1
|
Lan Y, Gong F, Li C, Xia F, Li Y, Liu X, Liu D, Liang G, Fang C, Cai P. New insights into the evolution analysis of trihelix gene family in eggplant (Solanum melongena L.) and expression analysis under abiotic stress. BMC Genomics 2024; 25:1040. [PMID: 39501159 PMCID: PMC11539502 DOI: 10.1186/s12864-024-10959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Trihliex transcription factors (TFs) play crucial roles in plant growth and development, stress response, and plant hormone signaling network transmission. In order to comprehensively investigate the functions of trihliex genes in eggplant development and the abiotic stress response, we conducted an extensive analysis of the trihliex gene family in the eggplant genome. RESULTS In this study, 30 trihelix gene family members were unevenly distributed on 12 chromosomes. On the basis of their phylogenetic relationships, these genes were conserved in different plant species and could be divided into six subfamilies, with trihelix genes within the same subfamily sharing similar structures. The promoter regions of trihelix genes contained cis-acting elements related to plant growth and development, plant hormones, and abiotic stress responses, suggesting potential applications in the development of more resistant crops. Selective pressure assessments indicated that trihliex genes have undergone purifying selection pressure. Expression analysis on the basis of transcriptomic profiles revealed that SmGT18, SmGT29, SmGT6, and SmGT28 are highly expressed in roots, leaves, flowers, and fruits, respectively. Expression analysis via quantitative real-time PCR (qRT‒PCR) revealed that most trihelix genes respond to low temperature, abscisic acid (ABA), and salicylic acid (SA), with SmGT29 exhibiting significant upregulation under cold stress conditions. The SmGT29 gene was subsequently successfully cloned from eggplant, which was located in the nucleus, robust transcriptional activity, and a protein molecular weight of 74.59 kDa. On the basis of these findings, SmGT29 was postulated to be a pivotal candidate gene that actively responds to biotic stress stimuli, thereby supporting the plant's innate stress resistance mechanisms. CONCLUSION In summary, this study was the first report on trihelix genes and their potential roles in eggplant plants. These results provided valuable insights for enhancing stress resistance and quality traits in eggplant breeding, thereby serving as a crucial reference for future improvement efforts.
Collapse
Affiliation(s)
- Yanhong Lan
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Fangyi Gong
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Chun Li
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Feng Xia
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Yifan Li
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Xiaojun Liu
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Duchen Liu
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Genyun Liang
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Chao Fang
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China.
| | - Peng Cai
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China.
| |
Collapse
|
2
|
Ferrante R, Campagni C, Vettori C, Checcucci A, Garosi C, Paffetti D. Meta-analysis of plant growth-promoting rhizobacteria interaction with host plants: implications for drought stress response gene expression. FRONTIERS IN PLANT SCIENCE 2024; 14:1282553. [PMID: 38288406 PMCID: PMC10823023 DOI: 10.3389/fpls.2023.1282553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
Introduction The molecular and physiological mechanisms activated in plants during drought stress tolerance are regulated by several key genes with both metabolic and regulatory roles. Studies focusing on crop gene expression following plant growth-promoting rhizobacteria (PGPR) inoculation may help understand which bioinoculant is closely related to the induction of abiotic stress responses. Methods Here, we performed a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to summarise information regarding plant-PGPR interactions, focusing on the regulation of nine genes involved in plant drought stress response. The literature research yielded 3,338 reports, of which only 41 were included in the meta-analysis based on the chosen inclusion criteria. The meta-analysis was performed on four genes (ACO, APX, ACS and DREB2); the other five genes (ERD15, MYB, MYC, acdS, WRKY) had an insufficient number of eligible articles. Results Forest plots obtained through each meta-analysis showed that the overexpression of ACO, APX, ACS and DREB2 genes was not statistically significant. Unlike the other genes, DREB2 showed statistically significant results in both the presence and absence of PGPR. Considering I2>75 %, the results showed a high heterogeneity among the studies included, and the cause for this was examined using subgroup analysis. Moreover, the funnel plot and Egger's test showed that the analyses were affected by strong publication bias. Discussion This study argues that the presence of PGPR may not significantly influence the expression of drought stress response-related crop genes. This finding may be due to high heterogeneity, lack of data on the genes examined, and significant publication bias.
Collapse
Affiliation(s)
- Roberta Ferrante
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Chiara Campagni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Cristina Vettori
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
- Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale delle Ricerche (CNR), Sesto Fiorentino, Italy
| | - Alice Checcucci
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Cesare Garosi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Donatella Paffetti
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
3
|
Wu T, Yang Q, Zhou R, Yu T, Shen S, Cao R, Ma X, Song X. Large-scale analysis of trihelix transcription factors reveals their expansion and evolutionary footprint in plants. PHYSIOLOGIA PLANTARUM 2023; 175:e14039. [PMID: 37882297 DOI: 10.1111/ppl.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
The trihelix transcription factor (TTF) gene family is an important class of transcription factors that play key roles in regulating developmental processes and responding to various stresses. To date, no comprehensive analysis of the TTF gene family in large-scale species has been performed. A cross-genome exploration of its origin, copy number variation, and expression pattern in plants is also unavailable. Here, we identified and characterized the TTF gene family in 110 species representing typical plant phylogenetic taxa. Interestingly, we found that the number of TTF genes was significantly expanded in Chara braunii compared to other species. Based on the available plant genomic datasets, our comparative analysis suggested that the TTF gene family likely originated from the GT-1-1 group and then expanded to form other groups through duplication or deletion of some domains. We found evidence that whole-genome duplication/triplication contributed most to the expansion of the TTF gene family in dicots, monocots and basal angiosperms. In contrast, dispersed and proximal duplications contributed to the expansion of the TTF gene family in algae and bryophyta. The expression patterns of TTF genes and their upstream and downstream genes in different treatments showed a functional divergence of TTF-related genes. Furthermore, we constructed the interaction network between TTF genes and the corresponding upstream and downstream genes, providing a blueprint for their regulatory pathways. This study provided a cross-genome comparative analysis of TTF genes in 110 species, which contributed to understanding their copy number expansion and evolutionary footprint in plants.
Collapse
Affiliation(s)
- Tong Wu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qihang Yang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Tong Yu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shaoqin Shen
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Rui Cao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiao Ma
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
- College of Horticultural Science & Technology, Hebei Normal University Of Science & Technology, Qinhuangdao, Hebei, China
| | - Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
4
|
Zhu L, Hu J, Li R, Liu C, Jiang Y, Liu T, Liu M, Zhao M, Wang Y, Wang K, Zhang M. Transcriptome-Wide Integrated Analysis of the PgGT25-04 Gene in Controlling Ginsenoside Biosynthesis in Panax ginseng. PLANTS (BASEL, SWITZERLAND) 2023; 12:1980. [PMID: 37653897 PMCID: PMC10224475 DOI: 10.3390/plants12101980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 08/13/2023]
Abstract
Panax ginseng is a valuable medicinal herb of the Araliaceae family with various pharmacological activities. The Trihelix transcription factors family is involved in growth and secondary metabolic processes in plants, but no studies have been reported on the involvement of Trihelix genes in secondary metabolic processes in ginseng. In this study, weighted co-expression network analysis, correlation analysis between PgGTs and ginsenosides and key enzyme genes, and interaction network analysis between PgGTs and key enzyme genes were used to screen out the PgGT25-04 gene, which was negatively correlated with ginsenoside synthesis. Using ABA treatment of ginseng hair roots, PgGT genes were found to respond to ABA signals. Analysis of the sequence characteristics and expression pattern of the PgGT25-04 gene in ginseng revealed that its expression is spatiotemporally specific. The interfering vector pBI121-PgGT25-04 containing the PgGT25-04 gene was constructed, and the ginseng adventitious roots were transformed using the Agrobacterium-mediated method to obtain the pBI121-PgGT25-04 positive hairy root monocot line. The saponin contents of positive ginseng hair roots were measured by HPLC, and the changes in PgGT25-04 and key enzyme genes in positive ginseng hair roots were detected via fluorescence quantitative RT-PCR. These results preliminarily identified the role of the PgGT25-04 gene in the secondary metabolism of ginseng in Jilin to provide a theoretical basis for the study of Trihelix transcription factors in Panax ginseng.
Collapse
Affiliation(s)
- Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Ruiqi Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Tao Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| |
Collapse
|
5
|
Zhu Y, Liu Y, Zhou K, Tian C, Aslam M, Zhang B, Liu W, Zou H. Overexpression of ZmEREBP60 enhances drought tolerance in maize. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153763. [PMID: 35839657 DOI: 10.1016/j.jplph.2022.153763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Apetala2/ethylene response factor (AP2/ERF) family of transcription factors plays important roles in plant development and stress responses. However, few members of this family have been functionally and mechanistically characterised in maize. In this study, we characterised a member of the AP2/ERF transcription factor family, ZmEREBP60 from maize. Amino acid sequence alignment and phylogenetic analysis showed that ZmEREBP60 belongs to cluster I of the AP2/ERF family. qRT-PCR analysis indicated that ZmEREBP60 expression was highly induced by drought in the roots, coleoptiles, and leaves. Subcellular localisation analysis revealed that ZmEREBP60 was localised in the nucleus. Moreover, overexpression of ZmEREBP60 enhanced tolerance to drought stress while alleviating the drought-induced increase in H2O2 accumulation and malondialdehyde content in transgenic lines. Transcriptome analysis showed that ZmEREBP60 regulates the expression of genes involved in H2O2 catabolism, water deprivation response, and abscisic acid signalling pathway. Collectively, as a new member of the AP2/ERF transcription factor family in maize, ZmEREBP60 is a positive regulator of plant drought response.
Collapse
Affiliation(s)
- Yeqing Zhu
- College of Agriculture, Yangtze University, China
| | - Yue Liu
- College of Agriculture, Yangtze University, China
| | - Kaiming Zhou
- College of Agriculture, Yangtze University, China
| | - Congyan Tian
- College of Agriculture, Yangtze University, China
| | - Muhammad Aslam
- Department of Plant Breeding & Genetics, University of Agriculture, Faisalabad, Pakistan
| | | | - Weijuan Liu
- College of Agriculture, Yangtze University, China.
| | - Huawen Zou
- College of Agriculture, Yangtze University, China.
| |
Collapse
|
6
|
Expression of the Malus sieversii NF-YB21 Encoded Gene Confers Tolerance to Osmotic Stresses in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22189777. [PMID: 34575941 PMCID: PMC8467963 DOI: 10.3390/ijms22189777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Drought is the main environmental factor that limits the yield and quality of apples (Malus × domestica) grown in arid and semi-arid regions. Nuclear factor Ys (NF-Ys) are important transcription factors involved in the regulation of plant growth, development, and various stress responses. However, the function of NF-Y genes is poorly understood in apples. Here, we identified 43 NF-Y genes in the genome of apples and conducted an initial functional characterization of the apple NF-Y. Expression analysis of NF-Y members in M. sieversii revealed that a large number of NF-Ys were highly expressed in the roots compared with the leaves, and a large proportion of NF-Y genes responded to drought treatment. Furthermore, heterologous expression of MsNF-YB21, which was significantly upregulated by drought, led to a longer root length and, thus, conferred improved osmotic and salt tolerance in Arabidopsis. Moreover, the physiological analysis of MsNF-YB21 overexpression revealed enhanced antioxidant systems, including antioxidant enzymes and compatible solutes. In addition, genes encoding catalase (AtCAT2, AtCAT3), superoxide dismutase (AtFSD1, AtFSD3, AtCSD1), and peroxidase (AtPER12, AtPER42, AtPER47, AtPER51) showed upregulated expression in the MsNF-YB21 overexpression lines. These results for the MsNF-Y gene family provide useful information for future studies on NF-Ys in apples, and the functional analysis of MsNF-YB21 supports it as a potential target in the improvement of apple drought tolerance via biotechnological strategies.
Collapse
|
7
|
Yousaf MF, Demirel U, Naeem M, Çalışkan ME. Association mapping reveals novel genomic regions controlling some root and stolon traits in tetraploid potato ( Solanum tuberosum L.). 3 Biotech 2021; 11:174. [PMID: 33927965 PMCID: PMC7973339 DOI: 10.1007/s13205-021-02727-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
Tuber crops have measurable biological variation in root and stolon phenotyping and thus may be utilized to identify genomic regions associated with these variations. This is the first comprehensive association mapping study related to potato root and stolon traits. A diverse panel of 192 tetraploid potato (Solanum tuberosum L.) genotypes were grown in aeroponics to reveal a biologically significant variation and detection of genomic regions associated with the root and stolon traits. Phenotyping of root traits was performed by image analysis software "WinRHIZO" (a root scanning method), and stolon traits was measured manually, while SolCAP 25K potato array was used for genotyping. Significant variation was observed between the potato genotypes for root and stolon traits along with high heritabilities (0.80 in TNS to 0.95 in SL). For marker-trait associations, Q + K linear mixed model was implemented and 50 novel genomic regions were detected. Significantly associated SNPs with stolon traits were located on chr 4, chr 6, chr 7, chr 9, chr 11 and chr 12, while those linked to root traits on chr 1, chr 2, chr 3, chr 9, chr 11, and chr 12. Structure and PCA analysis grouped genotypes into four sub-populations disclosing population genetic diversity. LD decay was observed at 2.316 Mbps (r 2 = 0.29) in the population. The identified SNPs were associated with genes performing vital functions such as root signaling and signal transduction in stress environments (GT-2 factors, protein kinases SAPK2-like and protein phosphatases "StPP1"), transcriptional and post-transcriptional gene regulation (RNA-binding proteins), sucrose synthesis and transporter families (UGPase, Sus3, SuSy, and StSUT1) and PVY resistance (Ry sto). The findings of our study can be employed in future breeding programs for improvement in potato production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02727-6.
Collapse
Affiliation(s)
- Muhammad Farhan Yousaf
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Ufuk Demirel
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Muhammad Naeem
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Mehmet Emin Çalışkan
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| |
Collapse
|