions, bioactive properties and phytochemical characteristics, and had the potential to be developed as natural functional food.
Collapse
Affiliation(s)
- Rurui Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Yuerong Ru
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Ling Feng
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Zhenxing Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Horticulture and Landscape, Southwest Forestry University, Kunming, China
- *Correspondence: Xiahong He
| | - Xuechun Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Life Science, Southwest Forestry University, Kunming, China
- Xuechun Zhang
| |
Collapse
|
3
|
Odilia MR, Putri DTZA, Rosetyadewi AW, Wijayanti AD, Budiyanto A, Jadi AR, Pratama AM. Identification of antinutritional, antioxidant, and antimicrobial activity of plants that cause livestock poisoning in Bojonegoro Regency, Indonesia. Vet World 2022; 15:2131-2140. [PMID: 36341053 PMCID: PMC9631382 DOI: 10.14202/vetworld.2022.2131-2140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: The utilization of cassava leaves and peels, ceara rubber leaves, sweet potato leaves, Chinese Albizia leaves, and lophatheri leaves from Bojonegoro Regency has led to the poisoning of livestock due to antinutritional factors. Nevertheless, the plants are known to have bioactive components and potential antioxidant and antibacterial activity if appropriately processed. This study aimed to determine the antinutritional compounds as well as the antioxidant and antibacterial potential of these plants responsible for livestock poisoning in the Bojonegoro Regency. Materials and Methods: Extraction was performed by the maceration method using 70% (v/v) ethanol solvent. The samples were analyzed qualitatively to determine the presence of tannins, alkaloids, oxalates, cardiac glycosides, and cyanogenic glycosides. The antioxidant activity was determined using the 1,1-diphenyl-2-picrylhydrazyl method, while the antimicrobial activity was assessed by different testing concentrations (125, 250, and 500 mg/mL) against Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli. Results: The ethanolic extract of the plants was found to contain antinutritional tannins, alkaloids, cardiac glycosides, and cyanogenic glycosides suspected of causing livestock poisoning. Despite the presence of these antinutrients, all extracts also had antioxidant and antibacterial potential. Cassava peels and sweet potato leaves had the highest antioxidant activity, whereas Chinese Albizia leaves had the most potent antibacterial activity. Conclusion: Cassava leaves and peels, ceara rubber leaves, sweet potato leaves, Chinese Albizia leaves, and lophatheri leaves obtained from Bojonegoro Regency and used as agricultural waste contain antinutritional factors but also possess potentially effective antioxidant and antimicrobial components.
Collapse
Affiliation(s)
- Maria Rosaria Odilia
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang, Yogyakarta, 55281, Indonesia
| | - Dhiya Tajhanun Zahra Astika Putri
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang, Yogyakarta, 55281, Indonesia
| | | | - Agustina Dwi Wijayanti
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang, Yogyakarta, 55281, Indonesia
| | - Agung Budiyanto
- Department of Reproduction and Obstetrics, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang, Yogyakarta, 55281, Indonesia
| | - Arvendi Rachma Jadi
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang, Yogyakarta, 55281, Indonesia
| | - Anggi Muhtar Pratama
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang, Yogyakarta, 55281, Indonesia
| |
Collapse
|
4
|
Seed Phytochemical Profiling of Three Olive Cultivars, Antioxidant Capacity, Enzymatic Inhibition, and Effects on Human Neuroblastoma Cells (SH-SY5Y). Molecules 2022; 27:molecules27165057. [PMID: 36014295 PMCID: PMC9412495 DOI: 10.3390/molecules27165057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
This work evaluated the phytochemical composition of olive seed extracts from different cultivars (‘Cobrançosa’, ‘Galega’, and ’Picual’) and their antioxidant capacity. In addition, it also appraised their potential antineurodegenerative properties on the basis of their ability to inhibit enzymes associated with neurodegenerative diseases: acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase (TYR). To achieve this goal, the phenolic composition of the extracts was determined through high-performance liquid chromatography coupled with photodiode-array detection and electrospray ionization/ion trap mass spectrometry (HPLC-DAD-ESI/MSn). The antioxidant capacity was assessed by two different methods (ABTS•+ and DPPH•), and the antineurodegenerative potential by the capacity of these extracts to inhibit the aforementioned related enzymes. The results showed that seed extracts presented a high content of phenolic compounds and a remarkable ability to scavenge ABTS•+ and DPPH•. Tyrosol, rutin, luteolin-7-glucoside, nüzhenide, oleuropein, and ligstroside were the main phenolic compounds identified in the extracts. ‘Galega’ was the most promising cultivar due to its high concentration of phenolic compounds, high antioxidant capacity, and remarkable inhibition of AChE, BChE, and TYR. It can be concluded that olive seed extracts may provide a sustainable source of bioactive compounds for medical and industrial applications.
Collapse
|
5
|
Ethnopharmacological Survey, Mineral and Chemical Content, In Vitro Antioxidant, and Antibacterial Activities of Aqueous and Organic Extracts of Chamaerops humilis L. var. argentea Andre Leaves. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1091247. [PMID: 36033551 PMCID: PMC9410792 DOI: 10.1155/2022/1091247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023]
Abstract
Introduction. The present study is carried out for the first time on Chamaerops humilis L. var. argentea Andre from the region of Taza using an ethnopharmacological survey, an experimental study of the mineralogical and chemical compositions, and evaluations of the antioxidant and antibacterial activities. Methods. After conducting the ethnopharmacological survey, a mineralogical and phytochemical study involving the preparation of aqueous and organic extracts was done. Essential oils were also extracted by hydrodistillation. Subsequently, qualitative and quantitative chemical analyses were performed. In vitro evaluation of antioxidant activities was performed by five tests (H2O2, DPPH, ABTS, FRAP, and RP) and antibacterial activities by the disc method and determination of MIC and MBC. A principal component analysis (PCA) was performed to visualize the different correlations. Results. The different parts of the plant are used for the treatment of digestive disorders, cardiovascular diseases, and diabetes. In addition, the leaves are rich in mineral compounds, catechic tannins, flavonoids, and sterols. However, they have some traces of essential oils. The quantitative analysis revealed that the ethanolic macerated had a higher content of total polyphenols (
EAG/g E) and catechic tannins (
EC/g E). This extract had a strong antioxidant capacity (H2O2 (
), DPPH (
), ABTS (
E AA/g E), FRAP (
E T/g E), and RP (
E AA/g E). The same extract had a bactericidal effect against Staphylococcus aureus. Principal component analysis (PCA) showed that antioxidant activity was highly correlated with the chemical composition of C. humilis leaves; a high correlation was recorded between the total polyphenol content and ABTS (
), FRAP (
), DPPH (
), and PR (
) tests. In addition, cathectic tannins were highly correlated with the tests of DPPH (
) and ABTS (
). Flavonoids were similarly correlated with DPPH (
) and ABTS (
) tests. Conclusion. These results could justify the traditional use of the leaves of Chamaerops humilis in the region of Taza for the treatment of some diseases.
Collapse
|
6
|
Cadi HE, Bouzidi HE, Selama G, Ramdan B, Majdoub YOE, Alibrando F, Arena K, Lovillo MP, Brigui J, Mondello L, Cacciola F, Salerno TMG. Elucidation of Antioxidant Compounds in Moroccan Chamaerops humilis L. Fruits by GC-MS and HPLC-MS Techniques. Molecules 2021; 26:molecules26092710. [PMID: 34063074 PMCID: PMC8124856 DOI: 10.3390/molecules26092710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to characterize the phytochemical content as well as the antioxidant ability of the Moroccan species Chamaerops humilis L. Besides crude ethanolic extract, two extracts obtained by sonication using two solvents with increased polarity, namely ethyl acetate (EtOAc) and methanol-water (MeOH-H2O) 80:20 (v/v), were investigated by both spectroscopy and chromatography methods. Between the two extracts, the MeOH-H2O one showed the highest total polyphenolic content equal to 32.7 ± 0.1 mg GAE/g DM with respect to the EtOAc extract (3.6 ± 0.5 mg GAE/g DM). Concerning the antioxidant activity of the two extracts, the EtOAc one yielded the highest value (1.9 ± 0.1 mg/mL) with respect to MeOH-H2O (0.4 ± 0.1 mg/mL). The C. humilisn-hexane fraction, analyzed by GC–MS, exhibited 69 compounds belonging to different chemical classes, with n-Hexadecanoic acid as a major compound (21.75%), whereas the polyphenolic profile, elucidated by HPLC–PDA/MS, led to the identification of a total of sixteen and thirteen different compounds in both EtOAc (major component: ferulic acid: 104.7 ± 2.52 µg/g) and MeOH-H2O extracts (major component: chlorogenic acid: 45.4 ± 1.59 µg/g), respectively. The attained results clearly highlight the potential of C. humilis as an important source of bioactive components, making it a valuable candidate to be advantageously added to the daily diet. Furthermore, this study provides the scientific basis for the exploitation of the Doum in the food, pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Hafssa El Cadi
- Laboratory of Valorization of Resources and Chemical Engineering, Department of Chemistry, Abdelmalek Essaadi University, Tangier 90000, Morocco; (H.E.C.); (H.E.B.); (J.B.)
| | - Hajar El Bouzidi
- Laboratory of Valorization of Resources and Chemical Engineering, Department of Chemistry, Abdelmalek Essaadi University, Tangier 90000, Morocco; (H.E.C.); (H.E.B.); (J.B.)
- Laboratory of Biochemistry and Molecular Genetics, Abdelmalek Essaadi University, Tangier 90000, Morocco;
| | - Ginane Selama
- Laboratory of Biochemistry and Molecular Genetics, Abdelmalek Essaadi University, Tangier 90000, Morocco;
| | - Btissam Ramdan
- Department of Biology, Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Science, University Ibn Zohr, Agadir 80000, Morocco;
| | - Yassine Oulad El Majdoub
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (K.A.); (L.M.)
| | - Filippo Alibrando
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Katia Arena
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (K.A.); (L.M.)
| | - Miguel Palma Lovillo
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), University of Cadiz, IVAGRO, 11510 Cadiz, Spain;
| | - Jamal Brigui
- Laboratory of Valorization of Resources and Chemical Engineering, Department of Chemistry, Abdelmalek Essaadi University, Tangier 90000, Morocco; (H.E.C.); (H.E.B.); (J.B.)
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (K.A.); (L.M.)
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-6570
| | - Tania M. G. Salerno
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
7
|
Shao SY, Ting Y, Wang J, Sun J, Guo XF. Characterization and identification of the major flavonoids in Phyllostachys edulis leaf extract by UPLC–QTOF–MS/MS. ACTA CHROMATOGR 2020. [DOI: 10.1556/1326.2019.00688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phyllostachys edulis (PES), the most important bamboo species in China, is widely distributed in East Asia. Flavonoids, which are important bioactive natural compounds, often have similar structures, making their structural elucidation difficult. The aim of this study was to represent valuable, reliable mass spectral data for the identification of flavonoids in plant leaves. Ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC–Q-TOF-MS/MS) method was established for characterization and identification of the major flavonoids in PES leaf extract. A total of 13 flavonoids were simultaneously characterized, and their proposed characteristic product ions and fragmentation pathways were investigated. Thirteen compounds were separated on an Agilent Zorbax RRHD SB-C18 column (150 mm × 2.1 mm, 1.8 μm). On the basis of comparing with the 4 reference standards and the literature data, the other 9 flavonoids were identified by tandem mass spectrometry (MS/MS). Eight compounds (compounds 1, 4, 5, 8, 9, 10, 11, and 12) were found in PES leaves for the first time. An efficient UPLC–QTOF-MS/MS method was successfully applied for the structural identification of flavonoids in PES leaves. These results have practical applications for the rapid identification and structural characterization of these compounds in crude bioactive extracts or mixtures.
Collapse
Affiliation(s)
- S.-Y. Shao
- International Centre for Bamboo and Rattan, National Forestry and Grassland Administration, Beijing, China
| | - Y. Ting
- International Centre for Bamboo and Rattan, National Forestry and Grassland Administration, Beijing, China
| | - J. Wang
- International Centre for Bamboo and Rattan, National Forestry and Grassland Administration, Beijing, China
| | - J. Sun
- International Centre for Bamboo and Rattan, National Forestry and Grassland Administration, Beijing, China
| | - X.-F. Guo
- International Centre for Bamboo and Rattan, National Forestry and Grassland Administration, Beijing, China
| |
Collapse
|