1
|
Hematian Sourki A, Roozitalab R, Ghani A. Potential application of modified date powder by microwave radiation, ultrasonication and chemical pretreatments as coffee substitute: its biochemical properties and consumer preferences. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:549-561. [PMID: 36712219 PMCID: PMC9873854 DOI: 10.1007/s13197-022-05637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/25/2022] [Accepted: 10/22/2022] [Indexed: 12/15/2022]
Abstract
To consider the suitability of modified date powder as a coffee substitute, the biochemical and antioxidant properties of date powder were modified by hydrochloric acid-ethanol (HAE), alkaline hydrogen peroxide (AHP), combined with ultrasound (U) microwave (MW) radiation. The results showed that the highest antioxidant activity was observed in HAE and HAE-U treated date powders. The total flavonoid content of the date powder increased by 40.8% and 100% in response to the AHP-MW and HAE-U treatments, respectively. Fourier transform infrared spectroscopy did not show any abnormal or unknown peaks in the analyzed range of the treated samples. Therefore, modification of biochemical and sensory properties of date powder by chemical and irradiation treatments did not have a detrimental effect on changing the structure of its chemical compounds or the formation of harmful compounds in it. Sensory evaluations showed that replacing coffee powder with modified date powder by up to 25% did not have significant effects on the sensory properties of the coffee drink. Finally, the results showed that modifying the biochemical and antioxidant properties of date powder by the HAE method as coffee substitute can increase the nutritional properties of coffee drinks while also reducing the expenses of the coffee industry. Graphical abstract
Collapse
Affiliation(s)
- Abdollah Hematian Sourki
- Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, PO Box: 74135-111, Jahrom, Iran
| | - Roya Roozitalab
- Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, PO Box: 74135-111, Jahrom, Iran
| | - Askar Ghani
- Department of Horticultural Science, Faculty of Agriculture, Jahrom University, PO Box: 74135-111, Jahrom, Iran
| |
Collapse
|
2
|
Zhou Z, Ouyang D, Liu D, Zhao X. Oxidative pretreatment of lignocellulosic biomass for enzymatic hydrolysis: Progress and challenges. BIORESOURCE TECHNOLOGY 2023; 367:128208. [PMID: 36323374 DOI: 10.1016/j.biortech.2022.128208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Deconstruction of cell wall structure is important for biorefining of lignocellulose to produce various biofuels and chemicals. Oxidative delignification is an effective way to increase the enzymatic digestibility of cellulose. In this work, the current research progress on conventional oxidative pretreatment including wet oxidation, alkaline hydrogen peroxide, organic peracids, Fenton oxidation, and ozone oxidation were reviewed. Some recently developed novel technologies for coupling pretreatment and direct biomass-to-electricity conversion with recyclable oxidants were also introduced. The primary mechanism of oxidative pretreatment to enhance cellulose digestibility is delignification, especially in alkaline medium, thus eliminating the physical blocking and non-productive adsorption of enzymes by lignin. However, the cost of oxidative delignification as a pretreatment is still too expensive to be applied at large scale at present. Efforts should be made particularly to reduce the cost of oxidants, or explore valuable products to obtain more revenue.
Collapse
Affiliation(s)
- Ziyuan Zhou
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Denghao Ouyang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Ben Atitallah I, Antonopoulou G, Ntaikou I, Soto Beobide A, Dracopoulos V, Mechichi T, Lyberatos G. A Comparative Study of Various Pretreatment Approaches for Bio-Ethanol Production from Willow Sawdust, Using Co-Cultures and Mono-Cultures of Different Yeast Strains. Molecules 2022; 27:molecules27041344. [PMID: 35209130 PMCID: PMC8875012 DOI: 10.3390/molecules27041344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of different pretreatment approaches based on alkali (NaOH)/hydrogen peroxide (H2O2) on willow sawdust (WS) biomass, in terms of delignification efficiency, structural changes of lignocellulose and subsequent fermentation toward ethanol, was investigated. Bioethanol production was carried out using the conventional yeast Saccharomyces cerevisiae, as well as three non-conventional yeasts strains, i.e., Pichia stipitis, Pachysolen tannophilus, Wickerhamomyces anomalus X19, separately and in co-cultures. The experimental results showed that a two-stage pretreatment approach (NaOH (0.5% w/v) for 24 h and H2O2 (0.5% v/v) for 24 h) led to higher delignification (38.3 ± 0.1%) and saccharification efficiency (31.7 ± 0.3%) and higher ethanol concentration and yield. Monocultures of S. cerevisiae or W. anomalus X19 and co-cultures with P. stipitis exhibited ethanol yields in the range of 11.67 ± 0.21 to 13.81 ± 0.20 g/100 g total solids (TS). When WS was subjected to H2O2 (0.5% v/v) alone for 24 h, the lowest ethanol yields were observed for all yeast strains, due to the minor impact of this treatment on the main chemical and structural WS characteristics. In order to decide which is the best pretreatment approach, a detailed techno-economical assessment is needed, which will take into account the ethanol yields and the minimum processing cost.
Collapse
Affiliation(s)
- Imen Ben Atitallah
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- Correspondence: ; Tel.: +30-261-096-5318
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Amaia Soto Beobide
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Vassilios Dracopoulos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
4
|
Tareen A, Punsuvon V, Sultan IN, Khan MW, Parakulsuksatid P. Cellulase Addition and Pre-hydrolysis Effect of High Solid Fed-Batch Simultaneous Saccharification and Ethanol Fermentation from a Combined Pretreated Oil Palm Trunk. ACS OMEGA 2021; 6:26119-26129. [PMID: 34660972 PMCID: PMC8515579 DOI: 10.1021/acsomega.1c03111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
In the current study, alkaline hydrogen peroxide pretreated oil palm trunk fibers were subjected to ethanol production via simultaneous saccharification and fermentation (SSF). The effect of high substrate loading, enzyme and substrate feeding strategy, and influence of a pre-hydrolysis step in SSF was studied to scale up ethanol production. In the enzyme feeding strategy, the addition of an enzyme at the start of fed-batch SSF significantly (p < 0.05) increased ethanol concentration to 51.05 g/L, ethanol productivity (QP ) to 0.61 g/L·h, and ethanol yield (Y P/S) to 0.31 g/g, with a theoretical ethanol yield of 60.65%. Furthermore, the initial velocity of the enzyme (V 0) in the first 8 h was 2.27 (g/h) with a glucose concentration of 18.17 g/L. On the other hand, the substrate feeding strategy and pre-hydrolysis simultaneous saccharification and fermentation (PSSF) process were studied in a 1 L fermenter. PSSF in fed batch with 10 and 20% (w/v) significantly improved enzyme hydrolysis, circumvent the problems of high viscosity, reduced overall fermentation time, and gave the highest ethanol concentration of 51.66 g/L, ethanol productivity (QP ) of 0.72 g/L·h, ethanol yield (Y P/S) of 0.31 g/g, and theoretical ethanol yield of 60.66%. In addition, PSSF with 10 and 20% significantly increased the initial velocity of the enzyme (V 0) to 4.64 and 4.40 (g/h) and glucose concentration to 37.14 and 35.27 g/L, respectively. This result indicated that ethanol production by PSSF along with substrate feeding could enhance ethanol production efficiently.
Collapse
Affiliation(s)
- Afrasiab
Khan Tareen
- Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Vittaya Punsuvon
- Department
of Chemistry, Faculty of Science, Kasetsart
University, 50 Ngam Wong Wan Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Imrana Niaz Sultan
- Department
of Biotechnology, Faculty of Life Sciences and Informatics, BUITEMS, Quetta 87300, Pakistan
| | - Muhammad Waseem Khan
- Department
of Biotechnology, Faculty of Life Sciences and Informatics, BUITEMS, Quetta 87300, Pakistan
| | - Pramuk Parakulsuksatid
- Department
of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
5
|
Uke A, Nakazono-Nagaoka E, Chuah JA, Zain NAA, Amir HG, Sudesh K, Abidin NZHAZ, Hashim Z, Kosugi A. Effect of decomposing oil palm trunk fibers on plant growth and soil microbial community composition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113050. [PMID: 34198177 DOI: 10.1016/j.jenvman.2021.113050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Oil palm trunks (OPT) are logged for replantation and the fiber residues are disposed of into the palm plantation area. The fiber residues are expected to increase soil fertility through recycling of carbon and minerals via fiber decomposition. This study investigated the effects of OPT fiber disposal and other lignocellulosic biomass on plant growth and microbial diversity in the soil environment. Four treatment plots were tested: (A) soil+OPT fiber (1:20), (B) soil+sugarcane bagasse (1:20), (C) soil+cellulose powder (1:20), and (D) unamended soil as a negative control. Low plant height, decreased chlorophyll content, and low biomass was observed in corn grown on soil mixed with OPT fiber, cellulose, and sugarcane bagasse, when compared with those of the control. The plants grown with OPT fiber were deficient in total nitrogen and magnesium when compared with those without fiber amendment, which suggested that nitrogen and minerals in soil might be taken up by changing microflora because of the OPT fibers presence. To confirm differences in the soil microflora, metagenomics analysis was performed on untreated soil and soil from each lignocellulose treatment. The microflora of soils mixed with OPT fiber, cellulose and sugarcane bagasse revealed substantial increases in bacteria such as families Cytophagaceae and Oscillospiraceae, and two major fungal genera, Trichoderma and Trichocladium, that are involved in lignocellulose degradation. OPT fiber resulted in a drastic increase in the ratios and amounts of Trichocladium in the soil when compared with those of cellulose and sugarcane bagasse. These results indicate that unregulated disposal of OPT fiber into plantation areas could result in nutrient loss from soil by increasing the abundance of microorganisms involved in lignocellulose decomposition.
Collapse
Affiliation(s)
- Ayaka Uke
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | | | - Jo-Ann Chuah
- School of Biological Sciences, Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia
| | - Noor-Afiqah Ahmad Zain
- School of Biological Sciences, Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia
| | - Hamzah-Ghazali Amir
- School of Biological Sciences, Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia
| | - Nur Zuhaili Harris Abidin Zainal Abidin
- Agronomy and Geospatial Technology Unit, Biological Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Zulkifli Hashim
- Agronomy and Geospatial Technology Unit, Biological Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Akihiko Kosugi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan; University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
6
|
Haq IU, Nawaz A, Liaqat B, Arshad Y, Fan X, Sun M, Zhou X, Xu Y, Akram F, Jiang K. Pilot Scale Elimination of Phenolic Cellulase Inhibitors From Alkali Pretreated Wheat Straw for Improved Cellulolytic Digestibility to Fermentable Saccharides. Front Bioeng Biotechnol 2021; 9:658159. [PMID: 33777922 PMCID: PMC7995888 DOI: 10.3389/fbioe.2021.658159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Depleting supplies of fossil fuel, regular price hikes of gasoline and environmental deterioration have necessitated the search for economic and eco-benign alternatives of gasoline like lignocellulosic biomass. However, pre-treatment of such biomass results in development of some phenolic compounds which later hinder the depolymerisation of biomass by cellulases and seriously affect the cost effectiveness of the process. Dephenolification of biomass hydrolysate is well cited in literature. However, elimination of phenolic compounds from pretreated solid biomass is not well studied. The present study was aimed to optimize dephenoliphication of wheat straw using various alkalis i.e., Ca(OH)2 and NH3; acids i.e., H2O2, H2SO4, and H3PO4; combinations of NH3+ H3PO4 and H3PO4+ H2O2 at pilot scale to increase enzymatic saccharification yield. Among all the pretreatment strategies used, maximum reduction in phenolic content was observed as 66 mg Gallic Acid Equivalent/gram Dry Weight (GAE/g DW), compared to control having 210 mg GAE/g DW using 5% (v/v) combination of NH3+H3PO4. Upon subsequent saccharification of dephenoliphied substrate, the hydrolysis yield was recorded as 46.88%. Optimized conditions such as using 1%+5% concentration of NH3+ H3PO4, for 30 min at 110°C temperature reduced total phenolic content (TPC) to 48 mg GAE/g DW. This reduction in phenolic content helped cellulases to act more proficiently on the substrate and saccharification yield of 55.06% was obtained. The findings will result in less utilization of cellulases to get increased yield of saccharides by hydrolyzing wheat straw, thus, making the process economical. Furthermore, pilot scale investigations of current study will help in upgrading the novel process to industrial scale.
Collapse
Affiliation(s)
- Ikram Ul Haq
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China.,Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Ali Nawaz
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Badar Liaqat
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Yesra Arshad
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Xingli Fan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Meitao Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xin Zhou
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yong Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|