1
|
Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the potential of titanium dioxide nanoparticles: an insight into green synthesis, optimizations, characterizations, and multifunctional applications. Microb Cell Fact 2024; 23:341. [PMID: 39710687 DOI: 10.1186/s12934-024-02609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO2-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO2-NP synthesis to overcome the disadvantages of traditional approaches. TiO2-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications. Through detailed analysis, this review demonstrates significant applications of green fabricated TiO2-NPs in biomedicine, explicitly highlighting their antimicrobial, anticancer, and antioxidant activities, along with applications in targeted drug delivery, photodynamic therapy, and theragnostic cancer treatment. Additionally, the review underscores their pivotal significance in biosensors, bioimaging, and agricultural applications such as nanopesticides and nanofertilizers. Also, this review proves valuable incorporation of TiO2-NPs in the treatment of contaminated soil and water with various environmental contaminants such as dyes, heavy metals, radionuclides, agricultural effluents, and pathogens. These comprehensive findings establish the foundation for future innovations in nanotechnology, underscoring the importance of further investigating bio-based synthetic approaches and bioactivity mechanisms to enhance their efficacy and safety across healthcare, agricultural, and environmental applications.
Collapse
Affiliation(s)
- Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Waleed M El Kazzaz
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
2
|
Alam MW, Junaid PM, Gulzar Y, Abebe B, Awad M, Quazi SA. Advancing agriculture with functional NM: "pathways to sustainable and smart farming technologies". DISCOVER NANO 2024; 19:197. [PMID: 39636344 PMCID: PMC11621287 DOI: 10.1186/s11671-024-04144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
The integration of nanotechnology in agriculture offers a transformative approach to improving crop yields, resource efficiency, and ecological sustainability. This review highlights the application of functional NM, such as nano-formulated agrochemicals, nanosensors, and slow-release fertilizers, which enhance the effectiveness of fertilizers and pesticides while minimizing environmental impacts. By leveraging the unique properties of NM, agricultural practices can achieve better nutrient absorption, reduced chemical runoff, and improved water conservation. Innovations like nano-priming can enhance seed germination and drought resilience, while nanosensors enable precise monitoring of soil and crop health. Despite the promising commercial potential, significant challenges persist regarding the safety, ecological impact, and regulatory frameworks for nanomaterial use. This review emphasizes the need for comprehensive safety assessments and standardized risk evaluation protocols to ensure the responsible implementation of nanotechnology in agriculture.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia.
| | - Pir Mohammad Junaid
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Yonis Gulzar
- Department of Management Information Systems, College of Business Administration, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Buzuayehu Abebe
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia.
| | - Mohammed Awad
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - S A Quazi
- Bapumiya Sirajoddin Patel Arts, Commerce and Science College, Pimpalgaon Kale, Jalgaon Jamod Dist, Buldhana, Maharashtra, India
| |
Collapse
|
3
|
Thirumurugan NK, Velu G, Murugaiyan S, Maduraimuthu D, Ponnuraj S, D J S, Subramanian KS. Nano-biofertilizers: utilizing nanopolymers as coating matrix-a comprehensive review. Biofabrication 2024; 17:012007. [PMID: 39569883 DOI: 10.1088/1758-5090/ad94a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
In modern agriculture, nanotechnology was recognized as a potentially transformative innovation. Nanopolymers as coating matrix in nano-biofertilizer has a massive impact on agricultural productivity. The integration of nanotechnology with biofertilizers has led to the creation of nano-biofertilizer formulations that enhance nutrient delivery, improve plant growth, and increase resistance to environmental stress. Nanopolymers, both synthetic and biogenic, including chitosan, cellulose, gelatin, sodium alginate, starch, and polyvinyl alcohol, are utilized as encapsulating materials. They are effective in ensuring controlled nutrient release and shielding beneficial microorganisms from external environmental conditions. Studies indicate that nano-biofertilizers improve soil quality, raise crop yields, and reduce the usage of chemical fertilizers to enhance sustainable agricultural practices. The review also addresses the microbial encapsulation methodology, release kinetics, phytotoxicity, challenges and future prospects of nano-biofertilizer technology, including nanoparticle-bacteria interaction, scalability, and regulatory considerations. This paper elaborates the potential and limitations of nano-biofertilizers, providing insights for future advancements in the agriculture field.
Collapse
Affiliation(s)
- Navin Kumar Thirumurugan
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Gomathi Velu
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Senthilkumar Murugaiyan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | | | - Sathyamoorthy Ponnuraj
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Sharmila D J
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - K S Subramanian
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| |
Collapse
|
4
|
Dey A, Sadhukhan A. Molecular mechanisms of plant productivity enhancement by nano fertilizers for sustainable agriculture. PLANT MOLECULAR BIOLOGY 2024; 114:128. [PMID: 39586900 DOI: 10.1007/s11103-024-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Essential plant nutrients encapsulated or combined with nano-dimensional adsorbents define nano fertilizers (NFs). Nanoformulation of non-essential elements enhancing plant growth and stress tolerance also comes under the umbrella of NFs. NFs have an edge over conventional chemical fertilizers, viz., higher plant biomass and yield using much lesser fertilization, thereby reducing environmental pollution. Foliar and root applications of NFs lead to their successful uptake by the plant, depending on the size, surface charge, and other physicochemical properties of NFs. Smaller NFs can pass through channels on the waxy cuticle depending on the hydrophobicity, while larger NFs pass through the stomatal conduits of leaves. Charge-based adsorption, followed by apoplastic movement and endocytosis, translocates NFs through the root, while the size of NFs influences passage into vascular tissues. Recent transcriptomic, proteomic, and metabolomic studies throw light on the molecular mechanisms of growth promotion by NFs. The expression levels of nutrient transporter genes are regulated by NFs, controlling uptake and minimizing excess nutrient toxicity. Accelerated growth by NFs is brought about by their extensive regulation of cell division, photosynthesis, carbohydrate, and nitrogen metabolism, as well as the phytohormone-dependent signaling pathways related to development, stress response, and plant defense. NFs mimic Ca,2+ eliciting second messengers and associated proteins in signaling cascades, reaching transcription factors and finally orchestrating gene expression to enhance growth and stress tolerance. Developing advanced nano fertilizers of the future must involve exploring molecular interactions with plants to reduce toxicity and improve effectiveness.
Collapse
Affiliation(s)
- Arpan Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ayan Sadhukhan
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India.
| |
Collapse
|
5
|
Javaid A, Hameed S, Li L, Zhang Z, Zhang B, -Rahman MU. Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? Funct Integr Genomics 2024; 24:216. [PMID: 39549144 PMCID: PMC11569009 DOI: 10.1007/s10142-024-01485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.
Collapse
Affiliation(s)
- Arzish Javaid
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Sadaf Hameed
- Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Lijie Li
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Zhiyong Zhang
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Mehboob-Ur -Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
6
|
Faizan M, Singh A, Eren A, Sultan H, Sharma M, Djalovic I, Trivan G. Small molecule, big impacts: Nano-nutrients for sustainable agriculture and food security. JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154305. [PMID: 39002339 DOI: 10.1016/j.jplph.2024.154305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Human existence and the long-term viability of society depend on agriculture. Overuse of synthetic fertilizers results in increased contamination of the land, water, and atmosphere as well as financial constraints. In today's modern agriculture, environmentally friendly technology is becoming more and more significant as a substitute for conventional fertilizers and chemical pesticides. Using nanotechnology, agricultural output can be improved in terms of quality, biological support, financial stability, and environmental safety. There is a lot of promise for the sustainable application of nano-fertilizers in crop productivity and soil fertility, with little or no negative environmental effects. In this context, the present review provided an overview of the benefits of using nanofertilizers, its application and types. Mechanistic approach for increasing soil fertility and yield via nanofertilizers also described in detail. We concluded this article to compare the advantages of nanofertilizers over chemicals and nano-chemicals. Nonetheless, additional investigation is required to comprehend the effects and possible hazards of nanomaterials in the food production chain.
Collapse
Affiliation(s)
- Mohammad Faizan
- Department of Botany, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India.
| | - Aishwarya Singh
- School of Applied Sciences, Shri Venkateshwara University, Gajraula, 244236, India; Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India; Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, 110007, India
| | - Abdullah Eren
- Department of Organic Agriculture, Kiziltepe Vocational School, Mardin Artuklu University, Artuklu, Turkey
| | - Haider Sultan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Meenakshi Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000, Novi Sad, Serbia
| | - Goran Trivan
- Institute for Multidisciplinary Research, University of Belgrade, 11030, Belgrade, Serbia
| |
Collapse
|
7
|
Sharma P, Pandey R, Chauhan NS. Unveiling wheat growth promotion potential of phosphate solubilizing Pantoea agglomerans PS1 and PS2 through genomic, physiological, and metagenomic characterizations. Front Microbiol 2024; 15:1467082. [PMID: 39318437 PMCID: PMC11420927 DOI: 10.3389/fmicb.2024.1467082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Phosphorus is an abundant element in the earth's crust and is generally found as complex insoluble conjugates. Plants cannot assimilate insoluble phosphorus and require external supplementation as chemical fertilizers to achieve a good yield. Continuous use of fertilizers has impacted soil ecology, and a sustainable solution is needed to meet plant elemental requirements. Phosphate solubilizing microbes could enhance phosphorus bioavailability for better crop production and can be employed to attain sustainable agriculture practices. Methods The current study unveils the biofertilizer potential of wheat rhizospheric bacteria through physiological, taxonomic, genomic, and microbiomics experimentations. Results and Discussion Culture-dependent exploration identified phosphate-solubilizing PS1 and PS2 strains from the wheat rhizosphere. These isolates were rod-shaped, gram-negative, facultative anaerobic bacteria, having optimum growth at 37°C and pH 7. Phylogenetic and phylogenomic characterization revealed their taxonomic affiliation as Pantoea agglomerans subspecies PS1 & PS2. Both isolates exhibited good tolerance against saline (>10% NaCl (w/v), >11.0% KCl (w/v), and >6.0% LiCl (w/v)), oxidizing (>5.9% H2O2 (v/v)) conditions. PS1 and PS2 genomes harbor gene clusters for biofertilization features, root colonization, and stress tolerance. PS1 and PS2 showed nitrate reduction, phosphate solubilization, auxin production, and carbohydrate utilization properties. Treatment of seeds with PS1 and PS2 significantly enhanced seed germination percentage (p = 0.028 and p = 0.008, respectively), number of tillers (p = 0.0018), number of leaves (p = 0.0001), number of spikes (p = 0.0001) and grain production (p = 0.0001). Wheat rhizosphere microbiota characterizations indicated stable colonization of PS1 and PS2 strains in treated seeds at different feek stages. Pretreatment of seeds with both strains engineered the wheat rhizosphere microbiota by recruiting plant growth-promoting microbial groups. In vitro, In vivo, and microbiota characterization studies indicated the biofertilizer potential of Pantoea sp. PS1 & PS2 to enhance wheat crop production. The employment of these strains could fulfill plant nutrient requirements and be a substitute for chemical fertilizers for sustainable agriculture.
Collapse
Affiliation(s)
- Pinki Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
8
|
Sameer A, Rabia S, Khan AAA, Zaman QU, Hussain A. Combined application of zinc oxide and iron nanoparticles enhanced Red Sails lettuce growth and antioxidants enzymes activities while reducing the chromium uptake by plants grown in a Cr-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1728-1740. [PMID: 38745404 DOI: 10.1080/15226514.2024.2351508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Soil contamination with chromium (Cr) is becoming a primary ecological and health concern, specifically in the Kasur and Sialkot regions of Pakistan. The main objective of the current study was to evaluate the impact of foliar application of zinc oxide nanoparticles (ZnO NPs) (0, 25, 50, 100 mg L-1) and Fe NPs (0, 5, 10, 20 mg L-1) in red sails lettuce plants grown in Cr-contaminated soil. Our results showed that both ZnO and Fe NPs improved plant growth, and photosynthetic attributes by minimizing oxidative stress in lettuce plants through the stimulation of antioxidant enzyme activities. At ZnO NPs (100 mgL-1), dry weights of shoots and roots and fresh weights of shoots and roots were improved by 53%, 58%, 34%, and 45%, respectively, as compared to the respective control plants. The Fe NPs treatment (20 mgL-1) increased the dry weight of shoots and the roots and fresh weights of shoots and roots by 53%, 76%, 42%, and 70%, respectively. Application of both NPs reduced the oxidative stress caused by Cr, as evident by the findings of the current study, i.e., at the ZnO NPs (100 mgL-1) and Fe NPs (20 mgL-1), the EL declined by 32% and 44%, respectively, in comparison with respective control plants. Moreover, Fe and ZnO NPs enhanced the Fe and Zn contents in red sails lettuce plants. Application of ZnO NPs at 100 mg L-1 and Fe NPs at 20 mg L-1, improved the Zn and Fe contents in plant leaves by 86%, and 68%, respectively, as compared to the control plants. This showed that the exogenous application of these NPs helped in Zn and Fe fortification in plants. At similar of concenteration ZnO NPs, CAT and APX activities were improved by 52% and 53%, respectively. Similarly, the POD contents were improved by 17% and 45% at 5 and 10 mg/L of Fe NPs. Furthermore, ZnO and Fe NPs limited the Cr uptake by plants, and the concentration of Cr in the leaves of lettuce was under the threshold limit. The exogenous application of ZnO NPs (100 mg L-1) and Fe NPs (20 mg L-1) reduced the Cr uptake in the leaves of red sails lettuce by 57% and 51%, respectively. In conclusion, ZnO and Fe NPs could be used for the improvement of plant growth and biomass as well as nutrient fortification in stressed environments. These findings not only underscore the efficacy of nanoparticle-assisted phytoremediation but also highlight its broader implications for sustainable agriculture and environmental health. However, future studies on other crops with molecular-level investigations are recommended for the validation of the results.
Collapse
Affiliation(s)
- Alisha Sameer
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | - Sara Rabia
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | | | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | - Afzal Hussain
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
9
|
Vignesh A, Amal TC, Sivalingam R, Selvakumar S, Vasanth K. Unraveling the impact of nanopollution on plant metabolism and ecosystem dynamics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108598. [PMID: 38608503 DOI: 10.1016/j.plaphy.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Nanopollution (NPOs), a burgeoning consequence of the widespread use of nanoparticles (NPs) across diverse industrial and consumer domains, has emerged as a critical environmental issue. While extensive research has scrutinized the repercussions of NPs pollution on ecosystems and human health, scant attention has been directed towards unraveling its implications for plant life. This comprehensive review aims to bridge this gap by delving into the nuanced interplay between NPOs and plant metabolism, encompassing both primary and secondary processes. Our exploration encompasses an in-depth analysis of the intricate mechanisms governing the interaction between plants and NPs. This involves a thorough examination of how physicochemical properties such as size, shape, and surface characteristics influence the uptake and translocation of NPs within plant tissues. The impact of NPOs on primary metabolic processes, including photosynthesis, respiration, nutrient uptake, and water transport. Additionally, this study explored the multifaceted alterations in secondary metabolism, shedding light on the synthesis and modulation of secondary metabolites in response to NPs exposure. In assessing the consequences of NPOs for plant life, we scrutinize the potential implications for plant growth, development, and environmental interactions. The intricate relationships revealed in this review underscore the need for a holistic understanding of the plant-NPs dynamics. As NPs become increasingly prevalent in ecosystems, this investigation establishes a fundamental guide that underscores the importance of additional research to shape sustainable environmental management strategies and address the extensive effects of NPs on the development of plant life and environmental interactions.
Collapse
Affiliation(s)
- Arumugam Vignesh
- Department of Botany, Nallamuthu Gounder Mahalingam College (Autonomous), Bharathiar University (Affiliated), Pollachi, 642 001, Tamil Nadu, India
| | - Thomas Cheeran Amal
- ICAR - Central Institute for Cotton Research, RS, Coimbatore, 641 003, Tamil Nadu, India
| | | | - Subramaniam Selvakumar
- Department of Biochemistry, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
10
|
Vaidya S, Deng C, Wang Y, Zuverza-Mena N, Dimkpa C, White JC. Nanotechnology in agriculture: A solution to global food insecurity in a changing climate? NANOIMPACT 2024; 34:100502. [PMID: 38508516 DOI: 10.1016/j.impact.2024.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Although the Green Revolution dramatically increased food production, it led to non- sustainable conventional agricultural practices, with productivity in general declining over the last few decades. Maintaining food security with a world population exceeding 9 billion in 2050, a changing climate, and declining arable land will be exceptionally challenging. In fact, nothing short of a revolution in how we grow, distribute, store, and consume food is needed. In the last ten years, the field of nanotoxicology in plant systems has largely transitioned to one of sustainable nano-enabled applications, with recent discoveries on the use of this advanced technology in agriculture showing tremendous promise. The range of applications is quite extensive, including direct application of nanoscale nutrients for improved plant health, nutrient biofortification, increased photosynthetic output, and greater rates of nitrogen fixation. Other applications include nano-facilitated delivery of both fertilizers and pesticides; nano-enabled delivery of genetic material for gene silencing against viral pathogens and insect pests; and nanoscale sensors to support precision agriculture. Recent efforts have demonstrated that nanoscale strategies increase tolerance to both abiotic and biotic stressors, offering realistic potential to generate climate resilient crops. Considering the efficiency of nanoscale materials, there is a need to make their production more economical, alongside efficient use of incumbent resources such as water and energy. The hallmark of many of these approaches involves much greater impact with far less input of material. However, demonstrations of efficacy at field scale are still insufficient in the literature, and a thorough understanding of mechanisms of action is both necessary and often not evident. Although nanotechnology holds great promise for combating global food insecurity, there are far more ways to do this poorly than safely and effectively. This review summarizes recent work in this space, calling out existing knowledge gaps and suggesting strategies to alleviate those concerns to advance the field of sustainable nano-enabled agriculture.
Collapse
Affiliation(s)
- Shital Vaidya
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Chaoyi Deng
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Yi Wang
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Nubia Zuverza-Mena
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Christian Dimkpa
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Jason C White
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States.
| |
Collapse
|
11
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
12
|
Sundararajan N, Habeebsheriff HS, Dhanabalan K, Cong VH, Wong LS, Rajamani R, Dhar BK. Mitigating Global Challenges: Harnessing Green Synthesized Nanomaterials for Sustainable Crop Production Systems. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300187. [PMID: 38223890 PMCID: PMC10784203 DOI: 10.1002/gch2.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Green nanotechnology, an emerging field, offers economic and social benefits while minimizing environmental impact. Nanoparticles, pivotal in medicine, pharmaceuticals, and agriculture, are now sourced from green plants and microorganisms, overcoming limitations of chemically synthesized ones. In agriculture, these green-made nanoparticles find use in fertilizers, insecticides, pesticides, and fungicides. Nanofertilizers curtail mineral losses, bolster yields, and foster agricultural progress. Their biological production, preferred for environmental friendliness and high purity, is cost-effective and efficient. Biosensors aid early disease detection, ensuring food security and sustainable farming by reducing excessive pesticide use. This eco-friendly approach harnesses natural phytochemicals to boost crop productivity. This review highlights recent strides in green nanotechnology, showcasing how green-synthesized nanomaterials elevate crop quality, combat plant pathogens, and manage diseases and stress. These advancements pave the way for sustainable crop production systems in the future.
Collapse
Affiliation(s)
| | | | | | - Vo Huu Cong
- Faculty of Natural Resources and EnvironmentVietnam National University of AgricultureTrau QuyGia LamHanoi10766Vietnam
| | - Ling Shing Wong
- Faculty of Health and Life SciencesINTI International UniversityPersiaran Perdana BBNPutra NilaiNilaiNegeri Sembilan71800Malaysia
| | | | - Bablu Kumar Dhar
- Business Administration DivisionMahidol University International CollegeMohidol UniversitySalaaya73170Thailand
- Faculty of Business AdministrationDaffodil International UniversityDhaka1216Bangladesh
| |
Collapse
|
13
|
Umair M, Huma Zafar S, Cheema M, Usman M. New insights into the environmental application of hybrid nanoparticles in metal contaminated agroecosystem: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119553. [PMID: 37976639 DOI: 10.1016/j.jenvman.2023.119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Heavy metals (HMs) contamination in agricultural soils is a major constraint to provide safe food to society. Cultivation of food crops on these soils, channels the HMs into the food chain and causes serious human health and socioeconomic problems. Multiple conventional and non-conventional remedial options are already in practice with variable success rates, but nanotechnology has proved its success due to higher efficiency. It also led the hypothesis to use hybrid nanoparticles (HNPs) with extended benefits to remediate the HMs and supplement nutrients to enhance the crop yield in the contaminated environments. Hybrid nanoparticles are defined as exclusive chemical conjugates of inorganic and/or organic nanomaterials that are combinations of two or more organic components, two or more inorganic components, or at least one of both types of components. HNPs of different elements like essential nutrients, beneficial nutrients and carbon-based nanoparticles are used for the remediation of metals contaminated soil and the production of metal free crops. Characterizing features of HNPs including particle size, surface area, reactivity, and solubility affect the efficacy of these HNPs in the contaminated environment. Hybrid nanoparticles have great potential to remove the HMs ions from soil solution and restrict their ingress into the root tissues. Furthermore, HNPs of essential nutrients not only compete with heavy metal uptake by plants but also fulfill the need of nutrients. This review provides a comprehensive overview of the challenges associated with application of HNPs in contaminated soils, environmental implications, their remediation ability, and factors affecting their dynamics in environmental matrices.
Collapse
Affiliation(s)
- Muhammad Umair
- Agricultural Research Station, Bahawalpur, 63100, Punjab, Pakistan; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Sehrish Huma Zafar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada.
| | - Muhammad Usman
- College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
14
|
Hyder S, Ul-Nisa M, Shahzadi, Shahid H, Gohar F, Gondal AS, Riaz N, Younas A, Santos-Villalobos SDL, Montoya-Martínez AC, Sehar A, Latif F, Rizvi ZF, Iqbal R. Recent trends and perspectives in the application of metal and metal oxide nanomaterials for sustainable agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107960. [PMID: 37591032 DOI: 10.1016/j.plaphy.2023.107960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Sustainable ecosystem management leads to the use of eco-friendly agricultural techniques for crop production. One of them is the use of metal and metal oxide nanomaterials and nanoparticles, which have proven to be a valuable option for the improvement of agricultural food systems. Moreover, the biological synthesis of these nanoparticles, from plants, bacteria, and fungi, also contributes to their eco-friendly and sustainable characteristics. Nanoparticles, which vary in size from 1 to 100 nm have a variety of mechanisms that are safer and more efficient than conventional fertilizers. Their usage as fertilizers and insecticides in agriculture is gaining favor in the scientific community to maximize crop output. More studies in this field will increase our understanding of this new technology and its broad acceptance in terms of performance, affordability, and environmental protection, as certain nanoparticles may outperform conventional fertilizers and insecticides. Accordingly, to the information gathered in this review, nanoparticles show remarkable potential for enhancing crop production, improving soil quality, and protecting the environment, however, metal and metal oxide NPs are not widely employed in agriculture. Many features of nanoparticles are yet left over, and it is necessary to uncover them. In this sense, this review article provides an overview of various types of metal and metal oxide nanoparticles used in agriculture, their characterization and synthesis, the recent research on them, and their possible application for the improvement of crop productivity in a sustainable manner.
Collapse
Affiliation(s)
- Sajjad Hyder
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Mushfaq Ul-Nisa
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Shahzadi
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Humaira Shahid
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Faryal Gohar
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Amjad Shahzad Gondal
- Department of Plant Pathology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Nadia Riaz
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan.
| | | | - Amelia C Montoya-Martínez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, SO, Mexico.
| | - Anam Sehar
- Student Affairs and Counselling Office, Lahore Garrison University, DHA Phase VI, Lahore, Pakistan.
| | - Fariha Latif
- Institute of Zoology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
15
|
Garg D, Sridhar K, Stephen Inbaraj B, Chawla P, Tripathi M, Sharma M. Nano-Biofertilizer Formulations for Agriculture: A Systematic Review on Recent Advances and Prospective Applications. Bioengineering (Basel) 2023; 10:1010. [PMID: 37760112 PMCID: PMC10525541 DOI: 10.3390/bioengineering10091010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
In the twenty-first century, nanotechnology has emerged as a potentially game-changing innovation. Essential minerals are mostly unavailable in modern cropping systems without the application of synthetic fertilizers, which have a serious negative impact on the ecosystem. This review focuses on the coupling of nanoparticles with biofertilizers to function as nano-biofertilizers (NBFs), which may ensure world food security in the face of the rising population. The inoculation of plants with NBFs improves plant development and resistance to stress. Metallic nanoparticles as well as organic components comprising polysaccharide and chitosan may be encapsulated, utilizing microbe-based green synthesis to make NBFs, which circumvents the limitations of conventional chemical fertilizers. The application of NBFs is just getting started, and shows more promise than other approaches for changing conventional farming into high-tech "smart" farming. This study used bibliographic analysis using Web of Science to find relevant papers on "nano biofertilizers", "plants", and "agriculture". These subjects have received a lot of attention in the literature, as shown by the co-citation patterns of these publications. The novel use of nanotechnology in agriculture is explored in this research work, which makes use of the unique characteristics of nanoscale materials to address urgent concerns including nutrient delivery, crop protection, and sustainable farming methods. This study attempts to fill in some of the gaps in our knowledge by discussing the formulation, fabrication, and characterization of NBFs, as well as elucidating the mechanisms by which NBFs interact with plants and how this benefits the ability of the plant to withstand biotic and abiotic stress brought about by climate change. This review also addresses recent developments and future directions in farming using NBF formulations in the field.
Collapse
Affiliation(s)
- Diksha Garg
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | | |
Collapse
|
16
|
Khan F, Siddique AB, Shabala S, Zhou M, Zhao C. Phosphorus Plays Key Roles in Regulating Plants' Physiological Responses to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2861. [PMID: 37571014 PMCID: PMC10421280 DOI: 10.3390/plants12152861] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Phosphorus (P), an essential macronutrient, plays a pivotal role in the growth and development of plants. However, the limited availability of phosphorus in soil presents significant challenges for crop productivity, especially when plants are subjected to abiotic stresses such as drought, salinity and extreme temperatures. Unraveling the intricate mechanisms through which phosphorus participates in the physiological responses of plants to abiotic stresses is essential to ensure the sustainability of agricultural production systems. This review aims to analyze the influence of phosphorus supply on various aspects of plant growth and plant development under hostile environmental conditions, with a special emphasis on stomatal development and operation. Furthermore, we discuss recently discovered genes associated with P-dependent stress regulation and evaluate the feasibility of implementing P-based agricultural practices to mitigate the adverse effects of abiotic stress. Our objective is to provide molecular and physiological insights into the role of P in regulating plants' tolerance to abiotic stresses, underscoring the significance of efficient P use strategies for agricultural sustainability. The potential benefits and limitations of P-based strategies and future research directions are also discussed.
Collapse
Affiliation(s)
- Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| | - Abu Bakar Siddique
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia;
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| |
Collapse
|
17
|
Miteu GD, Emmanuel AA, Addeh I, Ojeokun O, Olayinka T, Godwin JS, Adeyemo OI, Benneth EO. Nanoscience and technology as a pivot for sustainable agriculture and its One Health approach awareness. SCIENCE IN ONE HEALTH 2023; 2:100020. [PMID: 39077037 PMCID: PMC11262274 DOI: 10.1016/j.soh.2023.100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2024]
Abstract
Nanoscience and technology have shown promise in revitalizing the agricultural sector and industries. This tool has gained the interest of many researchers as it can be utilized to drive sustainable agriculture by suggesting long-lasting solutions to different problems in the agricultural space. However, there is a paucity of data on its health implications for the environment, plants, animals, and humans. This review evaluated the cost-effectiveness and productivity of nanoscience and technologies. The review highlighted the underlying health implications of nanoscience and technology from a One Health perspective.
Collapse
Affiliation(s)
- Goshen David Miteu
- Food and Agricultural Technology Unit, Pan African Research Group, FAT-PARG, Nigeria
| | | | - Irenosen Addeh
- Food and Agricultural Technology Unit, Pan African Research Group, FAT-PARG, Nigeria
| | - Olayemi Ojeokun
- Food and Agricultural Technology Unit, Pan African Research Group, FAT-PARG, Nigeria
| | - Temidayo Olayinka
- Food and Agricultural Technology Unit, Pan African Research Group, FAT-PARG, Nigeria
| | - James Sunday Godwin
- Food and Agricultural Technology Unit, Pan African Research Group, FAT-PARG, Nigeria
| | | | | |
Collapse
|
18
|
Yadav A, Yadav K, Abd-Elsalam KA. Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. AGROCHEMICALS 2023; 2:296-336. [DOI: 10.3390/agrochemicals2020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In an alarming tale of agricultural excess, the relentless overuse of chemical fertilizers in modern farming methods have wreaked havoc on the once-fertile soil, mercilessly depleting its vital nutrients while inflicting irreparable harm on the delicate balance of the surrounding ecosystem. The excessive use of such fertilizers leaves residue on agricultural products, pollutes the environment, upsets agrarian ecosystems, and lowers soil quality. Furthermore, a significant proportion of the nutrient content, including nitrogen, phosphorus, and potassium, is lost from the soil (50–70%) before being utilized. Nanofertilizers, on the other hand, use nanoparticles to control the release of nutrients, making them more efficient and cost-effective than traditional fertilizers. Nanofertilizers comprise one or more plant nutrients within nanoparticles where at least 50% of the particles are smaller than 100 nanometers. Carbon nanotubes, graphene, and quantum dots are some examples of the types of nanomaterials used in the production of nanofertilizers. Nanofertilizers are a new generation of fertilizers that utilize advanced nanotechnology to provide an efficient and sustainable method of fertilizing crops. They are designed to deliver plant nutrients in a controlled manner, ensuring that the nutrients are gradually released over an extended period, thus providing a steady supply of essential elements to the plants. The controlled-release system is more efficient than traditional fertilizers, as it reduces the need for frequent application and the amount of fertilizer. These nanomaterials have a high surface area-to-volume ratio, making them ideal for holding and releasing nutrients. Naturally occurring nanoparticles are found in various sources, including volcanic ash, ocean, and biological matter such as viruses and dust. However, regarding large-scale production, relying solely on naturally occurring nanoparticles may not be sufficient or practical. In agriculture, nanotechnology has been primarily used to increase crop production while minimizing losses and activating plant defense mechanisms against pests, insects, and other environmental challenges. Furthermore, nanofertilizers can reduce runoff and nutrient leaching into the environment, improving environmental sustainability. They can also improve fertilizer use efficiency, leading to higher crop yields and reducing the overall cost of fertilizer application. Nanofertilizers are especially beneficial in areas where traditional fertilizers are inefficient or ineffective. Nanofertilizers can provide a more efficient and cost-effective way to fertilize crops while reducing the environmental impact of fertilizer application. They are the product of promising new technology that can help to meet the increasing demand for food and improve agricultural sustainability. Currently, nanofertilizers face limitations, including higher costs of production and potential environmental and safety concerns due to the use of nanomaterials, while further research is needed to fully understand their long-term effects on soil health, crop growth, and the environment.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, District Banaskantha, Gujarat 385506, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
19
|
Nongbet A, Mishra AK, Mohanta YK, Mahanta S, Ray MK, Khan M, Baek KH, Chakrabartty I. Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192587. [PMID: 36235454 PMCID: PMC9573764 DOI: 10.3390/plants11192587] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 05/27/2023]
Abstract
The widespread use of fertilizers is a result of the increased global demand for food. The commonly used chemical fertilizers may increase plant growth and output, but they have deleterious effects on the soil, the environment, and even human health. Therefore, nanofertilizers are one of the most promising solutions or substitutes for conventional fertilizers. These engineered materials are composed of nanoparticles containing macro- and micronutrients that are delivered to the plant rhizosphere in a regulated manner. In nanofertilizers, the essential minerals and nutrients (such as N, P, K, Fe, and Mn) are bonded alone or in combination with nano-dimensional adsorbents. This review discusses the development of nanotechnology-based smart and efficient agriculture using nanofertilizers that have higher nutritional management, owing to their ability to increase the nutrient uptake efficiency. Additionally, the synthesis and mechanism of action of the nanofertilizers are discussed, along with the different types of fertilizers that are currently available. Furthermore, sustainable agriculture can be realised by the targeted delivery and controlled release of nutrients through the application of nanoscale active substances. This paper emphasises the successful development and safe application of nanotechnology in agriculture; however, certain basic concerns and existing gaps in research need to be addressed and resolved.
Collapse
Affiliation(s)
- Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati 781008, Assam, India
| | - Manjit Kumar Ray
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Maryam Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| |
Collapse
|
20
|
Hydrogel Application in Urban Farming: Potentials and Limitations—A Review. Polymers (Basel) 2022; 14:polym14132590. [PMID: 35808635 PMCID: PMC9268874 DOI: 10.3390/polym14132590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Urban agriculture plays a vital role in ensuring the self-sufficiency of a great variety of fresh vegetables and nutrients. It promotes a sustainable food system as well as reducing the dependency on imports for the growing population. Urban farming has made it possible for agriculture practices to be implemented anywhere at any time in a sophisticated way. Hydrogel has been introduced in urban agriculture in the past few decades. However, the application of hydrogel in urban agriculture is still being explored in terms of hydrogel types, structure, physical and chemical properties, change due to external factors, and its suitability for different plant species. This review discusses the potentials and limitations of hydrogel in different application conditions. We present the state of knowledge on hydrogel production and crosslinking methods, hydrogel characteristics, water absorption and release mechanisms of hydrogel, hydrogel advantages and limitations, and current and future applications in urban farming.
Collapse
|
21
|
Can Nanofertilizers Mitigate Multiple Environmental Stresses for Higher Crop Productivity? SUSTAINABILITY 2022. [DOI: 10.3390/su14063480] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The global food production for the worldwide population mainly depends on the huge contributions of the agricultural sector. The cultivated crops of foods need various elements or nutrients to complete their growth, and these are indirectly consumed by humans. During this production, several environmental constraints or stresses may cause losses in the global agricultural production. These obstacles may include abiotic and biotic stresses, which have already been studied in both individual and combined cases. However, there are very few studies on multiple stresses. On the basis of the myriad benefits of nanotechnology in agriculture, nanofertilizers (or nanonutrients) have become promising tools for agricultural sustainability. Nanofertilizers are also the proper solution to overcoming the environmental and health problems that can result from conventional fertilizers. The role of nanofertilizers has increased, especially under different environmental stresses, which can include individual, combined, and multiple stresses. The stresses are most commonly the result of nature; however, studies are still needed on the different stress levels. Nanofertilizers can play a crucial role in supporting cultivated plants under stress and in improving the plant yield, both quantitatively and qualitatively. Similar to other biological issues, many open-ended questions still require further investigation: Is the right time and era for nanofertilizers in agriculture? Will the nanofertilizers be the dominant source of nutrients in modern agriculture? Are nanofertilizers, and particularly biological synthesized ones, the magic solution for sustainable agriculture? What are the expected damages of multiple stresses on plants?
Collapse
|
22
|
Genotoxic Evaluation of Fe 3O 4 Nanoparticles in Different Three Barley ( Hordeum vulgare L.) Genotypes to Explore the Stress-Resistant Molecules. Molecules 2021; 26:molecules26216710. [PMID: 34771116 PMCID: PMC8587113 DOI: 10.3390/molecules26216710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Sustainable agricultural practices are still essential due to soil degradation and crop losses. Recently, the relationship between plants and nanoparticles (NPs) attracted scientists’ attention, especially for applications in agricultural production as nanonutrition. Therefore, the present research was carried out to investigate the effect of Fe3O4 NPs at low concentrations (0, 1, 10, and 20 mg/L) on three genotypes of barley (Hordeum vulgare L.) seedlings grown in hydroponic conditions. Significant increases in seedling growth, enhanced chlorophyll quality and quantity, and two miRNA expression levels were observed. Additionally, increased genotoxicity was observed in seedlings grown with NPs. Generally, Fe3O4 NPs at low concentrations could be successfully used as nanonutrition for increasing barley photosynthetic efficiency with consequently enhanced yield. These results are important for a better understanding of the potential impact of Fe3O4 NPs at low concentrations in agricultural crops and the potential of these NPs as nanonutrition for barley growth and yield enhancement. Future studies are needed to investigate the effect of these NPs on the expression of resistance-related genes and chlorophyll synthesis-related gene expression in treated barley seedlings.
Collapse
|
23
|
Khan MK, Pandey A, Hamurcu M, Gezgin S, Athar T, Rajput VD, Gupta OP, Minkina T. Insight into the Prospects for Nanotechnology in Wheat Biofortification. BIOLOGY 2021; 10:biology10111123. [PMID: 34827116 PMCID: PMC8614867 DOI: 10.3390/biology10111123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
Simple Summary Wheat is a major crop consumed by a large population of the world. Hence, increasing its nutritional value can largely handle the malnutrition issues of the growing population. In the past few decades, different biofortification techniques including conventional breeding, transgenic approach, and agronomic biofortification have been largely employed for increasing the nutrient content in wheat grains. However, all of these techniques have their own drawbacks such as environmental hazards, long time requirement, reduced acceptability etc. Thus, nanobiofortification of wheat crop has gained interest as an efficient alternative strategy to achieve nutritional gains. However, there is still a long way forward to effectively utilize nanotechnology for wheat nutritional development. In this scenario, a review on the current advancement in wheat nanobiofortification is highly required so that the lacking points in this research area can be identified and accomplished. However, such a review article has been missing so far. This review describes the progress in the use of nanomaterials for wheat biofortification till date. It will help the scientific community to identify the lack in this research area and widely implement the nanotechnology to biofortify wheat crops. Abstract The deficiency of nutrients in food crops is a major issue affecting the health of human beings, mainly in underdeveloped areas. Despite the development in the methods of food fortification, several barriers such as lack of proper regulations and smaller public-private partnerships hinder its successful implementation in society. Consequently, genetic and agronomic biofortification has been suggested as the potential techniques for fortifying the nutrients in diets. However, the time-consuming nature and restricted available diversity in the targeted crop gene pool limit the benefits of genetic biofortification. In agronomic biofortification, organic fertilizers face the problem of prolonged duration of nutrients release and lesser content of minerals; while in inorganic fertilizers, the large-sized fertilizers (greater than 100 nm) suffer from volatilization and leaching losses. The application of nanotechnology in agriculture holds enormous potential to cope with these challenges. The utility of nanomaterials for wheat biofortification gains its importance by supplying the appropriate dose of fertilizer at the appropriate time diminishing the environmental concerns and smoothening the process of nutrient uptake and absorption. Wheat is a major crop whose nano-biofortification can largely handle the issue of malnutrition and nutrients deficiency in human beings. Though several research experiments have been conducted at small levels to see the effects of nano-biofortification on wheat plants, a review article providing an overview of such studies and summarizing the benefits and outcomes of wheat nano-biofortification is still lacking. Although a number of review articles are available on the role of nanotechnology in wheat crop, these are mostly focused on the role of nanoparticles in alleviating biotic and abiotic stress conditions in wheat. None of them focused on the prospects of nanotechnology for wheat biofortification. Hence, in this review for the first time, the current advancement in the employment of different nanotechnology-based approaches for wheat biofortification has been outlined. Different strategies including the supply of nano-based macro- and micronutrients that have shown promising results for wheat improvement have been discussed in detail. Understanding several aspects related to the safe usage of nanomaterials and their future perspectives may enhance their successful utilization in terms of economy and fulfillment of nutritional requirements following wheat nano-biofortification.
Collapse
Affiliation(s)
- Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey; (M.H.); (S.G.)
- Correspondence: or (M.K.K.); or (A.P.); Tel.: +90-33222332934 (M.K.K. & A.P.)
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey; (M.H.); (S.G.)
- Correspondence: or (M.K.K.); or (A.P.); Tel.: +90-33222332934 (M.K.K. & A.P.)
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey; (M.H.); (S.G.)
| | - Sait Gezgin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey; (M.H.); (S.G.)
| | - Tabinda Athar
- Faculty of Agriculture, Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| |
Collapse
|