1
|
Kaur T, Devi R, Negi R, Kour H, Singh S, Khan SS, Kumari C, Kour D, Chowdhury S, Kapoor M, Rai AK, Rustagi S, Shreaz S, Yadav AN. Macronutrients-availing microbiomes: biodiversity, mechanisms, and biotechnological applications for agricultural sustainability. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01220-w. [PMID: 39592542 DOI: 10.1007/s12223-024-01220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Nitrogen, phosphorus, and potassium are the three most essential micronutrients which play major roles in plant survivability by being a structural or non-structural component of the cell. Plants acquire these nutrients from soil in the fixed (NO3¯, NH4+) and solubilized forms (K+, H2PO4- and HPO42-). In soil, the fixed and solubilized forms of nutrients are unavailable or available in bare minimum amounts; therefore, agrochemicals were introduced. Agrochemicals, mined from the deposits or chemically prepared, have been widely used in the agricultural farms over the decades for the sake of higher production of the crops. The excessive use of agrochemicals has been found to be deleterious for humans, as well as the environment. In the environment, agrochemical usage resulted in soil acidification, disturbance of microbial ecology, and eutrophication of aquatic and terrestrial ecosystems. A solution to such devastating agro-input was found to be substituted by macronutrients-availing microbiomes. Macronutrients-availing microbiomes solubilize and fix the insoluble form of nutrients and convert them into soluble forms without causing any significant harm to the environment. Microbes convert the insoluble form to the soluble form of macronutrients (nitrogen, phosphorus, and potassium) through different mechanisms such as fixation, solubilization, and chelation. The microbiomes having capability of fixing and solubilizing nutrients contain some specific genes which have been reported in diverse microbial species surviving in different niches. In the present review, the biodiversity, mechanism of action, and genomics of different macronutrients-availing microbiomes are presented.
Collapse
Affiliation(s)
- Tanvir Kaur
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Rubee Devi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Faizabad, Uttar Pradesh, India
| | - Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Bhajhol, Solan, Himachal Pradesh, India
| | - Divjot Kour
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Sohini Chowdhury
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
2
|
Molecular Characterization and Mineralizing Potential of Phosphorus Solubilizing Bacteria Colonizing Common Bean ( Phaseolus vulgaris L.) Rhizosphere in Western Kenya. Int J Microbiol 2023; 2023:6668097. [PMID: 36908981 PMCID: PMC9995209 DOI: 10.1155/2023/6668097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Phosphorus solubilizing bacteria (PSB) are a category of microbes that transform insoluble phosphates in soil into soluble forms that crops can utilize. Phosphorus in natural soils is abundant but poorly soluble. Hence, introducing PSB is a safer way of improving its solubility. The aim of this study was to genetically characterize and determine the mineralization capability of selected PSB colonizing rhizospheres of common beans in Western Kenya. Seven potential phosphorus solubilizing bacteria (PSB) were isolated from various subregions of Western Kenya. 16S ribosomal RNA gene sequencing and National Center for Biotechnology Information (NCBI), Basic Local Alignment Search Tool (BLAST) identified the isolates. The phosphate solubilization potential of the isolates was evaluated under agar and broth medium of National Botanical Research Institute's phosphate (NBRIP) supplemented with tricalcium calcium phosphate (TCP). Identified isolates were as follows: KK3 as Enterobacter mori, B5 (KB5) as Pseudomonas kribbensis, KV1 as Enterobacter asburiae, KB3 as Enterobacter mori, KK1 as Enterobacter cloacae, KBU as Enterobacter tabaci, and KB2 as Enterobacter bugandensis. The strains B5 and KV1 were the most effective phosphorus solubilizers with 4.16 and 3.64 indices, respectively. The microbes converted total soluble phosphate concentration in broth medium which was 1395 and 1471 P μg/mL, respectively. The least performing isolate was KBU with a 2.34 solubility index. Significant (p ≤ 0.05) differences in plant biomass for Rose coco and Mwitemania bean varieties were observed under inoculation with isolates B5 and KV1. PSB isolates found in common bean rhizospheres exhibited molecular variations and isolates B5 and KV1 are the potential in solving the insufficiency of phosphorus for sustainable crop production.
Collapse
|
3
|
Srivastava AK, Srivastava R, Sharma A, Bharati AP, Yadav J, Singh AK, Tiwari PK, Srivatava AK, Chakdar H, Kashyap PL, Saxena AK. Transcriptome Analysis to Understand Salt Stress Regulation Mechanism of Chromohalobacter salexigens ANJ207. Front Microbiol 2022; 13:909276. [PMID: 35847097 PMCID: PMC9279137 DOI: 10.3389/fmicb.2022.909276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Soil salinity is one of the major global issues affecting soil quality and agricultural productivity. The plant growth-promoting halophilic bacteria that can thrive in regions of high salt (NaCl) concentration have the ability to promote the growth of plants in salty environments. In this study, attempts have been made to understand the salinity adaptation of plant growth-promoting moderately halophilic bacteria Chromohalobacter salexigens ANJ207 at the genetic level through transcriptome analysis. In order to identify the stress-responsive genes, the transcriptome sequencing of C. salexigens ANJ207 under different salt concentrations was carried out. Among the 8,936 transcripts obtained, 93 were upregulated while 1,149 were downregulated when the NaCl concentration was increased from 5 to 10%. At 10% NaCl concentration, genes coding for lactate dehydrogenase, catalase, and OsmC-like protein were upregulated. On the other hand, when salinity was increased from 10 to 25%, 1,954 genes were upregulated, while 1,287 were downregulated. At 25% NaCl, genes coding for PNPase, potassium transporter, aconitase, excinuclease subunit ABC, and transposase were found to be upregulated. The quantitative real-time PCR analysis showed an increase in the transcript of genes related to the biosynthesis of glycine betaine coline genes (gbcA, gbcB, and L-pro) and in the transcript of genes related to the uptake of glycine betaine (OpuAC, OpuAA, and OpuAB). The transcription of the genes involved in the biosynthesis of L-hydroxyproline (proD and proS) and one stress response proteolysis gene for periplasmic membrane stress sensing (serP) were also found to be increased. The presence of genes for various compatible solutes and their increase in expression at the high salt concentration indicated that a coordinated contribution by various compatible solutes might be responsible for salinity adaptation in ANJ207. The investigation provides new insights into the functional roles of various genes involved in salt stress tolerance and oxidative stress tolerance produced by high salt concentration in ANJ207 and further support the notion regarding the utilization of bacterium and their gene(s) in ameliorating salinity problem in agriculture.
Collapse
Affiliation(s)
- Alok Kumar Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Ruchi Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anjney Sharma
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Akhilendra Pratap Bharati
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India.,Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Jagriti Yadav
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Alok Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Praveen Kumar Tiwari
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anchal Kumar Srivatava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Hillol Chakdar
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Prem Lal Kashyap
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Kumar Saxena
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| |
Collapse
|
4
|
Moon YS, Ali S. Possible mechanisms for the equilibrium of ACC and role of ACC deaminase-producing bacteria. Appl Microbiol Biotechnol 2022; 106:877-887. [DOI: 10.1007/s00253-022-11772-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/29/2023]
|
5
|
Rizvi A, Ahmed B, Khan MS, Umar S, Lee J. Psychrophilic Bacterial Phosphate-Biofertilizers: A Novel Extremophile for Sustainable Crop Production under Cold Environment. Microorganisms 2021; 9:2451. [PMID: 34946053 PMCID: PMC8704983 DOI: 10.3390/microorganisms9122451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Abiotic stresses, including low-temperature environments, adversely affect the structure, composition, and physiological activities of soil microbiomes. Also, low temperatures disturb physiological and metabolic processes, leading to major crop losses worldwide. Extreme cold temperature habitats are, however, an interesting source of psychrophilic and psychrotolerant phosphate solubilizing bacteria (PSB) that can ameliorate the low-temperature conditions while maintaining their physiological activities. The production of antifreeze proteins and expression of stress-induced genes at low temperatures favors the survival of such organisms during cold stress. The ability to facilitate plant growth by supplying a major plant nutrient, phosphorus, in P-deficient soil is one of the novel functional properties of cold-tolerant PSB. By contrast, plants growing under stress conditions require cold-tolerant rhizosphere bacteria to enhance their performance. To this end, the use of psychrophilic PSB formulations has been found effective in yield optimization under temperature-stressed conditions. Most of the research has been done on microbial P biofertilizers impacting plant growth under normal cultivation practices but little attention has been paid to the plant growth-promoting activities of cold-tolerant PSB on crops growing in low-temperature environments. This scientific gap formed the basis of the present manuscript and explains the rationale for the introduction of cold-tolerant PSB in competitive agronomic practices, including the mechanism of solubilization/mineralization, release of biosensor active biomolecules, molecular engineering of PSB for increasing both P solubilizing/mineralizing efficiency, and host range. The impact of extreme cold on the physiological activities of plants and how plants overcome such stresses is discussed briefly. It is time to enlarge the prospects of psychrophilic/psychrotolerant phosphate biofertilizers and take advantage of their precious, fundamental, and economical but enormous plant growth augmenting potential to ameliorate stress and facilitate crop production to satisfy the food demands of frighteningly growing human populations. The production and application of cold-tolerant P-biofertilizers will recuperate sustainable agriculture in cold adaptive agrosystems.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
6
|
Jha V, Purohit H, Dafale NA. Revealing the potential of Klebsiella pneumoniae PVN-1 for plant beneficial attributes by genome sequencing and analysis. 3 Biotech 2021; 11:473. [PMID: 34777930 DOI: 10.1007/s13205-021-03020-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Genome sequencing of Klebsiella pneumoniae PVN-1, isolated from effluent treatment plant (ETP), generates a 5.064 Mb draft genome with 57.6% GC content. The draft genome assembled into 19 contigs comprises 4783 proteins, 3 rRNA, 44 tRNA, 8 other RNA, 4911 genes, and 73 pseudogenes. Genome information revealed the presence of phosphate metabolism/solubilizing, potassium solubilizing, auxin production, and other plant benefiting attributes like enterobactin and pyrroloquinoline quinone biosynthesis genes. Presence of gcd and pqq genes in K. pneumoniae PVN-1 genome validates the inorganic phosphate solubilizing potential (528.5 mg/L). Pangenome analysis identified a unique 5'-Nucleotidase that further assists in enhanced phosphate acquisition. Additionally, the genetic potential for complete benzoate, catechol, and phenylacetate degradation with stress response and heavy metal (Cu, Zn, Ni, Co) resistance was identified in K. pneumoniae PVN-1. Functioning of annotated plant benefiting genes validates by the metabolic activity of auxin production (7.40 µg/mL), nitrogen fixation, catalase activity, potassium solubilization (solubilization index-3.47), and protease activity (proteolytic index-2.27). In conclusion, the K. pneumoniae PVN-1 genome has numerous beneficial qualities that can be employed to enhance plant growth as well as for phytoremediation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03020-2.
Collapse
|
7
|
Srivastava AK, Srivastava R, Sharma A, Bharati AP, Tiwari PK, Singh AK, Srivastava AK, Chakdar H, Kashyap PL, Saxena AK. Pan-genome analysis of Exiguobacterium reveals species delineation and genomic similarity with Exiguobacterium profundum PHM 11. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:639-650. [PMID: 32996243 DOI: 10.1111/1758-2229.12890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The stint of the bacterial species is convoluting, but the new algorithms to calculate genome-to-genome distance (GGD) and DNA-DNA hybridization (DDH) for comparative genome analysis have rejuvenated the exploration of species and sub-species characterization. The present study reports the first whole genome sequence of Exiguobacterium profundum PHM11. PHM11 genome consist of ~ 2.92 Mb comprising 48 contigs, 47.93% G + C content. Functional annotations revealed a total of 3033 protein coding genes and 33 non-protein coding genes. Out of these, only 2316 could be characterized and others reported as hypothetical proteins. The comparative analysis of predicted proteome of PHM11 with five other Exiguobacterium sp. identified 3806 clusters, out of which the PHM11 shared a total of 2723 clusters having 1664 common clusters, 131 singletons and 928 distributed between five species. The pan-genome analysis of 70 different genomic sequences of Exigubacterium strains devoid of a species taxon was done on the basis of GGD and the DDH which identified eight genomes analogous to the PHM11 at species level and may be characterized as E. profundum. The ANI value and phylogenetic tree analysis also support the same. The results regarding pan-genome analysis provide a convincing insight for delineation of these eight strains to species.
Collapse
Affiliation(s)
- Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Ruchi Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Anjney Sharma
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Akhilendra Pratap Bharati
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Praveen Kumar Tiwari
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Alok Kumar Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Anchal Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| |
Collapse
|
8
|
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111118. [PMID: 32741760 DOI: 10.1016/j.jenvman.2020.111118] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Collapse
Affiliation(s)
- Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Suiliang Huang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, 22630, KPK, Pakistan
| | - Ali Fakhar
- Department of Soil Science, Sindh Agricultural University, Tandojam, Pakistan
| | | | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolas de Hidalgo, 58030, Morelia, Mexico.
| |
Collapse
|
9
|
Gu Y, Ma Y, Wang J, Xia Z, Wei H. Genomic insights into a plant growth-promoting Pseudomonas koreensis strain with cyclic lipopeptide-mediated antifungal activity. Microbiologyopen 2020; 9:e1092. [PMID: 32537904 PMCID: PMC7520995 DOI: 10.1002/mbo3.1092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
Strain S150 was isolated from the tobacco rhizosphere as a plant growth-promoting rhizobacterium. It increased plant fresh weight significantly and lateral root development, and it antagonized plant pathogenic fungi but not phytobacteria. Further tests showed that strain S150 solubilized organic phosphate and produced ammonia, siderophore, protease, amylase, and cellulase, but it did not produce indole-3-acetic acid. Using morphology, physiological characteristics, and multi-locus sequence analysis, strain S150 was identified as Pseudomonas koreensis. The complete genome of strain S150 was sequenced, and it showed a single circular chromosome of 6,304,843 bp with a 61.09% G + C content. The bacterial genome contained 5,454 predicted genes that occupied 87.7% of the genome. Venn diagrams of the identified orthologous clusters of P. koreensis S150 with the other three sequenced P. koreensis strains revealed up to 4,167 homologous gene clusters that were shared among them, and 21 orthologous clusters were only present in the genome of strain S150. Genome mining of the bacterium P. koreensis S150 showed that the strain possessed 10 biosynthetic gene clusters for secondary metabolites, which included four clusters of non-ribosomal peptide synthetases (NRPSs) involved in the biosynthesis of cyclic lipopeptides (CLPs). One of the NRPSs possibly encoded lokisin, a cyclic lipopeptide produced by fluorescent Pseudomonas. Genomic mutation of the lokA gene, which is one of the three structural NRPS genes for lokisin in strain S150, led to a deficiency in fungal antagonism that could be restored fully by gene complementation. The results suggested that P. koreensis S150 is a novel plant growth-promoting agent with specific cyclic lipopeptides and contains a lokisin-encoding gene cluster that is dominant against plant fungal pathogens.
Collapse
Affiliation(s)
- Yilin Gu
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Yi‐Nan Ma
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Jing Wang
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Zhenyuan Xia
- Yunnan Academy of Tobacco Agricultural ScienceKunmingChina
| | - Hai‐Lei Wei
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| |
Collapse
|
10
|
Li H, Wang Y, Fu J, Hu S, Qu J. Degradation of acetochlor and beneficial effect of phosphate-solubilizing Bacillus sp. ACD-9 on maize seedlings. 3 Biotech 2020; 10:67. [PMID: 32030336 PMCID: PMC6981330 DOI: 10.1007/s13205-020-2056-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/04/2020] [Indexed: 12/30/2022] Open
Abstract
The biodegradation of acetochlor in solution and soil and improvements in the growth of maize seedlings by a phosphate-solubilizing bacterial strain were investigated in this research. The strain Bacillus sp. ACD-9 optimally degraded acetochlor at pH 6.0 and 42 °C in solution. And acetochlor with an initial concentration of 30 mg/L was efficiently (> 60%) degraded by the strain after 2 days in solution. Acetochlor biodegradation and the resulting beneficial products were also identified by LC-MS, and the probable degradation products of acetochlor and two kinds of plant growth hormones, namely, 2-chloro-N-(2-methyl-6-ethylphenyl) acetamide (CMEPA), indoleacetic acid (IAA), and zeatin, were detected from the fermentation broth of strain ACD-9. The effects of the strain on the growth and acetochlor accumulation of maize seedlings were also analyzed in laboratory-scale pot experiments. Inoculation of the strain in soil could significantly improve growth (> 9.4%) and phosphorus uptake (> 14.8%) and decrease the accumulation (> 70%) and toxic effects of acetochlor on seedlings. Taking the results together, strain ACD-9 may be useful in the degradation of acetochlor in soil and promotion of the growth and phosphorus uptake of maize.
Collapse
Affiliation(s)
- Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001 Henan China
| | - Yuanli Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001 Henan China
| | - Jiake Fu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001 Henan China
| | - Shuang Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001 Henan China
| | - Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001 Henan China
| |
Collapse
|