1
|
Benaissa A, Wafaa B, Ngenge Tamfu A, Ammara B, Kucukaydin S, Latti N, Khadir A, Bendahou M, Anouar EH, Ceylan O. Inhibition of Clinical Multidrug-Resistant Pseudomonas aeruginosa Biofilms by Cinnamaldehyde and Eugenol From Essential Oils: In Vitro and In Silico Analysis. Chem Biodivers 2024:e202402693. [PMID: 39740034 DOI: 10.1002/cbdv.202402693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Pseudomonas aeruginosa causes nosocomial infections and chronic diseases. Cinnamomum cassia and Syzygium aromaticum are used natural antimicrobials. Essential oil (EO) from C. cassia (CCEO) and S. aromaticum (CEO) was characterized using GC-MS analysis. Eugenol (82.31%), eugenol acetate (10.57%), and β-caryophyllene (3.41%) were major constituents in CEO while cinnamaldehyde (88.18%), cinnamyl acetate (2.85%) and 2-methoxy cinnamaldehyde (1.77%) were main components in CCEO. The EOs and major constituents exhibited good antimicrobial activity against clinical strains of P. aeruginosa. Cinnamaldehyde exhibited the best antimicrobial effect with minimal inhibitory concentration (MIC) as low as 0.031% ± 0.07% (v/v) and inhibition zones reaching 30 ± 0.5 mm diameter. Test samples showed antibiofilm activities against two culture types and seven clinical strains of P. aeruginosa at concentrations of 2MIC to MIC/4. CCEO and its major constituent cinnamaldehyde were more active, compared to CEO and its major constituent eugenol. Scanning electron microscopy images showed untreated colonies with well-developed biofilms while there was significant reduction of biofilms with distorted architecture and cell shrinkage upon treatment with test samples. In silico studies indicated great interactions between the major compounds, eugenol and cinnamaldehyde, with the receptor proteins of P. aeruginosa revealed by negative binding energies. Eugenol and cinnamaldehyde exhibited appreciable druglikeness.
Collapse
Affiliation(s)
- Asma Benaissa
- Laboratory of Applied Microbiology in Food, Biomedical, and Environment (LAMAABE), Department of Biology, Faculty of Sciences of Nature, Life, Earth, and Universe, Abou Bekr Belkaïd University of Tlemcen, Tlemcen, Algeria
| | - Bouali Wafaa
- Laboratory Antifungal, Antibiotic, Physico-chemical, Synthesis and Biological Activity, Department of Biology, Faculty of Natural Sciences and Life, Sciences of the Earth and the Universe, University Abou Bekr Belkaid Tlemcen, Tlemcen, Algeria
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla, Turkey
| | - Bousselham Ammara
- Microbiology Laboratory, University Hospital Center of Tlemcen, Tlemcen, Algeria
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla, Turkey
| | - Nawel Latti
- Laboratory of Applied Microbiology in Food, Biomedical, and Environment (LAMAABE), Department of Biology, Faculty of Sciences of Nature, Life, Earth, and Universe, Abou Bekr Belkaïd University of Tlemcen, Tlemcen, Algeria
| | - Abdelmounaim Khadir
- Laboratory of Applied Microbiology in Food, Biomedical, and Environment (LAMAABE), Department of Biology, Faculty of Sciences of Nature, Life, Earth, and Universe, Abou Bekr Belkaïd University of Tlemcen, Tlemcen, Algeria
- Department of Biology, Oran University, Oran, Algeria
| | - Mourad Bendahou
- Laboratory of Applied Microbiology in Food, Biomedical, and Environment (LAMAABE), Department of Biology, Faculty of Sciences of Nature, Life, Earth, and Universe, Abou Bekr Belkaïd University of Tlemcen, Tlemcen, Algeria
| | - El Hassane Anouar
- Department of Chemistry, College of Sciences and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
2
|
Gupta P, Meher MK, Tripathi S, Poluri KM. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol Aspects Med 2024; 98:101290. [PMID: 38945048 DOI: 10.1016/j.mam.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Graphic Era (Demmed to be Unievrsity), Dehradun, 248001, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Hu C, He G, Yang Y, Wang N, Zhang Y, Su Y, Zhao F, Wu J, Wang L, Lin Y, Shao L. Nanomaterials Regulate Bacterial Quorum Sensing: Applications, Mechanisms, and Optimization Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306070. [PMID: 38350718 PMCID: PMC11022734 DOI: 10.1002/advs.202306070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Anti-virulence therapy that interferes with bacterial communication, known as "quorum sensing (QS)", is a promising strategy for circumventing bacterial resistance. Using nanomaterials to regulate bacterial QS in anti-virulence therapy has attracted much attention, which is mainly attributed to unique physicochemical properties and excellent designability of nanomaterials. However, bacterial QS is a dynamic and multistep process, and there are significant differences in the specific regulatory mechanisms and related influencing factors of nanomaterials in different steps of the QS process. An in-depth understanding of the specific regulatory mechanisms and related influencing factors of nanomaterials in each step can significantly optimize QS regulatory activity and enhance the development of novel nanomaterials with better comprehensive performance. Therefore, this review focuses on the mechanisms by which nanomaterials regulate bacterial QS in the signal supply (including signal synthesis, secretion, and accumulation) and signal transduction cascade (including signal perception and response) processes. Moreover, based on the two key influencing factors (i.e., the nanomaterial itself and the environment), optimization strategies to enhance the QS regulatory activity are comprehensively summarized. Collectively, applying nanomaterials to regulate bacterial QS is a promising strategy for anti-virulence therapy. This review provides reference and inspiration for further research on the anti-virulence application of nanomaterials.
Collapse
Affiliation(s)
- Chen Hu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Guixin He
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yujun Yang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Ning Wang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yanli Zhang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yuan Su
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
- Stomatology CenterShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)Foshan528399China
| | - Fujian Zhao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Junrong Wu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Linlin Wang
- Hainan General Hospital·Hainan Affiliated Hospital of Hainan medical UniversityHaikou570311China
| | - Yuqing Lin
- Shenzhen Luohu People's HospitalShenzhen518000China
| | - Longquan Shao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
4
|
Haouam C, Boudiba S, Tamfu AN, Kucukaydin S, Hanini K, Zohra HF, Hioun S, Botezatu AD, Ceylan Ö, Boudiba L, Duru ME, Dinica RM. Assessment of Chemical Composition and In Vitro Antioxidant, Antidiabetic, Anticholinesterase and Microbial Virulence-Quenching Effects of Salad Burnet ( Sanguisorba minor L.) Harvested from Algeria. PLANTS (BASEL, SWITZERLAND) 2023; 12:4134. [PMID: 38140461 PMCID: PMC10748046 DOI: 10.3390/plants12244134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Sanguisorba minor is a medicinal vegetable used in seasoning desserts, juices, and beverages. An evaluation of the total flavonoid, phenolic, tannin and anthocyanin contents indicated that these classes of compounds are distributed variably in the different fractions. In summary, the HPLC-DAD analyses enabled the identification and quantification of thirteen phenolic compounds in an ethyl acetate extract (EAE), nine in a dichloromethane extract (DCME), seven in an aqueous extract (AQE) and four in a butanol extract (BE). Rutin was the most abundant phenolic compound in the BE (278.4 ± 1.20 µg/g) and AQE (32.87 ± 0.23 µg/g) fractions, while apigenin was the most abundant in the DCME (84.75 ± 0.60 µg/g) and EAE (156.8 ± 0.95 µg/g) fractions. The presence of phenolic compounds in the fractions conferred good antioxidant capacity, especially the EAE and DCME fractions, which both exhibited higher antioxidant effects than BHA and α-tocopherol in DPPH• and CUPRAC assays. Additionally, in the ABTS•+ assay, EAE (IC50 = 9.27 ± 0.33 µg/mL) was more active than α-tocopherol (IC50 = 35.50 ± 0.55 µg/mL), and BHA (IC50 = 12.70 ± 0.10 µg/mL). At 200 µg/mL, the fractions inhibited acetylcholinesterase and butyrylcholinesterase as well as α-amylase and α-glucosidase, indicating that they can slow neurodegeneration and hyperglycemia. Minimal inhibitory concentration (MIC) values ranged from 0.312 mg/mL to 1.25 mg/mL, and fractions showed good biofilm inhibition against Staphylococcus aureus and Escherichia coli. The extracts exhibited good violacein inhibition in Chromobacterium violaceum CV12472 and Chromobacterium violaceum CV026, despite the supply of external acyl-homoserine lactone to CV026. The antioxidant, quorum-sensing, antibiofilm and enzyme inhibition attributes indicate the potential for the application of S. minor as a food preservative.
Collapse
Affiliation(s)
- Chahrazed Haouam
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
| | - Sameh Boudiba
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Selcuk Kucukaydin
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla 48000, Turkey
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48800, Turkey
| | - Karima Hanini
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
| | - Haouaouchi Fatma Zohra
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
- Laboratory of Organic Materials and Heterochemistry (LOMH), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria
| | - Soraya Hioun
- Department of Natural and Life Sciences FSESNV, Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria
| | - Andreea Dediu Botezatu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University, 47 Domneasca Str., 800008 Galati, Romania
| | - Özgür Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey
| | - Louiza Boudiba
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University, 47 Domneasca Str., 800008 Galati, Romania
| |
Collapse
|
5
|
Ikome HN, Tamfu AN, Abdou JP, Fouotsa H, Nangmo PK, Lah FCW, Tchinda AT, Ceylan O, Frederich M, Nkengfack AE. Disruption of Biofilm Formation and Quorum Sensing in Pathogenic Bacteria by Compounds from Zanthoxylum Gilletti (De Wild) P.G. Waterman. Appl Biochem Biotechnol 2023; 195:6113-6131. [PMID: 36811771 DOI: 10.1007/s12010-023-04380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Microbial resistance is facilitated by biofilm formation and quorum-sensing mediated processes. In this work, the stem bark (ZM) and fruit extracts (ZMFT) of Zanthoxylum gilletii were subjected to column chromatography and afforded lupeol (1), 2,3-epoxy-6,7-methylenedioxyconiferyl alcohol (3), nitidine chloride (4), nitidine (7), sucrose (6) and sitosterol-β-D-glucopyranoside (2). The compounds were characterized using MS and NMR spectral data. The samples were evaluated for antimicrobial, antibiofilm and anti-quorum sensing activities. Highest antimicrobial activity was exhibited by compounds 3, 4 and 7 against Staphylococcus aureus (MIC 200 µg/mL), compounds 3 and 4 against Escherichia coli (MIC = 100 µg/mL) and compounds 4 and 7 against Candida albicans (MIC = 50 µg/mL). At MIC and sub-MIC concentrations, all samples inhibited biofilm formation by pathogens and violacein production in C. violaceum CV12472 except compound 6. Good disruption of QS-sensing in C. violaceum revealed by inhibition zone diameters were exhibited by compounds 3 (11.5 ± 0.5 mm), 4 (12.5 ± 1.5 mm), 5 (15.0 ± 0.8 mm), 7 (12.0 ± 1.5 mm) as well as the crude extracts from stem barks (16.5 ± 1.2 mm) and seeds (13.0 ± 1.4 mm). The profound inhibition of quorum sensing mediated processes in test pathogens by compounds 3, 4, 5 and 7 suggests the methylenedioxy- group that these compounds possess as the possible pharmacophore.
Collapse
Affiliation(s)
- Hermia Nalova Ikome
- Department of Organic Chemistry, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
- Laboratory of Phytochemistry, Center for Studies on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaounde, Cameroon
| | - Alfred Ngenge Tamfu
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon.
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, 48147, Mugla, Turkey.
| | - Jean Pierre Abdou
- Department of Chemistry, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaondere, Cameroon
| | - Hugues Fouotsa
- Department of Organic Chemistry, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
| | - Pamela Kemda Nangmo
- Department of Organic Chemistry, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
- Laboratory of Phytochemistry, Center for Studies on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaounde, Cameroon
| | - Fidèle Castro Weyepe Lah
- Department of Organic Chemistry, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
- Laboratory of Phytochemistry, Center for Studies on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaounde, Cameroon
| | - Alembert Tiabou Tchinda
- Laboratory of Phytochemistry, Center for Studies on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaounde, Cameroon.
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, 48147, Mugla, Turkey
| | - Michel Frederich
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicine, CIRM, University of Liege, 4000, Liege, Belgium
| | | |
Collapse
|
6
|
Talla RM, Tamfu AN, Wakeu BNK, Ceylan O, Mbazoa CD, Kapche GDWF, Lenta BN, Sewald N, Wandji J. Evaluation of anti-quorum sensing and antibiofilm effects of secondary metabolites from Gambeya lacourtiana (De Wild) Aubr. & Pellegr against selected pathogens. BMC Complement Med Ther 2023; 23:300. [PMID: 37620848 PMCID: PMC10464238 DOI: 10.1186/s12906-023-04115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Microbial infections cause serious health problems especially with the rising antibiotic resistance which accounts for about 700,000 human deaths annually. Antibiotics which target bacterial death encounter microbial resistance with time, hence, there is an urgent need for the search of antimicrobial substances which target disruption of virulence factors such as biofilm and quorum sensing (QS) with selective pressure on the pathogens so as to avoid resistance. METHODS Natural products are suitable leads for antimicrobial drugs that can inhibit bacterial biofilms and QS. Twenty compounds isolated from the medicinal plant Gambeya lacourtiana were evaluated for their antibiofilm and anti-quorum sensing effects against selected pathogenic bacteria. RESULTS Most of the compounds inhibited violacein production in Chromobacterium violaceum CV12472 and the most active compound, Epicatechin had 100% inhibition at MIC (Minimal Inhibitory Concentration) and was the only compound to inhibit violacein production at MIC/8 with percentage inhibition of 17.2 ± 0.9%. Since the bacteria C. violaceum produces violacein while growing, the inhibition of the production of this pigment reflects the inhibition of signal production. Equally, some compounds inhibited violacein production by C. violaceum CV026 in the midst of an externally supplied acylhomoserine lactone, indicating that they disrupted signal molecule reception. Most of the compounds exhibited biofilm inhibition on Staphyloccocus aureus, Escherichia coli and Candida albicans and it was observed that the Gram-positive bacteria biofilm was most susceptible. The triterpenoids bearing carboxylic acid group, the ceramide and epicatechin were the most active compounds compared to others. CONCLUSION Since some of the compounds disrupted QS mediated processes in bacteria, it indicates that this plant is a source of antibiotics drugs that can reduce microbial resistance.
Collapse
Affiliation(s)
- Rostan Mangoua Talla
- Department of Organic Chemistry, Faculty of Science, The University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
- Department of Chemistry, Higher Teacher Training C ollege, The University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Koc-man University, Mugla, 48147, Turkey.
| | - Brussine Nadège Kweka Wakeu
- Department of Organic Chemistry, Faculty of Science, The University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Koc-man University, Mugla, 48147, Turkey
| | - Céline Djama Mbazoa
- Department of Organic Chemistry, Faculty of Science, The University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | | | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training C ollege, The University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon
| | - Norbert Sewald
- Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, 33501, Bielefeld, Germany
| | - Jean Wandji
- Department of Organic Chemistry, Faculty of Science, The University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
7
|
Tamfu AN, Kocak G, Ceylan O, Citak F, Bütün V, Çiçek H. Synthesis of cross‐linked diazaborine‐based polymeric microparticles with antiquorum sensing, anti‐swarming, antimicrobial, and antibiofilm properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries University of Ngaoundere Ngaoundere Cameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School Mugla Sitki Kocman University Mugla Turkey
| | - Gökhan Kocak
- Department of Chemistry and Chemical Process Technologies, Vocational School of Higher Education Adiyaman University Adiyaman Turkey
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School Mugla Sitki Kocman University Mugla Turkey
| | - Funda Citak
- Department of Chemistry, Faculty of Science Eskisehir Osmangazi University Eskisehir Turkey
| | - Vural Bütün
- Department of Chemistry, Faculty of Science Eskisehir Osmangazi University Eskisehir Turkey
| | - Hüseyin Çiçek
- Department of Chemistry, Faculty of Science Mugla Sitki Kocman University Mugla Turkey
| |
Collapse
|
8
|
do Carmo PHF, Garcia MT, Figueiredo-Godoi LMA, Lage ACP, da Silva NS, Junqueira JC. Metal Nanoparticles to Combat Candida albicans Infections: An Update. Microorganisms 2023; 11:microorganisms11010138. [PMID: 36677430 PMCID: PMC9861183 DOI: 10.3390/microorganisms11010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Candidiasis is an opportunistic mycosis with high annual incidence worldwide. In these infections, Candida albicans is the chief pathogen owing to its multiple virulence factors. C. albicans infections are usually treated with azoles, polyenes and echinocandins. However, these antifungals may have limitations regarding toxicity, relapse of infections, high cost, and emergence of antifungal resistance. Thus, the development of nanocarrier systems, such as metal nanoparticles, has been widely investigated. Metal nanoparticles are particulate dispersions or solid particles 10-100 nm in size, with unique physical and chemical properties that make them useful in biomedical applications. In this review, we focus on the activity of silver, gold, and iron nanoparticles against C. albicans. We discuss the use of metal nanoparticles as delivery vehicles for antifungal drugs or natural compounds to increase their biocompatibility and effectiveness. Promisingly, most of these nanoparticles exhibit potential antifungal activity through multi-target mechanisms in C. albicans cells and biofilms, which can minimize the emergence of antifungal resistance. The cytotoxicity of metal nanoparticles is a concern, and adjustments in synthesis approaches or coating techniques have been addressed to overcome these limitations, with great emphasis on green synthesis.
Collapse
Affiliation(s)
- Paulo Henrique Fonseca do Carmo
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
- Correspondence: ; Tel.: +55-12-3497-9033
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
| | - Lívia Mara Alves Figueiredo-Godoi
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
| | | | - Newton Soares da Silva
- Department of Environmental Engineering, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
| |
Collapse
|
9
|
Noumi E, Ahmad I, Bouali N, Patel H, Ghannay S, ALrashidi AA, Abdulhakeem MA, Patel M, Ceylan O, Badraoui R, Mousa Elayyan AE, Adnan M, Kadri A, Snoussi M. Thymus musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities. Life (Basel) 2022; 13:62. [PMID: 36676011 PMCID: PMC9862435 DOI: 10.3390/life13010062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Thymus musilii Velen. is a rare plant species cultivated in the Ha'il region (Saudi Arabia) under greenhouse conditions. In this work, we described, for the first time, the phytochemical composition, antimicrobial, antioxidant, anti-quorum sensing, and anticancer activities of T. musilii methanolic extract using both experimental and computational approaches. The obtained results showed the identification of eight small-like peptides and eighteen phyto-compounds by using high-resolution liquid chromatography-mass spectrometry (HR-LCMS) dominated mainly by compounds belonging to isoprenoid, fatty acyl, flavonoid, and alkaloid classes. The tested extracts exhibited high antifungal and antibacterial activity with the mean diameter of growth inhibition zones ranging from 12.33 ± 0.57 mm (Pseudomonas aeruginosa ATCC 27853) to 29.33 ± 1.15 mm (Candida albicans ATCC 10231). Low minimal inhibitory concentrations were recorded for the tested micro-organisms ranging from 0.781 mg/mL to 12.5 mg/mL. While higher doses were necessary to completely kill all tested bacterial and fungal strains. Thyme extract was able to scavenge DPPH•, ABTS•+, β-carotene, and FRAP free radicals, and the IC50 values were 0.077 ± 0.0015 mg/mL, 0.040 ± 0.011 mg/mL, 0.287 ± 0.012 mg/mL, and 0.106 ± 0.007 mg/mL, respectively. The highest percentage of swarming and swimming inhibition was recorded at 100 µg/mL with 39.73 ± 1.5% and 25.18 ± 1%, respectively. The highest percentage of biofilm inhibition was recorded at 10 mg/mL for S. typhimurium ATCC 14028 (53.96 ± 4.21%) and L. monocytogenes ATCC 7644 (49.54 ± 4.5 mg/mL). The in silico docking study revealed that the observed antimicrobial, antioxidant, and anticancer activities of the constituent compounds of T. musilii are thermodynamically feasible, notably, such as those of the tripeptides (Asn-Met-His, His-Cys-Asn, and Phe-His-Gln), isoprenoids (10-Hydroxyloganin), and diterpene glycosides (4-Ketoretinoic acid glucuronide).
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, India
| | - Nouha Bouali
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, P.O. Box 6688, Buraidah 51452, Saudi Arabia
| | - Ayshah Aysh ALrashidi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Mohammad A Abdulhakeem
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Mitesh Patel
- Centre of Research for Development, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Ozgur Ceylan
- Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Department of Histo Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia
| | - Afnan Elayyan Mousa Elayyan
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Adel Kadri
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
10
|
Ngenge Tamfu A, Boukhedena W, Boudiba S, Deghboudj S, Ceylan O. Synthesis and evaluation of inhibitory potentials of microbial biofilms and quorum-sensing by 3-(1,3-dithian-2-ylidene) pentane-2,4-dione and ethyl-2-cyano-2-(1,3-dithian-2-ylidene) acetate. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e87834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The virulence and resistance of pathogenic microorganisms are promoted by quorum-sensing (QS) mediated traits and biofilms. The development of antimicrobial agents which can reduce the incidence of microbial resistance by disrupting the establishment of biofilms and QS, constitute a suitable strategy to reduce the emergence of pathogenic strains that are resistant to antibiotics. In this study, 3-(1,3-dithian-2-ylidene) pentane-2,4-dione (1) and ethyl-2-cyano-2-(1,3-dithian-2-ylidene) acetate (2) were successfully synthesized and characterized using EIMS, 1H NMR and 13C NMR techniques. On S. aureus, both compounds had MIC (minimal inhibitory concentrations) of 0.625 mg/mL while on E. coli and C. albicans, compound 2 showed higher activity than compound 1. All compounds inhibited formation of biofilms by C. albicans and S. aureus at sub-MIC with compound 1 being more active than compound 2. On E. coli, only compound 1 inhibited biofilm formation. Violacein production of violacein in C. violaceum CV12472 and quorum sensing in C. violaceum CV026 were inhibited indicating that the compounds could block signal production and reception. Anti-quorum sensing at sub-MIC concentrations revealed by inhibition zones were 13.0±0.5 mm and 8.0±0.5 mm at MIC and MIC/2 respectively for compound 1 and for compound 2, they were 11.5±0.4 mm and 7.5±0.0 mm at MIC and MIC/2 respectively. Concentration-dependent swarming motility was exhibited by both compounds with compound 1 slightly more active than compound 2. The results indicate that the organosulphur compounds could be suitable candidates for modern antibiotics.
Collapse
|
11
|
Alain KY, Tamfu AN, Kucukaydin S, Ceylan O, Cokou Pascal AD, Félicien A, Koko Dominique SC, Duru ME, Dinica RM. Phenolic profiles, antioxidant, antiquorum sensing, antibiofilm and enzyme inhibitory activities of selected Acacia species collected from Benin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Tamfu AN, Ceylan O, Cârâc G, Talla E, Dinica RM. Antibiofilm and Anti-Quorum Sensing Potential of Cycloartane-Type Triterpene Acids from Cameroonian Grassland Propolis: Phenolic Profile and Antioxidant Activity of Crude Extract. Molecules 2022; 27:4872. [PMID: 35956824 PMCID: PMC9369644 DOI: 10.3390/molecules27154872] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023] Open
Abstract
Propolis is very popular for its beneficial health properties, such as antimicrobial activity and antioxidant effects. It is one of the most long-serving traditional medicines to mankind due to its interesting chemical diversity and therapeutic properties. The detailed chemical information of propolis samples is very necessary to guarantee its safety and for it to be accepted into health care systems. The phenolic profile of the hydroethanolic extract was determined using HPLC-DAD, and the antioxidant was evaluated using five complementary methods. Triterpenoids were isolated using column chromatography and characterized using 1H NMR and 13C NMR. The effects of the extract and the isolated compounds on quorum sensing mediated processes and biofilm formation in bacteria were evaluated. Protocatechic acid (40.76 ± 0.82 µg/g), 4-hydroxybenzoic acid (24.04 ± 0.21 µg/g), vanillic acid (29.90 ± 1.05 µg/g), quercetin (43.53 ± 1.10 µg/g), and luteolin (4.44 ± 0.48 µg/g) were identified and quantified. The extract showed good antioxidant activity in the DPPH•, ABTS•+, CUPRAC, and metal chelating assays, and this antioxidant effect was confirmed by cyclic voltammetry. 27-Hydroxymangiferonic acid (1), Ambolic acid (2), and Mangiferonic acid (3) were isolated from anti-quorum sensing activity at MIC, and it was indicated that the most active sample was the extract with inhibition diameter zone of 18.0 ± 1.0 mm, while compounds 1, 2, and 3 had inhibition zones of 12.0 ± 0.5 mm, 9.0 ± 1.0 mm, and 12.3 ± 1.0 mm, respectively. The samples inhibited the P. aeruginosa PA01 swarming motility at the three tested concentrations (50, 75, and 100 μg/mL) in a dose-dependent manner. The propolis extract was able to inhibit biofilm formation by S. aureus, E. coli, P. aeruginosa, C. albicans, and C. tropicalis at MIC concentration. Compound 1 proved biofilm inhibition on S. aureus, L. monocytogenes, E. faecalis, E. coli, and C. tropicalis at MIC and MIC/2; compound 2 inhibited the formation of biofilm at MIC on S. aureus, E. faecalis, E. coli, S. typhi, C. albicans, and C. tropicalis; and compound 3 inhibited biofilm formation on E. faecalis, E. coli, C. albicans, and C. tropicalis and further biofilm inhibition on E. coli at MIC/4 and MIC/8. The studied propolis sample showed important amounts of cycloartane-type triterpene acids, and this indicates that there can be significant intra-regional variation probably due to specific flora within the vicinity. The results indicate that propolis and its compounds can reduce virulence factors of pathogenic bacteria.
Collapse
Affiliation(s)
- Alfred Ngenge Tamfu
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon;
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey;
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey;
| | - Geta Cârâc
- Department of Chemistry, Faculty of Sciences and Environment, Physics and Environment, Dunarea de Jos University, Galati, 47 Domneasca Str., 800008 Galati, Romania;
| | - Emmanuel Talla
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon;
| | - Rodica Mihaela Dinica
- Department of Chemistry, Faculty of Sciences and Environment, Physics and Environment, Dunarea de Jos University, Galati, 47 Domneasca Str., 800008 Galati, Romania;
| |
Collapse
|
13
|
Ultrasound-Assisted Extraction of Syringa vulgaris Mill., Citrus sinensis L. and Hypericum perforatum L.: Phenolic Composition, Enzyme Inhibition and Anti-quorum Sensing Activities. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00315-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Snoussi M, Noumi E, Hajlaoui H, Bouslama L, Hamdi A, Saeed M, Alreshidi M, Adnan M, Al-Rashidi A, Aouadi K, Ghannay S, Ceylan O, De Feo V, Kadri A. Phytochemical Profiling of Allium subhirsutum L. Aqueous Extract with Antioxidant, Antimicrobial, Antibiofilm, and Anti-Quorum Sensing Properties: In Vitro and In Silico Studies. PLANTS 2022; 11:plants11040495. [PMID: 35214828 PMCID: PMC8878528 DOI: 10.3390/plants11040495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
Abstract
The present study was the first to evaluate the phytochemical composition, antioxidant, antimicrobial, antibiofilm, and anti-quorum sensing potential of Allium subhirsutum L. (hairy garlic) aqueous extract through in vitro and in silico studies. The phytochemical profile revealed the presence of saponins, terpenes, flavonols/flavonones, flavonoids, and fatty acids, particularly with flavonoids (231 ± 0.022 mg QE/g extract), tannins (159 ± 0.006 mg TAE/g extract), and phenols (4 ± 0.004 mg GAE/g extract). Gas chromatography–mass spectrometry (GC–MS) analysis identified 15 bioactive compounds, such as 5-hydroxymethylfurfural (37.04%), methyl methanethiolsulfonate (21.33%), furfural (7.64%), beta-D-glucopyranose, 1,6-anhydro- (6.17%), 1,6-anhydro-beta-D-glucofuranose (3.6%), trisulfide, di-2-propenyl (2.70%), and diallyl disulfide (1.93%). The extract was found to be non-toxic with 50% cytotoxic concentration higher than 30,000 µg/mL. The investigation of the antioxidant activity via DPPH (2, 2-diphenyl-1-picrylhydrazyl) and FRAP (IC50 = 1 μg/mL), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); IC50 = 0.698 ± 0.107 μg/mL), and β-carotene (IC50 = 0.811 ± 0.036 mg/mL) was assessed. Nevertheless, good antimicrobial potential against a diverse panel of microorganisms with bacteriostatic and fungistatic effect was observed. Quorum sensing inhibition effects were also assessed, and the data showed the ability of the extract to inhibit the production of violacein by the mutant C. violaceum strain in concentration-dependent manner. Similarly, the biofilm formation by all tested strains was inhibited at low concentrations. In silico pharmacokinetic and toxicological prediction indicated that, out of the sixteen identified compounds, fourteen showed promising drug ability and could be used as lead compounds for further development and drug design. Hence, these findings support the popular use of hairy garlic as a source of bioactive compounds with potential application for human health.
Collapse
Affiliation(s)
- Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioressources, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
- Correspondence: (M.S.); (V.D.F.); Tel.: +966-530-463-706 (M.S.); Fax: +39-089-969-602 (V.D.F.)
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
- Laboratory of Bioressources: Integrative Biology and Recovery, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Hafed Hajlaoui
- Research Unit Valorization and Optimization of Resource Exploitation (UR16ES04), Faculty of Science and Technology of Sidi Bouzid, Campus University Agricultural City, University of Kairouan, Sidi Bouzid 9100, Tunisia;
| | - Lamjed Bouslama
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunisia;
| | - Assia Hamdi
- Laboratoire de Développement Chimique Galénique et Pharmacologique des Médicaments, Faculté’ de Pharmacie, Université de Monastir, Monastir 5000, Tunisia;
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Ayshah Al-Rashidi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
- Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
| | - Ozgur Ceylan
- Ula Ali Kocman Vocational School, Mugla SitkiKocman University, Mugla 48147, Turkey;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
- Correspondence: (M.S.); (V.D.F.); Tel.: +966-530-463-706 (M.S.); Fax: +39-089-969-602 (V.D.F.)
| | - Adel Kadri
- Department of Chemistry, College of Science and Arts in Baljurashi, Albaha University, Albaha 65731, Saudi Arabia;
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| |
Collapse
|
15
|
Phenolic Composition, Enzyme Inhibitory and Anti-quorum Sensing Activities of Cinnamon (Cinnamomum zeylanicum Blume) and Basil (Ocimum basilicum Linn). CHEMISTRY AFRICA 2021. [DOI: 10.1007/s42250-021-00265-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Alfred Ngenge T, Kucukaydin S, Ceylan O, Duru ME. Evaluation of Enzyme Inhibition and Anti-Quorum Sensing Potentials of Melaleuca alternifolia and Citrus sinensis Essential Oils. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211044565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, Melaleuca alternifolia (Maiden and Betche) Cheel (tea tree) oil and C. sinensis (L.) Osbeck (orange) oil was procured, and their chemical compositions were characterized by gas chromatography coupled with mass spectrometry, with co-injection using authentic samples. The oils were rich in monoterpene hydrocarbons making up 84.5% of C. sinensis and 48.9% of M. alternifolia oils. High amounts of oxygenated monoterpenoids were also identified in C. sinensis (9.6%) and M. alternifolia (49.3%) oils. The three most abundant compounds were limonene (71.2%), linalool (5.5%), and β-myrcene (5.1%) in C. sinensis, and terpinen-4-ol (45.6%), γ-terpinene (19.4%) and α-terpinene (9.3%) in M. alternifolia. Enzyme inhibitions (anticholinesterase, antiurease, antityrosinase) of both essential oils were evaluated. In acetylcholinesterase assay, M. alternifolia and C. sinensis had inhibition concentration (IC50) values of 153.7 ± 1.25 and 96.4 ± 1.0 µg/mL, respectively as compared to 5.42 ± 0.11 µg/mL for galantamine, while in butyrylcholinesterase assay, M. alternifolia (IC50 = 85.6 ± 0.7 µg/mL) and C. sinensis (IC50 = 127.8 ± 0.6 µg/mL) exhibited moderate activities compared to galantamine (IC50 = 45.8 ± 0.8 µg/mL). In the urease inhibitory activity, essential oils of C. sinensis and M. alternifolia showed 48.4% ± 0.9% and 30.6% ± 0.7% inhibitions at 200 µg/mL concentration, respectively. Quorum sensing (QS) mediated violacein production in Chromobacterium violaceum CV12472 was inhibited by 100% at minimum inhibitory concentration (MIC) values for both oils while showing QS inhibition diameter zones in C. violaceum of 22.5 ± 0.4 mm and 14.3 ± 0.5 mm for C. sinensis and M. alternifolia oils, respectively at MIC concentration. The good quorum-sensing potential indicates that these oils can suppress microbial resistance and severity of infections.
Collapse
Affiliation(s)
- Tamfu Alfred Ngenge
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Ula Mugla, Turkey
| | - Selcuk Kucukaydin
- Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Ula Mugla, Turkey
| | - Mehmet Emin Duru
- Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
17
|
Beddiar H, Boudiba S, Benahmed M, Tamfu AN, Ceylan Ö, Hanini K, Kucukaydin S, Elomri A, Bensouici C, Laouer H, Akkal S, Boudiba L, Dinica RM. Chemical Composition, Anti-Quorum Sensing, Enzyme Inhibitory, and Antioxidant Properties of Phenolic Extracts of Clinopodium nepeta L. Kuntze. PLANTS (BASEL, SWITZERLAND) 2021; 10:1955. [PMID: 34579487 PMCID: PMC8468494 DOI: 10.3390/plants10091955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023]
Abstract
Phenolic extracts of Clinopodium nepeta were prepared and their preliminary phenolic profiles determined using HPLC-DAD with 26 phenolic standards. Apigenin (21.75 ± 0.41 µg/g), myricetin (72.58 ± 0.57 µg/g), and rosmarinic acid (88.51 ± 0.55 µg/g) were the most abundant compounds in DCM (dichloromethane), AcOEt (ethyl acetate), and BuOH (butanol) extracts, respectively. The DCM and AcOEt extracts inhibited quorum-sensing mediated violacein production by C. violaceum CV12472. Anti-quorum-sensing zones on C. violaceum CV026 at MIC (minimal inhibitory concentration) were 10.3 ± 0.8 mm for DCM extract and 12.0 ± 0.5 mm for AcOEt extract. Extracts showed concentration-dependent inhibition of swarming motility on flagellated P. aeruginosa PA01 and at the highest test concentration of 100 μg/mL, AcOEt (35.42 ± 1.00%) extract displayed the best activity. FRAP assay indicated that the BuOH extract (A0.50 = 17.42 ± 0.25 µg/mL) was more active than standard α-tocopherol (A0.50 = 34.93 ± 2.38 µg/mL). BuOH extract was more active than other extracts except in the ABTS●+, where the DCM extract was most active. This antioxidant activity could be attributed to the phenolic compounds detected. C. nepeta extracts showed moderate inhibition on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, and α-amylase. The results indicate that C. nepeta is a potent source of natural antioxidants that could be used in managing microbial resistance and Alzheimer's disease.
Collapse
Affiliation(s)
- Hatem Beddiar
- Laboratory of Organic Materials and Heterochemistry, Tebessa University, Constantine Road, Tebessa 12002, Algeria; (H.B.); (M.B.)
| | - Sameh Boudiba
- Laboratory of Bioactive Molecules and Applications, Tebessa University, Constantine Road, Tebessa 12002, Algeria; (S.B.); (K.H.)
| | - Merzoug Benahmed
- Laboratory of Organic Materials and Heterochemistry, Tebessa University, Constantine Road, Tebessa 12002, Algeria; (H.B.); (M.B.)
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey;
| | - Özgür Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey;
| | - Karima Hanini
- Laboratory of Bioactive Molecules and Applications, Tebessa University, Constantine Road, Tebessa 12002, Algeria; (S.B.); (K.H.)
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48800, Turkey;
| | - Abdelhakim Elomri
- CNRS, COBRA (UMR 6014), Normandie University, UNIROUEN, INSA Rouen, 76000 Rouen, France;
| | - Chawki Bensouici
- Research Center on Biotechnology, Ali Mendjli New City UV 03, BP E73, Constantine 25000, Algeria;
| | - Hocine Laouer
- Laboratory for the Valorization of Natural Biological Resources, Ferhat Abbas University, UFA-Setif 1, Setif 19000, Algeria;
| | - Salah Akkal
- Laboratory of Phytochemistry, Physicochemical and Biological Analyses, Mentouri University, Ain El Bey Road, Constantine 25000, Algeria;
| | - Louiza Boudiba
- Laboratory of Water and Environment, Tebessa University, Constantine Road, Tebessa 12002, Algeria;
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University, 47 Domneasca Str., 800008 Galati, Romania
| |
Collapse
|
18
|
A Preliminary Study of Chemical Profiles of Honey, Cerumen, and Propolis of the African Stingless Bee Meliponula ferruginea. Foods 2021; 10:foods10050997. [PMID: 34063246 PMCID: PMC8147412 DOI: 10.3390/foods10050997] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 01/28/2023] Open
Abstract
Recently, the honey and propolis of stingless bees have been attracting growing attention because of their health-promoting properties. However, studies on these products of African Meliponini are still very scarce. In this preliminary study, we analyzed the chemical composition of honey, two cerumen, and two resin deposits (propolis) samples of Meliponula ferruginea from Tanzania. The honey of M. ferruginea was profiled by NMR and indicated different long-term stability from Apis mellifera European (Bulgarian) honey. It differed significantly in sugar and organic acids content and had a very high amount of the disaccharide trehalulose, known for its bioactivities. We suggested trehalulose to be a potential marker for African stingless bee honey analogously to the recent proposal for Meliponini honey from Asia, South America, and Australia and demonstrated its easy discrimination by 13C NMR. Propolis and cerumen were studied by GC-MS (gas chromatography-mass spectometry). The samples contained mainly terpenoids (di-and triterpenes) but demonstrated qualitative and quantitative differences. This fact was an indication that possibly M. ferruginea has no strict preferences for resins used to construct and protect their nests. The antimicrobial and anti-quorum sensing properties of the two materials were also tested. These first results demonstrated that the honey, cerumen, and propolis of African stingless bees were rich in biologically active substances and deserved further research.
Collapse
|