1
|
Liu SF, Yi ZC, Huang ZQ, Yuan ZD, Yang YC, Zhao Y, He QY, Yang WD, Li HY, Lin CSK, Wang X. Enhanced biodegradation of glyphosate by Chlorella sorokiniana engineered with exogenous purple acid phosphatase. WATER RESEARCH 2024; 268:122737. [PMID: 39531795 DOI: 10.1016/j.watres.2024.122737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Organophosphate pesticides, particularly glyphosate, persist in aquatic environments due to widespread agricultural usage, posing substantial environmental and health risks. This study explores the bioremediation potential of genetically engineered Chlorella sorokiniana, expressing purple acid phosphatase (PAP) from Phaeodactylum tricornutum, for glyphosate biodegradation. The engineered strain (OE line) demonstrated complete glyphosate biodegradation at concentrations below 10 ppm within 4-6 days, surpassing the wild type (WT). Enhanced biodegradation in the OE line was attributed to increased growth and ATP levels due to the release of inorganic phosphate, indicating enhanced metabolic efficiency. Photosynthetic parameters, as well as chlorophyll, and carotenoid contents, were significantly improved, driving higher biomass accumulation. Metabolic shifts toward lipogenesis were observed, supported by the upregulation of triacylglycerol-related genes. Additionally, antioxidant enzyme activities (GPx, SOD, CAT) were elevated in the OE line, mitigating oxidative stress. Importantly, the overexpression of PAP activated and upregulated the level of endogenous CsPAP18, which displayed stable binding with glyphosate and its metabolite aminomethylphosphonic acid, highlighting the synergistic role of PAP and CsPAP18 in glyphosate biodegradation. The OE line effectively treated glyphosate-contaminated real wastewater, confirming the feasibility of engineered strain for environmental remediation. This study provides valuable insights into the potential of engineered microalgae for effective and sustainable wastewater treatment, specifically targeting the removal of organophosphate contaminants in freshwater environments.
Collapse
Affiliation(s)
- Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zhong-Chen Yi
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zi-Qiong Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zhen-Dong Yuan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yu-Cheng Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, PR China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, PR China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
2
|
Burgunter-Delamare B, Shetty P, Vuong T, Mittag M. Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships. PLANTS (BASEL, SWITZERLAND) 2024; 13:829. [PMID: 38592793 PMCID: PMC10974524 DOI: 10.3390/plants13060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known.
Collapse
Affiliation(s)
- Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Tai Y, Zhang J, Chen Y, Yuan Y, Wang H, Yu L, Li S, Yang L, Jin Y. Establishment and validation of a callus tissue transformation system for German chamomile (Matricaria chamomilla L.). BMC PLANT BIOLOGY 2023; 23:659. [PMID: 38124039 PMCID: PMC10731808 DOI: 10.1186/s12870-023-04680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND German chamomile (Matricaria chamomilla L.) is an important medicinal plant, and the essential oils in the flowers have various biological activities. Genetic transformation systems are important for plant quality improvement and molecular research. To the best of our knowledge, a genetic transformation system has not yet been reported for German chamomile. RESULTS In this study, we developed Agrobacterium-mediated transformation protocols for German chamomile callus tissues. This involved optimizing key parameters, such as hygromycin and cefotaxime concentrations, bacterial density, and infection and co-culture durations. We also performed gas chromatography-mass spectrometry analysis to identify volatile compounds in non-transgenic and transgenic callus and hairy root tissues. Furthermore, to compare and verify the callus transformation system of German chamomile, we transferred McFPS to the hairy roots of German chamomile. The results showed that the optimal conditions for Agrobacterium-mediated callus tissue transformation were as follows: explant, petiole; cefotaxime concentration, 300 mg/L; hygromycin concentration, 10 mg/L; and bacterial solution concentration, OD600 = 0.6; callus transformation efficiency was the highest when the co-culture time was 3 days. CONCLUSIONS Establishment of a high-efficiency callus transformation system will lay the foundation for gene function identification in German chamomile.
Collapse
Affiliation(s)
- Yuling Tai
- School of Life Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Jie Zhang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Youhui Chen
- School of Life Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Yi Yuan
- School of Life Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Honggang Wang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Luyao Yu
- School of Life Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Shuangshuang Li
- School of Life Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Lu Yang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Yifan Jin
- School of Life Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| |
Collapse
|
4
|
Jareonsin S, Mahanil K, Phinyo K, Srinuanpan S, Pekkoh J, Kameya M, Arai H, Ishii M, Chundet R, Sattayawat P, Pumas C. Unlocking microalgal host-exploring dark-growing microalgae transformation for sustainable high-value phytochemical production. Front Bioeng Biotechnol 2023; 11:1296216. [PMID: 38026874 PMCID: PMC10666632 DOI: 10.3389/fbioe.2023.1296216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Microalgae have emerged as a promising, next-generation sustainable resource with versatile applications, particularly as expression platforms and green cell factories. They possess the ability to overcome the limitations of terrestrial plants, such non-arable land, water scarcity, time-intensive growth, and seasonal changes. However, the heterologous expression of interested genes in microalgae under heterotrophic cultivation (dark mode) remains a niche area within the field of engineering technologies. In this study, the green microalga, Chlorella sorokiniana AARL G015 was chosen as a potential candidate due to its remarkable capacity for rapid growth in complete darkness, its ability to utilize diverse carbon sources, and its potential for wastewater treatment in a circular bioeconomy model. The aims of this study were to advance microalgal genetic engineering via dark cultivation, thereby positioning the strain as promising dark-host for expressing heterologous genes to produce high-value phytochemicals and ingredients for food and feed. To facilitate comprehensive screening based on resistance, eleven common antibiotics were tested under heterotrophic condition. As the most effective selectable markers for this strain, G418, hygromycin, and streptomycin exhibited growth inhibition rates of 98%, 93%, and 92%, respectively, ensuring robust long-term transgenic growth. Successful transformation was achieved through microalgal cell cocultivation with Agrobacterium under complete darkness verified through the expression of green fluorescence protein and β-glucuronidase. In summary, this study pioneers an alternative dark-host microalgal platform, using, Chlorella, under dark mode, presenting an easy protocol for heterologous gene transformation for microalgal host, devoid of the need for expensive equipment and light for industrial production. Furthermore, the developed genetic transformation methodology presents a sustainable way for production of high-value nutrients, dietary supplements, nutraceuticals, proteins and pharmaceuticals using heterotrophic microalgae as an innovative host system.
Collapse
Affiliation(s)
- Surumpa Jareonsin
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kanjana Mahanil
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Masafumi Kameya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ruttaporn Chundet
- Division of Biotechnology, Faculty of Science, Maejo University, Chiangmai, Chiang Mai, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Gu X, Deng Y, Wang A, Gan Q, Xin Y, Paithoonrangsarid K, Lu Y. Engineering a marine microalga Chlorella sp. as the cell factory. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:133. [PMID: 37679828 PMCID: PMC10485975 DOI: 10.1186/s13068-023-02384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023]
Abstract
The use of marine microalgae in industrial systems is attractive for converting CO2 into value-added products using saline water and sunlight. The plant nature and demonstrated industrial potential facilitate Chlorella spp. as excellent model organisms for both basic research and commercial application. However, the transformation method has not been developed in marine Chlorella spp., thus genetic engineering is hindered in exploiting the industrial potentialities of these strains. In this study, we provided a transformation protocol for the marine Chlorella strain MEM25, which showed robust characteristics, including high production of proteins and polyunsaturated fatty acids in multiple cultivation systems over various spatial-temporal scales. We showed that transformants could be obtained in a dramatically time-saving manner (comparable to Saccharomyces cerevisiae) with four functional proteins expressed properly. The transgenes are integrated into the genome and can be successfully inherited for more than two years. The development of a marine Chlorella transformation method, in combination with the complete genome, will greatly facilitate more comprehensive mechanism studies and provide possibilities to use this species as chassis for synthetic biology to produce value-added compounds with mutual advantage in neutralization of CO2 in commercial scales.
Collapse
Affiliation(s)
- Xinping Gu
- Single-cell BioEngineering Group, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou, 570228, China
| | - Ying Deng
- Single-cell BioEngineering Group, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou, 570228, China
| | - Aoqi Wang
- Single-cell BioEngineering Group, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou, 570228, China
| | - Qinhua Gan
- Single-cell BioEngineering Group, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou, 570228, China
| | - Yi Xin
- Single-cell BioEngineering Group, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou, 570228, China
| | - Kalyanee Paithoonrangsarid
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Yandu Lu
- Single-cell BioEngineering Group, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou, 570228, China.
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou, China.
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou, China.
| |
Collapse
|
6
|
Kumar L, Mohan L, Anand R, Joshi V, Chugh M, Bharadvaja N. A review on unit operations, challenges, opportunities, and strategies to improve algal based biodiesel and biorefinery. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.998289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Globally, the demand for energy is increasing with an emphasis on green fuels for a sustainable future. As the urge for alternative fuels is accelerating, microalgae have emerged as a promising source that can not only produce high lipid but many other platform chemicals. Moreover, it is a better alternative in comparison to conventional feedstock due to yearlong easy and mass cultivation, carbon fixation, and value-added products extraction. To date, numerous studies have been done to elucidate these organisms for large-scale fuel production. However, enhancing the lipid synthesis rate and reducing the production cost still remain a major bottleneck for its economic viability. Therefore, this study compiles information on algae-based biodiesel production with an emphasis on its unit operations from strain selection to biofuel production. Additionally, strategies to enhance lipid accumulation by incorporating genetic, and metabolic engineering and the use of leftover biomass for harnessing bio-products have been discussed. Besides, implementing a biorefinery for extracting oil followed by utilizing leftover biomass to generate value-added products such as nanoparticles, biofertilizers, biochar, and biopharmaceuticals has also been discussed.
Collapse
|
7
|
Improved and Highly Efficient Agrobacterium rhizogenes-Mediated Genetic Transformation Protocol: Efficient Tools for Functional Analysis of Root-Specific Resistance Genes for Solanum lycopersicum cv. Micro-Tom. SUSTAINABILITY 2022. [DOI: 10.3390/su14116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gene function analysis, molecular breeding, and the introduction of new traits in crop plants all require the development of a high-performance genetic transformation system. In numerous crops, including tomatoes, Agrobacterium-mediated genetic transformation is the preferred method. As one of our ongoing research efforts, we are in the process of mapping a broad-spectrum nematode resistance gene (Me1) in pepper. We work to transform tomato plants with candidate genes to confer resistance to nematodes in Solanaceae members. The transformation technology development is designed to produce a reproducible, rapid, and highly effective Agrobacterium-mediated genetic transformation system of Micro-Tom. In our system, a transformation efficiency of over 90% was achieved. The entire procedure, starting from the germination of seeds to the establishment of transformed plants in soil, was completed in 53 days. We confirmed the presence of the NeoR/KanR and DsRed genes in the transformed roots by polymerase chain reaction. The hairy root plants were infected with nematodes, and after 3 months, the presence of DsRed and NeoR/KanR genes was detected in the transformant roots to confirm the long-term effectiveness of the method. The presented study may facilitate root-related research and exploration of root–pathogen interactions.
Collapse
|
8
|
Maréchal E. Grand Challenges in Microalgae Domestication. FRONTIERS IN PLANT SCIENCE 2021; 12:764573. [PMID: 34630500 PMCID: PMC8495258 DOI: 10.3389/fpls.2021.764573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
|