1
|
Park D, Jang J, Seo DH, Kim Y, Jang G. Bacillus velezensis GH1-13 enhances drought tolerance in rice by reducing the accumulation of reactive oxygen species. FRONTIERS IN PLANT SCIENCE 2024; 15:1432494. [PMID: 39391772 PMCID: PMC11465243 DOI: 10.3389/fpls.2024.1432494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
Plant growth-promoting rhizobacteria colonize the rhizosphere through dynamic and intricate interactions with plants, thereby providing various benefits and contributing to plant growth. Moreover, increasing evidence suggests that plant growth-promoting rhizobacteria affect plant tolerance to abiotic stress, but the underlying molecular mechanisms remain largely unknown. In this study, we investigated the effect of Bacillus velezensis strain GH1-13 on drought stress tolerance in rice. Phenotypical analysis, including the measurement of chlorophyll content and survival rate, showed that B. velezensis GH1-13 enhances rice tolerance to drought stress. Additionally, visualizing ROS levels and quantifying the expression of ROS-scavenging genes revealed that GH1-13 treatment reduces ROS accumulation under drought stress by activating the expression of antioxidant genes. Furthermore, the GH1-13 treatment stimulated the jasmonic acid response, which is a key phytohormone that mediates plant stress tolerance. Together with the result that jasmonic acid treatment promotes the expression of antioxidant genes, these findings indicate that B. velezensis GH1-13 improves drought tolerance in rice by reducing ROS accumulation and suggest that activation of the jasmonic acid response is deeply involved in this process.
Collapse
Affiliation(s)
- Dongryeol Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jinwoo Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Deok Hyun Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Zhang Q, Wang B, Kong X, Li K, Huang Y, Peng L, Chen L, Liu J, Yu Q, He J, Yang Y, Li X, Wang J. Knockout of cyclase-associated protein CAP1 confers tolerance towards salt and osmotic stress in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153978. [PMID: 37087999 DOI: 10.1016/j.jplph.2023.153978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
As a regulator of actin filament turnover, Arabidopsis thaliana CAP1 plays an important role in plant growth and development. Here, we analyzed the phenotypes of two Arabidopsis cap1 mutants: cap1-1 (a T-DNA insertion mutant) and Cas9-CAP1 (generated by CRISPR-Cas9 gene editing). Phenotypic analysis demonstrated that loss of CAP1 results in defects in seed germination and seedling morphology, with some seedlings exhibiting one or three cotyledons. The cap1-1 mutant took longer than the wild type to complete its life cycle, but its flowering time was normal, indicating that loss of CAP1 prolongs reproductive but not vegetative growth. Moreover, loss of CAP1 severely reduces seed production in self-pollinated plants, due to disruption of pollen tube elongation. RNA-seq and qRT-PCR analyses demonstrated that CAP1 may be involved in osmotic stress responses. Indeed, the cap1-1 mutant showed increased tolerance of salt and mannitol treatment, indicating that CAP1 plays a negative role in osmotic stress tolerance in Arabidopsis. Taken together, our results demonstrate that CAP1 functions not only in plant growth and development, but also in Arabidopsis responses to osmotic stress.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Boya Wang
- Southwest University of Science and Technology, School of Life Science and Engineering, Mianyang, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Kexuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yaling Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Li Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jiajia Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Lu W, Zhao Y, Liu J, Zhou B, Wei G, Ni R, Zhang S, Guo J. Comparative Analysis of Antioxidant System and Salt-Stress Tolerance in Two Hibiscus Cultivars Exposed to NaCl Toxicity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1525. [PMID: 37050151 PMCID: PMC10097027 DOI: 10.3390/plants12071525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Hibiscus (Hibiscus syriacus L.) is known as a horticultural plant of great ornamental and medicinal value. However, the effect of NaCl stress on hibiscus seedlings is unclear. Little is known about H. syriacus 'Duede Brabaul' (DB) and H. syriacus 'Blueberry Smoothie' (BS). Here, the effects of solutions with different concentrations of NaCl on the organic osmolytes, ion accumulation, and antioxidant enzyme activity of hibiscus seedling leaves were determined. The results showed that the Na+/K+ ratio was imbalanced with increasing NaCl concentration, especially in BS (range 34% to 121%), which was more sensitive than DB (range 32% to 187%) under NaCl concentrations of 50 to 200 mM. To cope with the osmotic stress, the content of organic osmolytes increased significantly. Additionally, NaCl stress caused a large increase in O2·- and H2O2, and other reactive oxygen species (ROS), and antioxidant enzyme activity was significantly increased to remove excess ROS. The expression level of genes related to salt tolerance was significantly higher in DB than that in BS under different NaCl concentrations. Taken together, DB possessed a stronger tolerance to salt stress and the results suggest membrane stability, Na+/K+, H2O2, catalase and ascorbate peroxidase as salt tolerance biomarkers that can be used for gene transformation and breeding in future hibiscus research.
Collapse
|
4
|
Jacobs HT, Ballard JWO. What physiological role(s) does the alternative oxidase perform in animals? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148556. [PMID: 35367450 DOI: 10.1016/j.bbabio.2022.148556] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Although the alternative oxidase, AOX, was known to be widespread in the animal kingdom by 2004, its exact physiological role in animals remains poorly understood. Here we present what evidence has accumulated thus far, indicating that it may play a role in enabling animals to resist various kinds of stress, including toxins, abnormal oxygen or nutrient levels, protein unfolding, dessication and pathogen attack. Much of our knowledge comes from studies in model organisms, where any benefits from exogenously expressed AOX may be masked by its unregulated expression, which may itself be stressful. The further question arises as to why AOX has been lost from some major crown groups, namely vertebrates, insects and cephalopods, if it plays important roles favouring the survival of other animals. We conclude by presenting some speculative ideas addressing this question, and an outline of how it might be approached experimentally.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - J William O Ballard
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria 3086, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Oh GGK, O’Leary BM, Signorelli S, Millar AH. Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. PLANT PHYSIOLOGY 2022; 188:1521-1536. [PMID: 34919733 PMCID: PMC8896607 DOI: 10.1093/plphys/kiab578] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 05/24/2023]
Abstract
Proline (Pro) catabolism and reactive oxygen species production have been linked in mammals and Caenorhabditis elegans, while increases in leaf respiration rate follow Pro exposure in plants. Here, we investigated how alternative oxidases (AOXs) of the mitochondrial electron transport chain accommodate the large, atypical flux resulting from Pro catabolism and limit oxidative stress during Pro breakdown in mature Arabidopsis (Arabidopsis thaliana) leaves. Following Pro treatment, AOX1a and AOX1d accumulate at transcript and protein levels, with AOX1d approaching the level of the typically dominant AOX1a isoform. We therefore sought to determine the function of both AOX isoforms under Pro respiring conditions. Oxygen consumption rate measurements in aox1a and aox1d leaves suggested these AOXs can functionally compensate for each other to establish enhanced AOX catalytic capacity in response to Pro. Generation of aox1a.aox1d lines showed complete loss of AOX proteins and activity upon Pro treatment, yet full respiratory induction in response to Pro remained possible via the cytochrome pathway. However, aox1a.aox1d leaves displayed symptoms of elevated oxidative stress and suffered increased oxidative damage during Pro metabolism compared to the wild-type (WT) or the single mutants. During recovery from salt stress, when relatively high rates of Pro catabolism occur naturally, photosynthetic rates in aox1a.aox1d recovered slower than in the WT or the single aox lines, showing that both AOX1a and AOX1d are beneficial for cellular metabolism during Pro drawdown following osmotic stress. This work provides physiological evidence of a beneficial role for AOX1a but also the less studied AOX1d isoform in allowing safe catabolism of alternative respiratory substrates like Pro.
Collapse
Affiliation(s)
- Glenda Guek Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Brendan M O’Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
- Saskatoon Research and Development Centre, Agriculture and Agri-food, Saskatoon, SK S7N 0X2, Canada
| | - Santiago Signorelli
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Uruguay
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|