1
|
Ugwuoji ET, Eze IS, Nwagu TNT, Ezeogu LI. Enhancement of stability and activity of RSD amylase from Paenibacillus lactis OPSA3 for biotechnological applications by covalent immobilization on green silver nanoparticles. Int J Biol Macromol 2024; 279:135132. [PMID: 39208879 DOI: 10.1016/j.ijbiomac.2024.135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The key challenge to the biotechnological applications of amylases is achieving high activity and stability under extreme pH, temperature and often high levels of enzyme denaturants. This study immobilized a novel raw starch-digesting (RSD) amylase from Paenibacillus lactis OPSA3 on glutaraldehyde-activated silver nanoparticles. Effects of time, glutaraldehyde concentration, pH, temperature, and enzyme concentration on immobilization were studied, and the immobilized enzymes were characterized. pH 9.0 was optimum for the enzyme immobilization. The maximum immobilization efficiency of 82.23 ± 7.99 % was achieved at 25 °C for 120 min. After immobilization, the optimum pH and temperature changed from 9.0 to 11.0 and 60 to 70, respectively. Immobilization reduced the amylase's activation energy (KJ/mol) from the initial 58.862 to 45.449 following immobilization. The Km of the amylase decreased after immobilization, while the Vmax increased. The immobilized amylase showed significantly greater storage and thermal stability than the free amylase. At 80, enzyme half-life (min) and D value (min) increased from 12.33 to 179.11 and 40.94 to 594.98, respectively. The immobilized amylase (80-88 %) had more stability to the effects of the studied surfactants than the free enzyme. It also showed improved stability in the presence of commercial detergents compared to the free enzyme. The amylase's enhanced kinetic parameters and stability following successful immobilization on silver nanoparticles indicate its potential for application in the range of biotechnological processes where alkaline- and temperature-stable amylases are employed.
Collapse
Affiliation(s)
- Emmanuel Tobechukwu Ugwuoji
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria; Department of Biology, Baylor University, Waco, TX, USA; Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ifeanyi S Eze
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Tochukwu Nwamaka T Nwagu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Lewis Iheanacho Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; UNESCO International Centre for Biotechnology, Nsukka, Nigeria.
| |
Collapse
|
2
|
Di Z, Qi Y, Yu XX, Li HR, Zuo MX, Ren TT, Li CP, Zhao Y. Facile and scale-up syntheses of high-performance enzyme@meso-HOF biocatalysts. Chem Sci 2024:d4sc04619f. [PMID: 39355226 PMCID: PMC11440381 DOI: 10.1039/d4sc04619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Facile immobilization is essential for the wide application of enzymes in large-scale catalytic processes. However, exploration of suitable enzyme supports poses an unmet challenge, particularly in the context of scale-up biocatalyst fabrication. In this study, we present facile and scale-up syntheses of high-performance enzyme biocatalysts via in situ encapsulation of cytochrome c (Cyt-c) as mono-enzyme and glucose oxidase (GOx)-horseradish peroxidase (HRP) as dual-enzyme cascade (GOx&HRP) systems, respectively, into a stable mesoporous hydrogen-bonded organic framework (meso-HOF) matrix. In situ encapsulation reactions occur under ambient conditions, and facilitate scale up (∼3 g per reaction) of enzyme@meso-HOF within a very short period (5-10 min). The resultant biocatalysts not only exhibit high enzyme loading (37.9 wt% for mono-enzyme and 22.8 wt% for dual-enzyme) with minimal leaching, but also demonstrate high catalytic activity, superior reusability, and durability. This study represents an example of scale-up fabrication of enzyme@meso-HOF biocatalysts on the gram level and highlights superior meso-HOFs as suitable host matrices for biomolecular entities.
Collapse
Affiliation(s)
- Zhengyi Di
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Yu Qi
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Xin-Xin Yu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Hai-Ruo Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Meng-Xuan Zuo
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Tian-Tian Ren
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Cheng-Peng Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University Tianjin 300387 China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
3
|
Abdalbagemohammedabdalsadeg S, Xiao BL, Ma XX, Li YY, Wei JS, Moosavi-Movahedi AA, Yousefi R, Hong J. Catalase immobilization: Current knowledge, key insights, applications, and future prospects - A review. Int J Biol Macromol 2024; 276:133941. [PMID: 39032907 DOI: 10.1016/j.ijbiomac.2024.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.
Collapse
Affiliation(s)
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Yang-Yang Li
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Jian-She Wei
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, 1417614418 Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, 475000 Kaifeng, China.
| |
Collapse
|
4
|
Wehn AC, Krestel E, Harapan BN, Klymchenko A, Plesnila N, Khalin I. To see or not to see: In vivo nanocarrier detection methods in the brain and their challenges. J Control Release 2024; 371:216-236. [PMID: 38810705 DOI: 10.1016/j.jconrel.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution. This review aims to provide a comprehensive summary of the current knowledge on detection systems for tracking nanoparticles across the blood-brain barrier and within the brain. We discuss commonly employed in vivo and ex vivo nanoparticle identification and quantification methods, as well as various imaging modalities able to detect nanoparticles in the brain. Advantages and weaknesses of these modalities as well as the biological factors that must be considered when interpreting results obtained through nanotechnologies are summarized. Finally, we critically evaluate the prevailing limitations of existing technologies and explore potential solutions.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany.
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin - CS 60024, 67401 Illkirch Cedex, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14 074 Bd Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
5
|
Sakthivel S, Muthusamy K, Thangarajan AP, Thiruvengadam M, Venkidasamy B. Nano-based biofuel production from low-cost lignocellulose biomass: environmental sustainability and economic approach. Bioprocess Biosyst Eng 2024; 47:971-990. [PMID: 38554183 DOI: 10.1007/s00449-024-03005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024]
Abstract
The use of nanomaterials in biofuel production from lignocellulosic biomass offers a promising approach to simultaneously address environmental sustainability and economic viability. This review provides an overview of the environmental and economic implications of integrating nanotechnology into biofuel production from low-cost lignocellulosic biomass. In this review, we highlight the potential benefits and challenges of nano-based biofuel production. Nanomaterials provide opportunities to improve feedstock pretreatment, enzymatic hydrolysis, fermentation, and catalysis, resulting in enhanced process efficiency, lower energy consumption, and reduced environmental impact. Conducting life cycle assessments is crucial for evaluating the overall environmental footprint of biofuel production. An economic perspective that focuses on the cost implications of utilizing nanomaterials in biofuel production is also discussed. A comprehensive understanding of both environmental and economic dimensions is essential to fully harness the potential of nanomaterials in biofuel production from lignocellulosic biomass and to move towards sustainable future energy.
Collapse
Affiliation(s)
- Selvakumar Sakthivel
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, 629502, Tamil Nadu, India
| | - Kanthimathi Muthusamy
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tamil Nadu, India
| | | | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, Republic of Korea
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
6
|
Bilal M, Degorska O, Szada D, Rybarczyk A, Zdarta A, Kaplon M, Zdarta J, Jesionowski T. Support Materials of Organic and Inorganic Origin as Platforms for Horseradish Peroxidase Immobilization: Comparison Study for High Stability and Activity Recovery. Molecules 2024; 29:710. [PMID: 38338454 PMCID: PMC10856027 DOI: 10.3390/molecules29030710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
In the presented study, a variety of hybrid and single nanomaterials of various origins were tested as novel platforms for horseradish peroxidase immobilization. A thorough characterization was performed to establish the suitability of the support materials for immobilization, as well as the activity and stability retention of the biocatalysts, which were analyzed and discussed. The physicochemical characterization of the obtained systems proved successful enzyme deposition on all the presented materials. The immobilization of horseradish peroxidase on all the tested supports occurred with an efficiency above 70%. However, for multi-walled carbon nanotubes and hybrids made of chitosan, magnetic nanoparticles, and selenium ions, it reached up to 90%. For these materials, the immobilization yield exceeded 80%, resulting in high amounts of immobilized enzymes. The produced system showed the same optimal pH and temperature conditions as free enzymes; however, over a wider range of conditions, the immobilized enzymes showed activity of over 50%. Finally, a reusability study and storage stability tests showed that horseradish peroxidase immobilized on a hybrid made of chitosan, magnetic nanoparticles, and selenium ions retained around 80% of its initial activity after 10 repeated catalytic cycles and after 20 days of storage. Of all the tested materials, the most favorable for immobilization was the above-mentioned chitosan-based hybrid material. The selenium additive present in the discussed material gives it supplementary properties that increase the immobilization yield of the enzyme and improve enzyme stability. The obtained results confirm the applicability of these nanomaterials as useful platforms for enzyme immobilization in the contemplation of the structural stability of an enzyme and the high catalytic activity of fabricated biocatalysts.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12, PL-80233 Gdansk, Poland
- Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza, PL-80233 Gdansk, Poland
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Oliwia Degorska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Daria Szada
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Michal Kaplon
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| |
Collapse
|
7
|
Bilal M, Singh AK, Iqbal HMN, Zdarta J, Chrobok A, Jesionowski T. Enzyme-linked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants. ENVIRONMENTAL RESEARCH 2024; 241:117579. [PMID: 37944691 DOI: 10.1016/j.envres.2023.117579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
A wide array of organic compounds have been recognized as pollutants of high concern due to their controlled or uncontrolled presence in environmental matrices. The persistent prevalence of diverse organic pollutants, including pharmaceutical compounds, phenolic compounds, synthetic dyes, and other hazardous substances, necessitates robust measures for their practical and sustainable removal from water bodies. Several bioremediation and biodegradation methods have been invented and deployed, with a wide range of materials well-suited for diverse environments. Enzyme-linked carbon-based materials have been considered efficient biocatalytic platforms for the remediation of complex organic pollutants, mostly showing over 80% removal efficiency of micropollutants. The advantages of enzyme-linked carbon nanotubes (CNTs) in enzyme immobilization and improved catalytic potential may thus be advantageous for environmental research considering the current need for pollutant removal. This review outlines the perspective of current remediation approaches and highlights the advantageous features of enzyme-linked CNTs in the removal of pollutants, emphasizing their reusability and stability aspects. Furthermore, different applications of enzyme-linked CNTs in environmental research with concluding remarks and future outlooks have been highlighted. Enzyme-linked CNTs serve as a robust biocatalytic platform for the sustainability agenda with the aim of keeping the environment clean and safe from a variety of organic pollutants.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland; Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | - Anil Kumar Singh
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
8
|
Han M, Li X, Wang X, Liu D, Fu S, Xu W, Li W, Zhang H. Preparation of polyhydroxyalkanoate-based magnetic microspheres for carbonyl reductase purification and immobilization. Int J Biol Macromol 2023; 253:126814. [PMID: 37690644 DOI: 10.1016/j.ijbiomac.2023.126814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
A polyhydroxyalkanoate (PHA) magnetic microsphere was designed for one-step purification and immobilization of a novel carbonyl reductase (RLSR5) from recombinant Escherichia coli lysate. The hydrophobic core of this microsphere was composed of a highly biocompatible polymer, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), in which magnetic Fe3O4 particles were embedded during solvent evaporation. The hydrophilic shell of the fusion protein formed by PHA particle-binding protein (PhaP) and RLSR5 (PR) was expressed in recombinant E. coli. The magnetic core of Fe3O4@PHBHHx directly purified the hydrophilic shell from the E. coli lysate, and the two self-assembled to form Fe3O4@PHBHHx-PR through hydrophobic and hydrophilic interactions, eliminating the separation of the fusion protein. The microstructure, magnetic properties, morphology, size, and dispersion of Fe3O4@PHBHHx-PR were investigated by XRD, VSM, SEM, TEM, elemental mapping and DLS. It was found that Fe3O4@PHBHHx-PR correctly assembled, with a well dispersed spherical structure at the nanoscale and superparamagnetism properties. The amount of RLSR5 immobilized on PHA microspheres reached 121.9 mg/g. The Fe3O4@PHBHHx-PR was employed to synthesize (R)-tolvaptan with 99 % enantiomeric excess and 97 % bioconversion efficiency, and the catalyst maintained 78.6 % activity after 10 recovery cycles. These PHA magnetic microspheres are versatile carriers for enzyme immobilization and demonstrate improved stability and reusability of the free enzyme.
Collapse
Affiliation(s)
- Mengnan Han
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Xiaozheng Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Xuming Wang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Dexu Liu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Shuangqing Fu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Wenzhi Xu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China.
| | - Honglei Zhang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China.
| |
Collapse
|
9
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
10
|
Al-Sakkaf MK, Basfer I, Iddrisu M, Bahadi SA, Nasser MS, Abussaud B, Drmosh QA, Onaizi SA. An Up-to-Date Review on the Remediation of Dyes and Phenolic Compounds from Wastewaters Using Enzymes Immobilized on Emerging and Nanostructured Materials: Promises and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2152. [PMID: 37570470 PMCID: PMC10420689 DOI: 10.3390/nano13152152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Addressing the critical issue of water pollution, this review article emphasizes the need to remove hazardous dyes and phenolic compounds from wastewater. These pollutants pose severe risks due to their toxic, mutagenic, and carcinogenic properties. The study explores various techniques for the remediation of organic contaminants from wastewater, including an enzymatic approach. A significant challenge in enzymatic wastewater treatment is the loss of enzyme activity and difficulty in recovery post-treatment. To mitigate these issues, this review examines the strategy of immobilizing enzymes on newly developed nanostructured materials like graphene, carbon nanotubes (CNTs), and metal-organic frameworks (MOFs). These materials offer high surface areas, excellent porosity, and ample anchoring sites for effective enzyme immobilization. The review evaluates recent research on enzyme immobilization on these supports and their applications in biocatalytic nanoparticles. It also analyzes the impact of operational factors (e.g., time, pH, and temperature) on dye and phenolic compound removal from wastewater using these enzymes. Despite promising outcomes, this review acknowledges the challenges for large-scale implementation and offers recommendations for future research to tackle these obstacles. This review concludes by suggesting that enzyme immobilization on these emerging materials could present a sustainable, environmentally friendly solution to the escalating water pollution crisis.
Collapse
Affiliation(s)
- Mohammed K. Al-Sakkaf
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim Basfer
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mustapha Iddrisu
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Salem A. Bahadi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mustafa S. Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Basim Abussaud
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Qasem A. Drmosh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A. Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
11
|
Srivastava N, Singh R, Verma B, Rai AK, Tripathi SC, Bantun F, Faidah H, Singh RP, Jalal NA, Abdel-Razik NE, Haque S. Microbial cellulase production and stability investigations via graphene like carbon nanostructure derived from paddy straw. Int J Biol Macromol 2023; 237:124033. [PMID: 36918076 DOI: 10.1016/j.ijbiomac.2023.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Cellulases are among the most in-demand bioprocess enzymes, and the high cost of production, combined with their low enzymatic activity, is the main constraint, particularly in the biofuels industry. As a result, low-cost enzyme production modes with high activity and stability have emerged as the primary focus of research. Here, a method for producing a graphene like carbon nanostructure (GLCNs) has been investigated utilizing paddy straw (Ps), and its physicochemical characteristics have been examined using a variety of techniques including XRD, FT-IR, SEM and TEM. Further, the pretreatment of Ps feedstock for cellulase production was done using diluted waste KOH liquid collected during the preparation of the GLCNs. To increase the production and stability of the enzyme, newly prepared GLCNs is utilized as a nanocatalyst. Using 15 mg of GLCNs, 35 IU/gds FP activity was seen after 72 h, followed by 158 IU/gds EG and 114 IU/gds BGL activity in 96 h. This nanocatalyst supported enzyme was thermally stable at 70 °C up to 15 h and exhibited stability at pH 7.0 for 10 h by holding 66 % of its half-life.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India.
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi 110025, India
| | - Bhawna Verma
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India.
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Subhash C Tripathi
- Institute of Applied Sciences & Humanities, Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Naif A Jalal
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Noha E Abdel-Razik
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
12
|
Wang K, Zhao L, Li T, Wang Q, Ding Z, Dong W. Selective Immobilization of His-Tagged Enzyme on Ni-Chelated Ion Exchange Resin and Its Application in Protein Purification. Int J Mol Sci 2023; 24:ijms24043864. [PMID: 36835274 PMCID: PMC9960010 DOI: 10.3390/ijms24043864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 02/17/2023] Open
Abstract
Ion exchange resins are suitable as carriers for immobilized enzymes because of their stable physicochemical properties, appropriate particle size and pore structure, and lower loss in continuous operation. In this paper, we report the application of the Ni-chelated ion exchange resin in the immobilization of His-tagged enzyme and protein purification. Acrylic weak acid cation exchange resin (D113H) was selected from four cationic macroporous resins that could chelate the transition metal ion Ni. The maximum adsorption capacity of Ni was ~198 mg/g. Phosphomannose isomerase (PMI) can be successfully immobilized on Ni-chelated D113H from crude enzyme solution through chelation of transition metal ions with the His-tag on the enzyme. The maximum amount of immobilized PMI on the resin was ~143 mg/g. Notably, the immobilized enzyme showed excellent reusability and maintained 92% of its initial activity with 10 cycles of catalytic reaction. In addition, PMI was successfully purified using an affinity chromatography column prepared by Ni-chelated D113H, which showed the potential for the immobilization and purification process to be realized in one step.
Collapse
Affiliation(s)
- Kangjing Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Correspondence: (Q.W.); (W.D.)
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Correspondence: (Q.W.); (W.D.)
| |
Collapse
|
13
|
Yan TC, Cao J, Ye LH. Recent advances on discovery of enzyme inhibitors from natural products using bioactivity screening. J Sep Sci 2022; 45:2766-2787. [PMID: 35593478 DOI: 10.1002/jssc.202200084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022]
Abstract
The essence of enzymes is to keep the homeostasis and balance of human by catalyzing metabolic responses and modulating cell. Suppression of enzyme slows the progress of some diseases, making it a therapeutic target. Therefore, it is important to develop enzyme inhibitors by proper bioactivity screening strategies for the future treatment of some major diseases. In this review, we summarized the recent (2015-2020) applications of several screening strategies (electrophoretically mediated microanalysis, enzyme immobilization, affinity chromatography, and affinity ultrafiltration) in finding enzyme inhibitors from certain species of bioactive natural compounds of plant origin (flavonoids, alkaloids, phenolic acids, saponins, anthraquinones, coumarins). At the same time, the advantages and disadvantages of each strategy were also discussed, and the future possible development direction in enzyme inhibitor screening has prospected. To sum up, it is expected to help readers select suitable screening strategies for enzyme inhibitors and provide useful information for the study of the biological of specific kinds of natural products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tian-Ci Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jun Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.,College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Li-Hong Ye
- Department of Traditional Chinese Medicine, Hangzhou Red Cross Hospital, Hangzhou, 310003, PR China
| |
Collapse
|