1
|
Li Z, Huang C, Han L. Differential Regulations of Antioxidant Metabolism and Cold-Responsive Genes in Three Bermudagrass Genotypes under Chilling and Freezing Stress. Int J Mol Sci 2023; 24:14070. [PMID: 37762373 PMCID: PMC10530996 DOI: 10.3390/ijms241814070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
As a typical warm-season grass, bermudagrass growth and turf quality begin to decrease when the environmental temperature drops below 20 °C. The current study investigated the differential responses of three bermudagrass genotypes to chilling stress (8/4 °C) for 15 days and then freezing stress (2/-2 °C) for 2 days. The three genotypes exhibited significant variation in chilling and freezing tolerance, and Chuannong-3, common bermudagrass 001, and Tifdwarf were ranked as cold-tolerant, -intermediate, and -sensitive genotypes based on evaluations of chlorophyll content, the photochemical efficiency of photosystem II, oxidative damage, and cell membrane stability, respectively. Chuannong-3 achieved better tolerance through enhancing the antioxidant defense system to stabilize cell membrane and reactive oxygen species homeostasis after being subjected to chilling and freezing stresses. Chuannong-3 also downregulated the ethylene signaling pathway by improving CdCTR1 expression and suppressing the transcript levels of CdEIN3-1 and CdEIN3-2; however, it upregulated the hydrogen sulfide signaling pathway via an increase in CdISCS expression under cold stress. In addition, the molecular basis of cold tolerance could be associated with the mediation of key genes in the heat shock pathway (CdHSFA-2b, CdHSBP-1, CdHSP22, and CdHSP40) and the CdOSMOTIN in Chuannong-3 because the accumulation of stress-defensive proteins, including heat shock proteins and osmotin, plays a positive role in osmoprotection, osmotic adjustment, or the repair of denatured proteins as molecular chaperones under cold stress. The current findings give an insight into the physiological and molecular mechanisms of cold tolerance in the new cultivar Chuannong-3, which provides valuable information for turfgrass breeders and practitioners.
Collapse
Affiliation(s)
- Zhou Li
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China
- Department of Turf Science and Engineering, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Huang
- Department of Turf Science and Engineering, Sichuan Agricultural University, Chengdu 611130, China
| | - Liebao Han
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Fei J, Wang YS, Cheng H, Su YB, Zhong Y, Zheng L. Cloning and characterization of KoOsmotin from mangrove plant Kandelia obovata under cold stress. BMC PLANT BIOLOGY 2021; 21:10. [PMID: 33407136 PMCID: PMC7789355 DOI: 10.1186/s12870-020-02746-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/17/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Low temperature is a major abiotic stress that seriously limits mangrove productivity and distribution. Kandelia obovata is the most cold-resistance specie in mangrove plants, but little is known about the molecular mechanism underlying its resistance to cold. Osmotin is a key protein associated with abiotic and biotic stress response in plants but no information about this gene in K. obovata was reported. RESULTS In this study, a cDNA sequence encoding osmotin, KoOsmotin (GenBank accession no. KP267758), was cloned from mangrove plant K. obovata. The KoOsmotin protein was composed of 221 amino acids and showed a calculated molecular mass of 24.11 kDa with pI 4.92. The KoOsmotin contained sixteen cysteine residues and an N-terminal signal peptide, which were common signatures to most osmotins and pathogenesis-related 5 proteins. The three-dimensional (3D) model of KoOsmotin, contained one α-helix and eleven β-strands, was formed by three characteristic domains. Database comparisons of the KoOsmotin showed the closest identity (55.75%) with the osmotin 34 from Theobroma cacao. The phylogenetic tree also revealed that the KoOsmotin was clustered in the branch of osmotin/OLP (osmotin-like protien). The KoOsmotin protein was proved to be localized to both the plasma membrane and cytoplasm by the subcellular localization analysis. Gene expression showed that the KoOsmotin was induced primarily and highly in the leaves of K. obovata, but less abundantly in stems and roots. The overexpressing of KoOsmotin conferred cold tolerance in Escherichia coli cells. CONCLUSION As we known, this is the first study to explore the osmotin of K. obovata. Our study provided valuable clues for further exploring the function of KoOsmotin response to stress.
Collapse
Affiliation(s)
- Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Yu-Bin Su
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yongjia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Zheng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
3
|
Bashir MA, Silvestri C, Ahmad T, Hafiz IA, Abbasi NA, Manzoor A, Cristofori V, Rugini E. Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants. PLANTS 2020; 9:plants9080992. [PMID: 32759884 PMCID: PMC7464907 DOI: 10.3390/plants9080992] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Research on biologically active compounds has been increased in order to improve plant protection against various environmental stresses. Among natural sources, plants are the fundamental material for studying these bioactive compounds as their immune system consists of many peptides, proteins, and hormones. Osmotin is a multifunctional stress-responsive protein belonging to pathogenesis-related 5 (PR-5) defense-related protein family, which is involved in inducing osmo-tolerance in plants. In this scenario, the accumulation of osmotin initiates abiotic and biotic signal transductions. These proteins work as antifungal agents against a broad range of fungal species by increasing plasma membrane permeability and dissipating the membrane potential of infecting fungi. Therefore, overexpression of tobacco osmotin protein in transgenic plants protects them from different stresses by reducing reactive oxygen species (ROS) production, limiting lipid peroxidation, initiating programmed cell death (PCD), and increasing proline content and scavenging enzyme activity. Other than osmotin, its homologous proteins, osmotin-like proteins (OLPs), also have dual function in plant defense against osmotic stress and have strong antifungal activity.
Collapse
Affiliation(s)
- Muhammad Ajmal Bashir
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
| | - Cristian Silvestri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
- Correspondence: ; Tel.: +39-761-357533
| | - Touqeer Ahmad
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
| | - Ishfaq Ahmad Hafiz
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
| | - Nadeem Akhtar Abbasi
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
| | - Ayesha Manzoor
- Barani Agricultural Research Institute, Chakwal 48800, Pakistan;
| | - Valerio Cristofori
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
| | - Eddo Rugini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
| |
Collapse
|
4
|
Dinh QD, Dechesne A, Furrer H, Taylor G, Visser RGF, Harbinson J, Trindade LM. High-Altitude Wild Species Solanum arcanum LA385-A Potential Source for Improvement of Plant Growth and Photosynthetic Performance at Suboptimal Temperatures. FRONTIERS IN PLANT SCIENCE 2019; 10:1163. [PMID: 31608096 PMCID: PMC6769098 DOI: 10.3389/fpls.2019.01163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/26/2019] [Indexed: 05/26/2023]
Abstract
Plant growth, development, and yield of current tomato cultivars are directly affected by low temperatures. Although wild tomato species have been suggested as a potential source for low temperature tolerance, very little is known about their behavior during the reproductive phase. Here, we investigated the impact of suboptimal temperatures (SOT, 16/14°C), as compared to control temperatures (CT, 22/20°C), on plant growth, photosynthetic capacity, and carbohydrate metabolism. Under these conditions, two genotypes were analyzed: a Solanum lycopersicum cultivar Moneymaker and a high-altitude wild species Solanum arcanum LA385, from flowering onset until a later stage of fruit development. Total dry matter production in cv. Moneymaker was reduced up to 30% at SOT, whereas it was hardly affected in wild accession LA385. Specific leaf area, total leaf area, and number of fruits were also decreased at SOT in cv. Moneymaker. In contrast, wild accession LA385 showed an acclimation to SOT, in which ΦPSII and net CO2 assimilation rates were less affected; a similar specific leaf area; higher total leaf area; and higher number of fruits compared to those at CT. In addition, LA385 appeared to have a more distinct sucrose metabolism than cv. Moneymaker at both temperatures, in which it had higher contents of sucrose-6-phosphate, sucrose, and ratio of sucrose: starch in leaves and higher ratio of sucrose: hexose in fruits. Overall, our findings indicate that wild accession LA385 is able to acclimate well to SOT during the reproductive phase, whereas growth and development of cv. Moneymaker is reduced at SOT.
Collapse
Affiliation(s)
- Quy-Dung Dinh
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Annemarie Dechesne
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Heleen Furrer
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Graham Taylor
- Horticulture and Product Physiology Group, Wageningen University and Research, Wageningen, Netherlands
| | | | - Jeremy Harbinson
- Horticulture and Product Physiology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|