1
|
Wang C, Song Y, Liang J, Wang Y, Zhang D, Zhao Z. Antibiotic resistance genes are transferred from manure-contaminated water bodies to the gut microbiota of animals through the food chain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125087. [PMID: 39383990 DOI: 10.1016/j.envpol.2024.125087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Fecal-contaminated water may enter the food chain and become an important route for the transmission of antibiotic resistance genes (ARGs) to the human microbiome. However, little is known about the spread of ARGs from fecal contamination in water bodies along the aquatic food chain. In this study, laboratory-raised Daphnia magna and Aristichthys nobilis were used to investigate the effects of the addition of manure on target ARGs in water and their intestinal contents to determine the potential transmission route of ARGs in the aquatic food chain system. The abundance of target ARGs in water as well as D. magna and A. nobilis intestinal contents significantly increased when fecal contamination was present. ARGs bioaccumulated along the food chain, with four ARGs (tetM-01, tetX, qnrS, and sul2) detected regularly. Mn and Cr were key environmental factors that promoted the transfer of ARGs along the food chain. Fecal addition significantly changed the structure of microbial communities in water, D. magna gut, and A. nobilis gut. The ARG spectrum was significantly correlated with the composition and structure of the bacterial community. Proteobacteria, Bacteroidetes, and Firmicutes were identified as the main host bacteria and were likely to act as carriers of ARGs to promote the spread of antibiotic resistance in the food chain. The composition and structure of bacterial communities, along with mobile genetic elements, were two key drivers of ARG transfer. These findings provide new insights into the distribution and spread of ARGs along the freshwater food chain.
Collapse
Affiliation(s)
- Ce Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yuzi Song
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jingxuan Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Di Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
2
|
Talwar C, Nagar S, Negi RK. Comparative analyses of gut microbiota reveal ammonia detoxification and nitrogen assimilation in Cyprinus carpio var. specularis. Folia Microbiol (Praha) 2024; 69:1029-1041. [PMID: 38367166 DOI: 10.1007/s12223-024-01151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
The complex niche of fish gut is often characterized by the associated microorganisms that have implications in fish gut-health nexus. Although efforts to distinguish the microbial communities have highlighted their disparate structure along the gut length, remarkably little information is available about their distinct structural and functional profiles in different gut compartments in different fish species. Here, we performed comparative taxonomic and predictive functional analyses of the foregut and hindgut microbiota in an omnivorous freshwater fish species, Cyprinus carpio var. specularis, commonly known as mirror carp. Our analyses showed that the hindgut microbiota could be distinguished from foregut based on the abundance of ammonia-oxidizing, denitrifying, and nitrogen-fixing commensals of families such as Rhodospirillaceae, Oxalobacteraceae, Nitrosomonadaceae, and Nitrospiraceae. Functionally, unique metabolic pathways such as degradation of lignin, 2-nitrobenzoate, vanillin, vanillate, and toluene predicted within hindgut also hinted at the ability of hindgut microbiota for assimilation of nitrogen and detoxification of ammonia. The study highlights a major role of hindgut microbiota in assimilating nitrogen, which remains to be one of the limiting nutrients within the gut of mirror carp.
Collapse
Affiliation(s)
- Chandni Talwar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
- Department of Pathology & Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 770030, USA
| | - Shekhar Nagar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
- Department of Zoology, Deshbandhu College, Kalkaji, New Delhi, 110019, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Cao Y, Bi L, Chen Q, Liu Y, Zhao H, Jin L, Peng R. Understanding the links between micro/nanoplastics-induced gut microbes dysbiosis and potential diseases in fish: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124103. [PMID: 38734053 DOI: 10.1016/j.envpol.2024.124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
At present, the quantity of micro/nano plastics in the environment is steadily rising, and their pollution has emerged as a global environmental issue. The tendency of their bioaccumulation in aquatic organisms (especially fish) has intensified people's attention to their persistent ecotoxicology. This review critically studies the accumulation of fish in the intestines of fish through active or passive intake of micro/nano plastics, resulting in their accumulation in intestinal organs and subsequent disturbance of intestinal microflora. The key lies in the complex toxic effect on the host after the disturbance of fish intestinal microflora. In addition, this review pointed out the characteristics of micro/nano plastics and the effects of their combined toxicity with adsorbed pollutants on fish intestinal microorganisms, in order to fully understand the characteristics of micro/nano plastics and emphasize the complex interaction between MNPs and other pollutants. We have an in-depth understanding of MNPs-induced intestinal flora disorders and intestinal dysfunction, affecting the host's systemic system, including immune system, nervous system, and reproductive system. The review also underscores the imperative for future research to investigate the toxic effects of prolonged exposure to MNPs, which are crucial for evaluating the ecological risks posed by MNPs and devising strategies to safeguard aquatic organisms.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Lian Y, Zheng X, Xie S, A D, Wang J, Tang J, Zhu X, Shi B. Microbiota composition and correlations with environmental factors in grass carp ( Ctenopharyngodon idella) culture ponds in South China. PeerJ 2023; 11:e15892. [PMID: 37846307 PMCID: PMC10576968 DOI: 10.7717/peerj.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/23/2023] [Indexed: 10/18/2023] Open
Abstract
To maintain the health of aquaculture fish, it is critical to understand the composition of microorganisms in aquaculture water and sediment and the factors affecting them. This study examined the water and sediment microbiota compositions of four different types of ponds in South China that were used to culture grass carp (Ctenopharyngodon idella) of different sizes through high-throughput sequencing of the 16S rRNA gene, and analyzed their correlations with environmental factors. The results showed that ponds with cultured grass carp of different sizes exhibited significant differences in terms of water physicochemical properties and composition of water and sediment microbiota. Furthermore, the exchange of microorganisms between water and sediment microbiota was lowest in ponds with the smallest grass carp and highest in ponds with the largest grass carp. All detected environmental factors except water temperature were significantly correlated with the water microbiota, and all detected environmental factors in the sediment were correlated with sediment microbiota. Moreover, Aeromonas hydrophila and Vibrio were significantly increased in the water microbiota, especially in ponds with small juvenile grass carp, implying an increased risk of A. hydrophila and Vibrio infections in these environments. Our results provide useful information for the management of grass carp aquaculture ponds.
Collapse
Affiliation(s)
- Yingli Lian
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Guangdong Haid Group Co., Ltd, Guangzhou, Guangdong, China
| | - Xiafei Zheng
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Shouqi Xie
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Dan A
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Jian Wang
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China
- Guangdong Haid Group Co., Ltd, Guangzhou, Guangdong, China
| | - Jiayi Tang
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China
- Guangdong Haid Group Co., Ltd, Guangzhou, Guangdong, China
| | - Xuan Zhu
- Guangdong Haid Group Co., Ltd, Guangzhou, Guangdong, China
| | - Baojun Shi
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China
- Guangdong Haid Group Co., Ltd, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Morshed SM, Lee TH. The role of the microbiome on fish mucosal immunity under changing environments. FISH & SHELLFISH IMMUNOLOGY 2023:108877. [PMID: 37302678 DOI: 10.1016/j.fsi.2023.108877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
The environment is crucial for fish as their mucosal surfaces face continuous challenges in the water. Fish mucosal surfaces harbor the microbiome and mucosal immunity. Changes in the environment could affect the microbiome, thus altering mucosal immunity. Homeostasis between the microbiome and mucosal immunity is crucial for the overall health of fish. To date, very few studies have investigated mucosal immunity and its interaction with the microbiome in response to environmental changes. Based on the existing studies, we can infer that environmental factors can modulate the microbiome and mucosal immunity. However, we need to retrospectively examine the existing literature to investigate the possible interaction between the microbiome and mucosal immunity under specific environmental conditions. In this review, we summarize the existing literature on the effects of environmental changes on the fish microbiome and mucosal immunity. This review mainly focuses on temperature, salinity, dissolved oxygen, pH, and photoperiod. We also point out a gap in the literature and provide directions to go further in this research field. In-depth knowledge about mucosal immunity-microbiome interaction will also improve aquaculture practices by reducing loss during environmental stressful conditions.
Collapse
Affiliation(s)
- Syed Monzur Morshed
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
6
|
Morshed SM, Chen YY, Lin CH, Chen YP, Lee TH. Freshwater transfer affected intestinal microbiota with correlation to cytokine gene expression in Asian sea bass. Front Microbiol 2023; 14:1097954. [PMID: 37089546 PMCID: PMC10117908 DOI: 10.3389/fmicb.2023.1097954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
As a catadromous fish, Asian sea bass (Lates calcarifer) juveniles migrate from seawater (SW) to freshwater (FW) for growth and development. During migration, they undergo physiological changes to acclimate to environmental salinity. Thus, it is crucial to understand how SW-to-FW migration affects the gut microbiota of catadromous fish. To the best of our knowledge, no study has revealed the effects of transfer to hypotonic environments on a catadromous fish microbiota. In this study, we aimed to determine the effects of FW transfer on the microbiota and cytokine gene expression in the intestines of juvenile catadromous Asian sea bass. The relationship between the water and the gut microbiota of this euryhaline species was also examined. We found that FW transfer affected both mucosa- and digesta-associated microbiota of Asian sea bass. Plesiomonas and Cetobacterium were dominant in both the mucosa- and digesta-associated microbiota of FW-acclimated sea bass. The pathogenic genera Vibrio, Staphylococcus, and Acinetobacter were dominant in the SW group. Although dominant fish microbes were present in the water, fish had their own unique microbes. Vitamin B6 metabolism was highly expressed in the FW fish microbiota, whereas arginine, proline, and lipid metabolism were highly expressed in the SW fish microbiota. Additionally, the correlation between cytokine gene expression and microbiota was found to be affected by FW transfer. Taken together, our results demonstrated that FW transfer altered the composition and functions of mucosa- and digesta-associated microbiota of catadromous Asian sea bass intestines, which correlated with cytokine gene expression.
Collapse
Affiliation(s)
- Syed Monzur Morshed
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Yi Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Hao Lin
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Yen-Po Chen
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Yen-Po Chen,
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Tsung-Han Lee,
| |
Collapse
|
7
|
Jang WJ, Hasan MT, Choi W, Hwang S, Lee Y, Hur SW, Lee S, Lee BJ, Choi YH, Lee JM. Comparison of growth performance, non-specific immunity, and intestinal microbiota of olive flounder (Paralichthys olivaceus) fed with extruded pellet and moist pellet diets under field conditions in South Korea. Front Microbiol 2022; 13:979124. [PMID: 36118225 PMCID: PMC9479183 DOI: 10.3389/fmicb.2022.979124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
A 6-month feeding trial was conducted to compare the effects of extruded pellet (EP) and moist pellet (MP) feed on the growth performance, non-specific immunity, and intestinal microbiota of olive flounder. A total of 60,000 fish with an average weight of 70.8 ± 6.4 g were divided into two groups and fed with one of two experimental diets. At the end of a 6-month feeding trial, the weight gain and specific growth rate of the fish fed with the MP diets were significantly higher than those of fish fed with EP (P < 0.05). However, the EP group exhibited a lower feed conversion rate than the MP group, meaning that the EP diet was more cost-effective. Whole-body proximate compositions and non-specific immune responses (superoxide dismutase, myeloperoxidase, and lysozyme activity) were not significantly different between the two groups. There were no significant differences in the α-diversity of the intestinal bacterial community of the two groups. However, the composition of microorganisms at the phylum to genus level was different between the groups. The EP group was rich in Actinobacteria, Corynebacterium, Bacillus, and Lactobacillus, whereas the MP group was dominated by Proteobacteria, Vibrio, and Edwardsiella. Collectively, the MP diet increased growth performance and pathogen concentration in the gut; whereas EP improved feed conversion and beneficial Bacillus and Lactobacillus proportion in the intestinal microbial community.
Collapse
Affiliation(s)
- Won Je Jang
- Department of Biotechnology, Pukyong National University, Busan, South Korea
| | - Md. Tawheed Hasan
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan, South Korea
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Wonsuk Choi
- Feeds & Foods Nutrition Research Center, Pukyong National University, Busan, South Korea
| | - Soyeon Hwang
- Department of Fisheries Biology, Pukyong National University, Busan, South Korea
| | - Yein Lee
- Department of Fisheries Biology, Pukyong National University, Busan, South Korea
| | - Sang Woo Hur
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang, South Korea
| | - Seunghan Lee
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang, South Korea
| | - Bong-Joo Lee
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang, South Korea
- Department of Smart Fisheries Resources, College of Industrial Sciences, Kongju National University, Yesan, South Korea
| | - Youn Hee Choi
- Department of Fisheries Biology, Pukyong National University, Busan, South Korea
- Major in Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan, South Korea
- *Correspondence: Youn Hee Choi
| | - Jong Min Lee
- Department of Biotechnology, Pukyong National University, Busan, South Korea
- Jong Min Lee
| |
Collapse
|
8
|
Spilsbury F, Foysal MJ, Tay A, Gagnon MM. Gut Microbiome as a Potential Biomarker in Fish: Dietary Exposure to Petroleum Hydrocarbons and Metals, Metabolic Functions and Cytokine Expression in Juvenile Lates calcarifer. Front Microbiol 2022; 13:827371. [PMID: 35942316 PMCID: PMC9356228 DOI: 10.3389/fmicb.2022.827371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
The gut microbiome of fish contains core taxa whose relative abundances are modulated in response to diet, environmental factors, and exposure to toxicogenic chemicals, influencing the health of the host fish. Recent advances in genomics and metabolomics have suggested the potential of microbiome analysis as a biomarker for exposure to toxicogenic compounds. In this 35-day laboratory study, 16S RNA sequencing and multivariate analysis were used to explore changes in the gut microbiome of juvenile Lates calcarifer exposed to dietary sub-lethal doses of three metals: vanadium (20 mg/kg), nickel (480 mg/kg), and iron (470 mg/kg), and to two oils: bunker C heavy fuel oil (HFO) (1% w/w) and Montara, a typical Australian medium crude oil (ACO) (1% w/w). Diversity of the gut microbiome was significantly reduced compared to negative controls in fish exposed to metals, but not petroleum hydrocarbons. The core taxa in the microbiome of negative control fish comprised phyla Proteobacteria (62%), Firmicutes (7%), Planctomycetes (3%), Actinobacteria (2%), Bacteroidetes (1%), and others (25%). Differences in the relative abundances of bacterial phyla of metal-exposed fish were pronounced, with the microbiome of Ni-, V-, and Fe-exposed fish dominated by Proteobacteria (81%), Firmicutes (68%), and Bacteroidetes (48%), respectively. The genus Photobacterium was enriched proportionally to the concentration of polycyclic aromatic hydrocarbons (PAHs) in oil-exposed fish. The probiotic lactic acid bacterium Lactobacillus was significantly reduced in the microbiota of fish exposed to metals. Transcription of cytokines IL-1, IL-10, and TNF-a was significantly upregulated in fish exposed to metals but unchanged in oil-exposed fish compared to negative controls. However, IL-7 was significantly downregulated in fish exposed to V, Ni, Fe, and HFOs. Fish gut microbiome exhibits distinctive changes in response to specific toxicants and shows potential for use as biomarkers of exposure to V, Ni, Fe, and to PAHs present in crude oil.
Collapse
Affiliation(s)
- Francis Spilsbury
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Alfred Tay
- Helicobacter Research Laboratory, The Marshall Centre, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | | |
Collapse
|
9
|
Interaction of Microbiota between Fish and the Environment of an In-Pond Raceway System in a Lake. Microorganisms 2022; 10:microorganisms10061143. [PMID: 35744661 PMCID: PMC9227127 DOI: 10.3390/microorganisms10061143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Due to its ability to collect and remove aquaculture waste, an in-pond raceway system (IPRS) has been used to decrease the uncontrolled waste discharge in the traditional cage aquaculture method in large water bodies. However, when applied to large water bodies, its environmental performance is still lacking. This study focused on analyzing the microbial characteristics and the interaction between largemouth bass (gill and gut) microbiota and the environment (water and sediment) microbiota of an IPRS. Further, it revealed the primary relationship from the perspective of microbiota in the IPRS. The results show that (1) the alpha diversity of microbiota in the water is significantly lower than that of fish and sediment. The relationship between water microbiota and fish microbiota is limited. (2) The water microbiota inside and outside the tank showed high similarity and were not significantly affected by environmental factors. (3) The SourceTrack analysis showed that fish microbiota is one of the primary sources of sediment microbiota, and more than 15% of the sediment microbiota come from fish. Microbes such as Faecalibacterium, Escherichia-Shigella, and Bacteroides can significantly enrich the sediment. Our study revealed the characteristics and preliminary interaction of fish and environmental microbiota in the IPRS. It provided a reference for evaluating microbial health status in the application of IPRS in large water bodies’ aquaculture.
Collapse
|
10
|
Biasato I, Chemello G, Oddon SB, Ferrocino I, Corvaglia M, Caimi C, Resconi A, Paul A, van Spankeren M, Capucchio M, Colombino E, Cocolin L, Gai F, Schiavone A, Gasco L. Hermetia illucens meal inclusion in low-fishmeal diets for rainbow trout (Oncorhynchus mykiss): effects on the growth performance, nutrient digestibility coefficients, selected gut health traits, and health status indices. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Foysal MJ, Dao TTT, Fotedar R, Gupta SK, Tay A, Chaklader MR. Sources of protein diet differentially stimulate the gut and water microbiota under freshwater crayfish, marron (Cherax cainii, Austin 2002) culture. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:286-298. [PMID: 35130581 PMCID: PMC9303337 DOI: 10.1111/1758-2229.13049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 05/29/2023]
Abstract
To reduce the reliance on fishmeal (FM), other protein sources have been evaluated on cultured animals. In a 60-days feeding trial, marrons (Cherax cainii) were fed a FM diet and five test diets containing 100% of plant-based protein sources such as soybean, lupin and valorised animal-based proteins such as poultry-by-product, black soldier fly and tuna hydrolysate. At the end of the trial, DNA samples from marron gut and rearing water were investigated through DNA-based 16S rRNA gene sequencing. Plant-based diets increased abundance for Aeromonas, Flavobacterium and Vogesella, whereas animal and insect proteins influenced diverse bacterial groups in the gut linked to various metabolic activities. Insect meal in the water favoured the growth of Firmicutes and lactic acid bacteria, beneficial for the marron health. Aeromonas richness in the gut and reared water signified the ubiquitous nature of the genus in the environment. The higher bacterial diversity in the gut and water with PBP and BSF was further supported by qPCR quantification of the bacterial single-copy gene, rpoB. The overall results suggested that PBP and BSF can exhibit positive and influential effects on the gut and water microbial communities, hence can be used as sustainable ingredients for the crayfish aquaculture.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh
| | - Thi Thanh Thuy Dao
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | - Ravi Fotedar
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | | | - Alfred Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Md Reaz Chaklader
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| |
Collapse
|
12
|
Hossain TJ, Das M, Ali F, Chowdhury SI, Zedny SA. Substrate preferences, phylogenetic and biochemical properties of proteolytic bacteria present in the digestive tract of Nile tilapia ( Oreochromis niloticus). AIMS Microbiol 2022; 7:528-545. [PMID: 35071947 PMCID: PMC8712536 DOI: 10.3934/microbiol.2021032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Vertebrate intestine appears to be an excellent source of proteolytic bacteria for industrial and probiotic use. We therefore aimed at obtaining the gut-associated proteolytic species of Nile tilapia (Oreochromis niloticus). We have isolated twenty six bacterial strains from its intestinal tract, seven of which showed exoprotease activity with the formation of clear halos on skim milk. Their depolymerization ability was further assessed on three distinct proteins including casein, gelatin, and albumin. All the isolates could successfully hydrolyze the three substrates indicating relatively broad specificity of their secreted proteases. Molecular taxonomy and phylogeny of the proteolytic isolates were determined based on their 16S rRNA gene barcoding, which suggested that the seven strains belong to three phyla viz. Firmicutes, Proteobacteria, and Actinobacteria, distributed across the genera Priestia, Citrobacter, Pseudomonas, Stenotrophomonas, Burkholderia, Providencia, and Micrococcus. The isolates were further characterized by a comprehensive study of their morphological, cultural, cellular and biochemical properties which were consistent with the phylogenetic annotations. To reveal their proteolytic capacity alongside substrate preferences, enzyme-production was determined by the diffusion assay. The Pseudomonas, Stenotrophomonas and Micrococcus isolates appeared to be most promising with maximum protease production on casein, gelatin, and albumin media respectively. Our findings present valuable insights into the phylogenetic and biochemical properties of gut-associated proteolytic strains of Nile tilapia.
Collapse
Affiliation(s)
- Tanim Jabid Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh.,Biochemistry and Pathogenesis of Microbes Research Group, Chattogram 4331, Bangladesh
| | - Mukta Das
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh.,Biochemistry and Pathogenesis of Microbes Research Group, Chattogram 4331, Bangladesh
| | - Ferdausi Ali
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sumaiya Islam Chowdhury
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh.,Biochemistry and Pathogenesis of Microbes Research Group, Chattogram 4331, Bangladesh
| | - Subrina Akter Zedny
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh.,Biochemistry and Pathogenesis of Microbes Research Group, Chattogram 4331, Bangladesh
| |
Collapse
|
13
|
Najafpour B, Pinto PIS, Moutou KA, Canario AVM, Power DM. Factors Driving Bacterial Microbiota of Eggs from Commercial Hatcheries of European Seabass and Gilthead Seabream. Microorganisms 2021; 9:2275. [PMID: 34835401 PMCID: PMC8619918 DOI: 10.3390/microorganisms9112275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of how bacterial community abundance changes in fishes during their lifecycle and the role of the microbiota on health and production is still lacking. From this perspective, the egg bacterial communities of two commercially farmed species, the European seabass (Dicentrarchus labrax) and the gilthead seabream (Sparus aurata), from different aquaculture sites were compared, and the potential effect of broodstock water microbiota and disinfectants on the egg microbiota was evaluated. Moreover, 16S ribosomal RNA gene sequencing was used to profile the bacterial communities of the eggs and broodstock water from three commercial hatcheries. Proteobacteria were the most common and dominant phyla across the samples (49.7% on average). Vibrio sp. was the most highly represented genus (7.1%), followed by Glaciecola (4.8%), Pseudoalteromonas (4.4%), and Colwellia (4.2%), in eggs and water across the sites. Routinely used iodine-based disinfectants slightly reduced the eggs' bacterial load but did not significantly change their composition. Site, species, and type of sample (eggs or water) drove the microbial community structure and influenced microbiome functional profiles. The egg and seawater microbiome composition differed in abundance but shared similar functional profiles. The strong impact of site and species on egg bacterial communities indicates that disease management needs to be site-specific and highlights the need for species- and site-specific optimization of disinfection protocols.
Collapse
Affiliation(s)
- Babak Najafpour
- Centro de Ciências do Mar (CCMAR/CIIMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (B.N.); (P.I.S.P.); (A.V.M.C.)
| | - Patricia I. S. Pinto
- Centro de Ciências do Mar (CCMAR/CIIMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (B.N.); (P.I.S.P.); (A.V.M.C.)
| | - Katerina A. Moutou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41221 Larissa, Greece;
| | - Adelino V. M. Canario
- Centro de Ciências do Mar (CCMAR/CIIMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (B.N.); (P.I.S.P.); (A.V.M.C.)
| | - Deborah M. Power
- Centro de Ciências do Mar (CCMAR/CIIMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (B.N.); (P.I.S.P.); (A.V.M.C.)
| |
Collapse
|
14
|
Iorizzo M, Albanese G, Testa B, Ianiro M, Letizia F, Succi M, Tremonte P, D’Andrea M, Iaffaldano N, Coppola R. Presence of Lactic Acid Bacteria in the Intestinal Tract of the Mediterranean Trout ( Salmo macrostigma) in Its Natural Environment. Life (Basel) 2021; 11:667. [PMID: 34357039 PMCID: PMC8306010 DOI: 10.3390/life11070667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Knowledge of the composition of the gut microbiota in freshwater fish living in their natural habitat has taxonomic and ecological importance. Few reports have been produced on the composition of the gut microbiota and on the presence of LAB in the intestines of freshwater fish that inhabit river environments. In this study, we investigated the LAB community that was present in the gastrointestinal tract (GIT) of Mediterranean trout (Salmo macrostigma) that colonized the Biferno and Volturno rivers of the Molise region (Italy). The partial 16S rRNA gene sequences of these strains were determined for the species-level taxonomic placement. The phylogenetic analysis revealed that the isolated LABs belonged to seven genera (Carnobacterium, Enterococcus, Lactobacillus, Lactiplantibacillus, Vagococcus, Lactococcus, and Weissella). The study of the enzymatic activities showed that these LABs could contribute to the breakdown of polysaccharides, proteins, and lipids. In future studies, a greater understanding of how the LABs act against pathogens and trigger the fish immune response may provide practical means to engineer the indigenous fish microbiome and enhance disease control and fish health.
Collapse
Affiliation(s)
| | | | - Bruno Testa
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (G.A.); (M.I.); (F.L.); (M.S.); (P.T.); (M.D.); (N.I.); (R.C.)
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gu H, Feng Y, Zhang Y, Yin D, Yang Z, Tang W. Differential study of the Parabramis pekinensis intestinal microbiota according to different habitats and different parts of the intestine. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-020-01614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Purpose
To identify the differences in gut bacterial community of Parabramis pekinensis under different growth conditions, and the effect of the diet in a controlled habitat on the community structure, aiming to provide a comprehensive survey of how the gut microbiota in P. pekinensis varies depending on habitat.
Methods
A total of 73 P. pekinensis from Yangtze River (W), rivers in the outskirts of Jingjiang (Jiangsu province, China, R), and farms (C) were collected to analyze the intestinal microbiota using high-throughput sequencing of the V3-V4 16S ribosomal RNA gene. We also subdivided the gut into the foregut (F), midgut (M), and hindgut (B) to analyze the differences between them.
Results
The dominant bacterial phyla in P. pekinensis were Fusobacteria, Firmicutes, Proteobacteria, and Actinobacteria; meanwhile, Cyanobacteria, Bacteroidetes, Chloroflexi, and Verrucomicrobia were also highly abundant. It is worth noting that the abundance of Fusobacteria Cetobacterium was also very high. The abundance and diversity of the intestinal microbiota structure of fish taken from breeding farm were significantly lower than those taken from Yangtze river and Suburban river, and the abundance of Aeromonas in the gut of fish taken from Yangtze river was much higher than that of fish taken from Suburban river. Compared to midgut, foregut and hindgut have similar microbiota structures, but did not differ significantly in them.
Conclusions
The core intestinal microbiota of P. pekinensis is the same to other herbivorous and partially omnivorous fish. There were significant differences in the intestinal microbiota structure of P. pekinensis from different habitats, but no significant differences in the microbiota abundance and diversity between the different parts of the intestine.
Collapse
|