1
|
Kunwar S, Pandey N, Bhatnagar P, Chadha G, Rawat N, Joshi NC, Tomar MS, Eyvaz M, Gururani P. A concise review on wastewater treatment through microbial fuel cell: sustainable and holistic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6723-6737. [PMID: 38158529 DOI: 10.1007/s11356-023-31696-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Research for alternative sources for producing renewable energy is rising exponentially, and consequently, microbial fuel cells (MFCs) can be seen as a promising approach for sustainable energy production and wastewater purification. In recent years, MFC is widely utilized for wastewater treatment in which the removal efficiency of heavy metal ranges from 75-95%. They are considered as green and sustainable technology that contributes to environmental safety by reducing the demand for fossil fuels, diminishes carbon emissions, and reverses the trend of global warming. Moreover, significant reduction potential can be seen for other parameters such as total carbon oxygen demand (TCOD), soluble carbon oxygen demand (SCOD), total suspended solids (TSS), and total nitrogen (TN). Furthermore, certain problems like economic aspects, model and design of MFCs, type of electrode material, electrode cost, and concept of electro-microbiology limit the commercialization of MFC technology. As a result, MFC has never been accepted as an appreciable competitor in the area of treating wastewater or renewable energy. Therefore, more efforts are still required to develop a useful model for generating safe, clean, and CO2 emission-free renewable energy along with wastewater treatment. The purpose of this review is to provide a deep understanding of the working mechanism and design of MFC technology responsible for the removal of different pollutants from wastewater and generate power density. Existing studies related to the implementation of MFC technology in the wastewater treatment process along with the factors affecting its functioning and power outcomes have also been highlighted.
Collapse
Affiliation(s)
- Saloni Kunwar
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Neha Pandey
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Pooja Bhatnagar
- Algal Research and Bioenergy Laboratory, Department of Food Science & Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Gurasees Chadha
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Neha Rawat
- Department of Microbiology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Naveen Chandra Joshi
- Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Mahipal Singh Tomar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Murat Eyvaz
- Department of Environmental Engineering, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
2
|
Pednekar RR, Rajan AP. Unraveling the contemporary use of microbial fuel cell in pesticide degradation and simultaneous electricity generation: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:144-166. [PMID: 38048001 DOI: 10.1007/s11356-023-30782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023]
Abstract
Pesticide is an inevitable substance used worldwide to kill pests, but their indiscriminate use has posed serious complications to health and the environment. Various physical, chemical, and biological methods are employed for pesticide treatment, but this paper deals with microbial fuel cell (MFC) as a futuristic technology for pesticide degradation with electricity production. In MFC, organic compounds are utilized as the carbon source for electricity production and the generation of electrons which can be replaced with pollutants such as dyes, antibiotics, and pesticides as carbon sources. However, MFC is been widely studied for a decade for electricity production, but its implementation in pesticide degradation is less known. We fill this void by depicting a real picture of the global pesticide scenario with an eagle eye view of the bioremediation techniques implemented for pesticide treatment with phytoremediation and rhizoremediation as effective techniques for efficient pesticide removal. The enormous literature survey has revealed that not many researchers have ventured into this new arena of MFC employed for pesticide degradation. Based on the Scopus database, an increase in annual trend from 2014 to 2023 is observed for MFC-implemented pesticide remediation. However, a novel MFC to date for effective remediation of pesticides with simultaneous electricity generation is discussed for the first time. Furthermore, the limitation of MFC technology and the implementation of MFC and rhizoremediation as a clubbed system which is the least applied can be seen as promising and futuristic approaches to enhance pesticide degradation by bacteria and electricity as a by-product.
Collapse
Affiliation(s)
- Reshma Raviuday Pednekar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Anand Prem Rajan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Hao W, Lee SH, Peera SG. Xerogel-Derived Manganese Oxide/N-Doped Carbon as a Non-Precious Metal-Based Oxygen Reduction Reaction Catalyst in Microbial Fuel Cells for Energy Conversion Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2949. [PMID: 37999303 PMCID: PMC10674280 DOI: 10.3390/nano13222949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 11/25/2023]
Abstract
Current study provides a novel strategy to synthesize the nano-sized MnO nanoparticles from the quick, ascendable, sol-gel synthesis strategy. The MnO nanoparticles are supported on nitrogen-doped carbon derived from the cheap sustainable source. The resulting MnO/N-doped carbon catalysts developed in this study are systematically evaluated via several physicochemical and electrochemical characterizations. The physicochemical characterizations confirms that the crystalline MnO nanoparticles are successfully synthesized and are supported on N-doped carbons, ascertained from the X-ray diffraction and transmission electron microscopic studies. In addition, the developed MnO/N-doped carbon catalyst was also found to have adequate surface area and porosity, similar to the traditional Pt/C catalyst. Detailed investigations on the effect of the nitrogen precursor, heat treatment temperature, and N-doped carbon support on the ORR activity is established in 0.1 M of HClO4. It was found that the MnO/N-doped carbon catalysts showed enhanced ORR activity with a half-wave potential of 0.69 V vs. RHE, with nearly four electron transfers and excellent stability with just a loss of 10 mV after 20,000 potential cycles. When analyzed as an ORR catalyst in dual-chamber microbial fuel cells (DCMFC) with Nafion 117 membrane as the electrolyte, the MnO/N-doped carbon catalyst exhibited a volumetric power density of ~45 mW m2 and a 60% degradation of organic matter in 30 days of continuous operation.
Collapse
Affiliation(s)
| | - Sang-Hun Lee
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
4
|
Naaz T, Sharma K, Roy A, Singh Mathuriya A, Yadav V, Pandit S, Hasan M, Anand J, Joshi S, Sharma R. Simultaneous microbial electrochemical degradation of methyl orange and bioelectricity generation using coculture as anode inoculum in a microbial fuel cell. Food Chem Toxicol 2023; 181:114058. [PMID: 37788762 DOI: 10.1016/j.fct.2023.114058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
Methyl Orange, an azo dye, is a widely used colouring agent in the textile industry. The study aimed to investigate the efficiency of bioremediating bacteria in degrading methyl orange. Escherichia coli (E. coli), a Methyl Orange-degrading bacterium, was isolated from cow dung and its biochemical properties were analysed using 16S rRNA sequencing, and MALDI-TOF MS. A pre-cultured strain of Pseudomonas aeruginosa was co-cultured with E. coli in 1:1 ration in a microbial fuel cell (MFC) for simultaneous electricity production and methyl orange degradation. The degradation was combined with biological wastewater treatment at varying Methyl Orange concentrations, and the electrochemical characteristics were analysed through polarisation study, cyclic voltammetry, and electrochemical impedance spectroscopy. The impact of parameters such as anolyte pH, dye concentration, incubation time, and substrate concentrations were also studied. This study confirmed E. coli as an effective methyl orange degrading bacteria with a maximum % degradation efficiency of 98% after 48 h incubation at pH 7.0. The co-culture of isolated microorganisms at 250 mg/L of methyl orange concentration showed a maximum power density 6.5 W/m3. Further, anode modification with Fe2O3 nanoparticles on the anode surface enhanced power production to 11.2 W/m3, an increase of 4.7 W/m3.
Collapse
Affiliation(s)
- Tahseena Naaz
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, 201306, India
| | - Kalpana Sharma
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, 201306, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Abhilasha Singh Mathuriya
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Jor Bagh, New Delhi, 110003, India
| | - Vineeta Yadav
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, 201306, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, 201306, India.
| | - Mudassir Hasan
- Department of Chemical Engineering King Khalid University, Saudi Arabia
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Sanket Joshi
- Oil & Gas Research Centre, Sultan Qaboos University, Muscat, Oman
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
5
|
Borja-Maldonado F, López Zavala MÁ. Contribution of configurations, electrode and membrane materials, electron transfer mechanisms, and cost of components on the current and future development of microbial fuel cells. Heliyon 2022; 8:e09849. [PMID: 35855980 PMCID: PMC9287189 DOI: 10.1016/j.heliyon.2022.e09849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 06/28/2022] [Indexed: 10/25/2022] Open
Abstract
Microbial fuel cells (MFCs) are a technology that can be applied to both the wastewater treatment and bioenergy generation. This work discusses the contribution of improvements regarding the configurations, electrode materials, membrane materials, electron transfer mechanisms, and materials cost on the current and future development of MFCs. Analysis of the most recent scientific publications on the field denotes that dual-chamber MFCs configuration offers the greatest potential due to the excellent ability to be adapted to different operating environments. Carbon-based materials show the best performance, biocompatibility of carbon-brush anode favors the formation of the biofilm in a mixed consortium and in wastewater as a substrate resembles the conditions of real scenarios. Carbon-cloth cathode modified with nanotechnology favors the conductive properties of the electrode. Ceramic clay membranes emerge as an interesting low-cost membrane with a proton conductivity of 0.0817 S cm-1, close to that obtained with the Nafion membrane. The use of nanotechnology in the electrodes also enhances electron transfer in MFCs. It increases the active sites at the anode and improves the interface with microorganisms. At the cathode, it favors its catalytic properties and the oxygen reduction reaction. These features together favor MFCs performance through energy production and substrate degradation with values above 2.0 W m-2 and 90% respectively. All the recent advances in MFCs are gradually contributing to enable technological alternatives that, in addition to wastewater treatment, generate energy in a sustainable manner. It is important to continue the research efforts worldwide to make MFCs an available and affordable technology for industry and society.
Collapse
Affiliation(s)
- Fátima Borja-Maldonado
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| | - Miguel Ángel López Zavala
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| |
Collapse
|
6
|
Maddalwar S, Kumar Nayak K, Kumar M, Singh L. Plant microbial fuel cell: Opportunities, challenges, and prospects. BIORESOURCE TECHNOLOGY 2021; 341:125772. [PMID: 34411941 DOI: 10.1016/j.biortech.2021.125772] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) are considered as greener technologies for generation of bioenergy and simultaneously treatment of wastewater. However, the major drawback of these technologies was, rapid utilization of substrate by the microbes to generate power. This drawback is solved to a great extent by plant microbial fuel cell (PMFC) technology. Therefore, this review critically explored the challenges associated with PMFC technology and approaches to be employed for making it commercially feasible, started with brief introduction of MFCs, and PMFCs. This review also covered various factors like light intensity, carbon dioxide concentration in air, type of plant used, microbial flora in rhizosphere and also electrode material used which influence the efficiency of PMFC. Finally, this review comprehensively revealed the possibility of future intervention, such as application of biochar and preferable plants species which improve the performance of PMFC along with their opportunities challenges and prospects.
Collapse
Affiliation(s)
- Shrirang Maddalwar
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India
| | - Kush Kumar Nayak
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR- NEERI), Nagpur 440020, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR- NEERI), Nagpur 440020, India.
| |
Collapse
|