1
|
Barakat NAM, Ali RH, Kim HY, Nassar MM, Fadali OA, Tolba GMK, Moustafa HM, Ali MA. Carbon Nanofibers-Sheathed Graphite Rod Anode and Hydrophobic Cathode for Improved Performance Industrial Wastewater-Driven Microbial Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3961. [PMID: 36432248 PMCID: PMC9696571 DOI: 10.3390/nano12223961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Carbon nanofiber-decorated graphite rods are introduced as effective and low-cost anodes for industrial wastewater-driven microbial fuel cells. Carbon nanofiber deposition on the surface of the graphite rods could be performed by the electrospinning of polyacrylonitrile/N,N-Dimethylformamide solution using the rod as nanofiber collector, which was calcined under inert atmosphere. The experimental results indicated that at 10 min electrospinning time, the proposed graphite anode demonstrates very good performance compared to the commercial anodes. Typically, the generated power density from sugarcane industry wastewater-driven air cathode microbial fuel cells were 13 ± 0.3, 23 ± 0.7, 43 ± 1.3, and 185 ± 7.4 mW/m2 using carbon paper, carbon felt, carbon cloth, and graphite rod coated by 10-min electrospinning time carbon nanofibers anodes, respectively. The distinct performance of the proposed anode came from creating 3D carbon nanofiber layer filled with the biocatalyst. Moreover, to annihilate the internal cell resistance, a membrane-less cell was assembled by utilizing a poly(vinylidene fluoride) electrospun nanofiber layer-coated cathode. This novel strategy inspired a highly hydrophobic layer on the cathode surface, preventing water leakage to avoid utilizing the membrane. However, in both anode and cathode modifications, the electrospinning time should be optimized. The best results were obtained at 5 and 10 min for the cathode and anode, respectively.
Collapse
Affiliation(s)
- Nasser A. M. Barakat
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| | - Rasha H. Ali
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Mamdouh M. Nassar
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| | - Olfat A. Fadali
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| | - Gehan M. K. Tolba
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| | - Hager M. Moustafa
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| | - Marwa A. Ali
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| |
Collapse
|
2
|
Kosa SAM, Khan AN, Ahmed S, Aslam M, Bawazir WA, Hameed A, Soomro MT. Strategic Electrochemical Determination of Nitrate over Polyaniline/Multi-Walled Carbon Nanotubes-Gum Arabic Architecture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3542. [PMID: 36234668 PMCID: PMC9565846 DOI: 10.3390/nano12193542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Significant agricultural and industrial activities necessitate the regular monitoring of nitrate (NO3-) ions levels in feed and groundwater. The current comparative study discloses an innovative user-friendly electrochemical approach for the determination of NO3- over polyaniline (PAni)-based modified electrodes. The electrochemical sensors concocted with PAni, multi-walled carbon nanotubes (CNT), and gum arabic (GA). The unique electrode material GA@PAni-CNT was synthesized by facile one-pot catalytic polymerization of aniline (Ani) with FeCl3/H2O2 in the presence of CNT and GA as integral components. As revealed by cyclic voltammetry (CV), the anchoring/retention of NO3- followed by reduction is proposed to occur when a GA@PAni-CNT electrode is immersed in phosphate buffer electrolyte containing NO3- that eventually results in a significantly higher redox activity of the GA@PAni-CNT electrode upon potential scan. The mechanism of NO3- anchoring may be associated with the non-redox transition of leucomeraldine salt (LS) into emeraldine salt (ES) and the generation of nitrite (NO2-) ions. As a result, the oxidation current produced by CV for redox transition of ES ↔ pernigraniline (PN) was ~9 times of that obtained with GA@PAni-CNT electrode and phosphate buffer electrolyte, thus achieving indirect NO3- voltammetric determination of the GA@PAni-CNT electrode. The prepared GA@PAni-CNT electrode displayed a higher charge transfer ability as compared to that of PAni-CNT and PAni electrodes. The optimum square wave voltammetric (SWV) response resulted in two linear concentration ranges of 1-10 (R2 = 0.9995) and 15-50 µM (R2 = 0.9988) with a detection limit of 0.42 µM, which is significantly lower. The GA@PAni-CNT electrode demonstrated the best detection, sensitivity, and performance among the investigated electrodes for indirect voltammetric determination of NO3- that portrayed the possibility of utilizing GA-stabilized PAni and CNT nanocomposite materials in additional electrochemical sensing applications.
Collapse
Affiliation(s)
| | - Amna Nisar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sana Ahmed
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Applied Chemistry, Engineering School, Kyungpook National University, Daegu 41566, Korea
| | - Mohammad Aslam
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wafa AbuBaker Bawazir
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdul Hameed
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- National Center of Physics, Quaid-e-Azam University, Islamabad 44000, Pakistan
| | - Muhammad Tahir Soomro
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Barakat NAM, Amen MT, Ali RH, Nassar MM, Fadali OA, Ali MA, Kim HY. Carbon Nanofiber Double Active Layer and Co-Incorporation as New Anode Modification Strategies for Power-Enhanced Microbial Fuel Cells. Polymers (Basel) 2022; 14:1542. [PMID: 35458291 PMCID: PMC9030816 DOI: 10.3390/polym14081542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
Co-doped carbon nanofiber mats can be prepared by the addition of cobalt acetate to the polyacrylonitrile/DMF electrospun solution. Wastewater obtained from food industries was utilized as the anolyte as well as microorganisms as the source in single-chamber batch mode microbial fuel cells. The results indicated that the single Co-free carbon nanofiber mat was not a good anode in the used microbial fuel cells. However, the generated power can be distinctly enhanced by using double active layers of pristine carbon nanofiber mats or a single layer Co-doped carbon nanofiber mat as anodes. Typically, after 24 h batching time, the estimated generated power densities were 10, 92, and 121 mW/m2 for single, double active layers, and Co-doped carbon nanofiber anodes, respectively. For comparison, the performance of the cell was investigated using carbon cloth and carbon paper as anodes, the observed power densities were smaller than the introduced modified anodes at 58 and 62 mW/m2, respectively. Moreover, the COD removal and Columbic efficiency were calculated for the proposed anodes as well as the used commercial ones. The results further confirm the priority of using double active layer or metal-doped carbon nanofiber anodes over the commercial ones. Numerically, the calculated COD removals were 29.16 and 38.95% for carbon paper and carbon cloth while 40.53 and 45.79% COD removals were obtained with double active layer and Co-doped carbon nanofiber anodes, respectively. With a similar trend, the calculated Columbic efficiencies were 26, 42, 52, and 71% for the same sequence.
Collapse
Affiliation(s)
- Nasser A M Barakat
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| | - Mohamed Taha Amen
- Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Rasha H Ali
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| | - Mamdouh M Nassar
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| | - Olfat A Fadali
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| | - Marwa A Ali
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
4
|
Gao X, Qiu S, Lin Z, Xie X, Yin W, Lu X. Carbon-Based Composites as Anodes for Microbial Fuel Cells: Recent Advances and Challenges. Chempluschem 2021; 86:1322-1341. [PMID: 34363342 DOI: 10.1002/cplu.202100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Owing to the low price, chemical stability and good conductivity, carbon-based materials have been extensively applied as the anode in microbial fuel cells (MFCs). In this review, apart from the charge storage mechanism and anode requirements, the major work focuses on five categories of carbon-based anode materials (traditional carbon, porous carbon, nano-carbon, metal/carbon composite and polymer/carbon composite). The relationship is demonstrated in depth between the physicochemical properties of the anode surface/interface/bulk (porosity, surface area, hydrophilicity, partical size, charge, roughness, etc.) and the bioelectrochemical performances (electron transfer, electrolyte diffusion, capacitance, toxicity, start-up time, current, power density, voltage, etc.). An outlook for future work is also proposed.
Collapse
Affiliation(s)
- Xingyuan Gao
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China.,MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Shuxian Qiu
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Ziting Lin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xiangjuan Xie
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Wei Yin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
5
|
Bioelectrochemical treatment of real-field bagasse-based paper mill wastewater in dual-chambered microbial fuel cell. 3 Biotech 2021; 11:42. [PMID: 33479596 DOI: 10.1007/s13205-020-02606-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/23/2020] [Indexed: 01/20/2023] Open
Abstract
The present study is aimed at analysing the feasibility of bioelectrochemical treatment of bagasse-based paper mill wastewater. Bioelectrochemical treatment was carried out in dual-chambered microbial fuel cell with plain graphite plates as electrodes. Wastewater from sugarcane bagasse storage and washing units of paper mill was used as anolyte. High power density and current density of 53 mW m-2 and 173 mA m-2 at 470 Ω, respectively, could be produced with wastewater treatment efficiency of 85% and coulumbic efficiency of 6%. Whereas, wastewater from pulping and bleaching units of bagasse-based paper mill was not suitable for bioelectrochemical treatment, yielding low power density and current density of 4 mW m-2 and 16 mA m-2 respectively at 10,000 Ω. Later, treating blended wastewater containing bagasse wash water and pulping wastewater in the ratio of 9:1 v/v generated higher power density and current density of 73 mW m-2/202 mA m-2, respectively, at 470 Ω, with wastewater treatment efficiency and coulumbic efficiency of 82% and 18%, respectively. Lignin and its derivatives present in pulping wastewater mediated electron transfer leading to high power density. Further, compounds in pulping wastewater were also toxic to methanogens growth in anode chamber of MFC, resulting in improved coulumbic efficiency of the blended wastewater treatment.
Collapse
|
6
|
Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. ENERGIES 2020. [DOI: 10.3390/en13246596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sustainable production of electricity from renewable sources by microorganisms is considered an attractive alternative to energy production from fossil fuels. In recent years, research on microbial fuel cells (MFCs) technology for electricity production has increased. However, there are problems with up-scaling MFCs due to the fairly low power output and high operational costs. One of the approaches to improving energy generation in MFCs is by modifying the existing anode materials to provide more electrochemically active sites and improve the adhesion of microorganisms. The aim of this review is to present the effect of anode modification with carbon compounds, metallic nanomaterials, and polymers and the effect that these modifications have on the structure of the microbiological community inhabiting the anode surface. This review summarizes the advantages and disadvantages of individual materials as well as possibilities for using them for environmentally friendly production of electricity in MFCs.
Collapse
|
7
|
Salar-Garcia M, Montilla F, Quijada C, Morallon E, Ieropoulos I. Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes. APPLIED ENERGY 2020; 278:115528. [PMID: 33311834 PMCID: PMC7722509 DOI: 10.1016/j.apenergy.2020.115528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/25/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
The need for improving the energy harvesting from Microbial Fuel Cells (MFCs) has boosted the design of new materials in order to increase the power performance of this technology and facilitate its practical application. According to this approach, in this work different poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT-PSS) modified electrodes have been synthesised and evaluated as anodes in urine-fed MFCs. The electrochemical synthesis of PEDOT-PSS was performed by potentiostatic step experiments from aqueous solution at a fixed potential of 1.80 V (vs. a reversible hydrogen electrode) for different times: 30, 60, 120 and 240 s. Compared with other methods, this technique allowed us not only to reduce the processing time of the electrodes but also better control of the chemical composition of the deposited polymer and therefore, obtain more efficient polymer films. All modified anodes outperformed the maximum power output by MFCs working with the bare carbon veil electrode but the maximum value was observed when MFCs were working with the PEDOT-PSS based anode obtained after 30 s of electropolymerisation (535.1 µW). This value was 24.3% higher than using the bare carbon veil electrode. Moreover, the functionality of the PEDOT-PSS anodes was reported over 90 days working in continuous mode.
Collapse
Affiliation(s)
- M.J. Salar-Garcia
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Coldharbour Lane, BS16 1QY Bristol, United Kingdom
| | - F. Montilla
- Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Crtra. San Vicente s/n 03690, E-03080 Alicante, Spain
| | - C. Quijada
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Pza Ferrandiz y Carbonell, E-03801 Alcoy, Alicante, Spain
| | - E. Morallon
- Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Crtra. San Vicente s/n 03690, E-03080 Alicante, Spain
| | - I. Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Coldharbour Lane, BS16 1QY Bristol, United Kingdom
| |
Collapse
|