1
|
Mitsis A, Khattab E, Christodoulou E, Myrianthopoulos K, Myrianthefs M, Tzikas S, Ziakas A, Fragakis N, Kassimis G. From Cells to Plaques: The Molecular Pathways of Coronary Artery Calcification and Disease. J Clin Med 2024; 13:6352. [PMID: 39518492 PMCID: PMC11545949 DOI: 10.3390/jcm13216352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Coronary artery calcification (CAC) is a hallmark of atherosclerosis and a critical factor in the development and progression of coronary artery disease (CAD). This review aims to address the complex pathophysiological mechanisms underlying CAC and its relationship with CAD. We examine the cellular and molecular processes that drive the formation of calcified plaques, highlighting the roles of inflammation, lipid accumulation, and smooth muscle cell proliferation. Additionally, we explore the genetic and environmental factors that contribute to the heterogeneity in CAC and CAD presentation among individuals. Understanding these intricate mechanisms is essential for developing targeted therapeutic strategies and improving diagnostic accuracy. By integrating current research findings, this review provides a comprehensive overview of the pathways linking CAC to CAD, offering insights into potential interventions to mitigate the burden of these interrelated conditions.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Elina Khattab
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Evi Christodoulou
- Cardiology Department, Limassol General Hospital, State Health Services Organization, Limassol 3304, Cyprus;
| | - Kimon Myrianthopoulos
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
2
|
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, Marini S, Ferretti E, Cifaldi L, Masuelli L, Benvenuto M, Bei R. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J Xenobiot 2024; 14:1378-1405. [PMID: 39449418 PMCID: PMC11503411 DOI: 10.3390/jox14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.
Collapse
Affiliation(s)
- Eleonora Leti Maggio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Carlotta Zucca
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Martina Grande
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Antonio Infante
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Riccardo Bei
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| |
Collapse
|
3
|
Charkiewicz AE, Omeljaniuk WJ, Nikliński J. Bisphenol A-What Do We Know? A Global or Local Approach at the Public Health Risk Level. Int J Mol Sci 2024; 25:6229. [PMID: 38892416 PMCID: PMC11172700 DOI: 10.3390/ijms25116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
BPA has demonstrated enormous multisystem and multi-organ toxicity shown mainly in animal models. Meanwhile, the effects of its exposure in humans still require years of observation, research, and answers to many questions. Even minimal and short-term exposure contributes to disorders or various types of dysfunction. It is released directly or indirectly into the environment at every stage of the product life cycle, demonstrating its ease of penetration into the body. The ubiquity and general prevalence of BPA influenced the main objective of the study, which was to assess the toxicity and health effects of BPA and its derivatives based on the available literature. In addition, the guidelines of various international institutions or regions of the world in terms of its reduction in individual products were checked. Bisphenol A is the most widely known chemical and perhaps even the most studied by virtually all international or national organizations, but nonetheless, it is still controversial. In general, the level of BPA biomonitoring is still too high and poses a potential threat to public health. It is beginning to be widely argued that future toxicity studies should focus on molecular biology and the assessment of human exposure to BPA, as well as its substitutes. The effects of its exposure still require years of observation, extensive research, and answers to many questions. It is necessary to continue to deepen the knowledge and interest of many organizations, companies, and consumers around the world in order to make rational purchases as well as future choices, not only consumer ones.
Collapse
Affiliation(s)
| | - Wioleta Justyna Omeljaniuk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
4
|
Zhi W, Liu Y, Wang X, Zhang H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115749. [PMID: 36181983 DOI: 10.1016/j.jep.2022.115749] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a common systemic disease with increasing morbidity and mortality worldwide. Traditional Chinese medicine (TCM) with characteristics of multiple pathways and targets, presents advantages in the diagnosis and treatment of atherosclerosis. AIM OF THE STUDY With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for AS treatment have been gradually revealed. Therefore, it is necessary to examine the existing studies on TCM therapies aimed at regulating AS over the past two decades. MATERIALS AND METHODS Using "atherosclerosis" and "Traditional Chinese medicine" as keywords, all relevant TCM literature published in the last 10 years was collected from electronic databases (such as Elsevier, Springer, PubMed, CNKI, and Web of Science), books and papers until March 2022, and the critical information was statistically analyzed. RESULTS In this review, we highlighted extracts of 8 single herbs, a total of 41 single active ingredients, 20 TCM formulae, and 25 patented drugs, which were described with chemical structure, source, model, efficacy and potential mechanism. CONCLUSION We summarized the cytopathological basis for the development of atherosclerosis involving vascular endothelial cells, macrophages and vascular smooth muscle cells, and categorically elaborated the medicinal TCM used for AS, all of which provide the current evidence on the better management of atherosclerosis by TCM.
Collapse
Affiliation(s)
- Wenbing Zhi
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China
| | - Xiumei Wang
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| |
Collapse
|
5
|
Yang J, Song J, Zhou J, Lin H, Wu Z, Liu N, Xie W, Guo H, Chi J. Functional components of Chinese rice wine can ameliorate diabetic cardiomyopathy through the modulation of autophagy, apoptosis, gut microbiota, and metabolites. Front Cardiovasc Med 2022; 9:940663. [PMID: 36186976 PMCID: PMC9515449 DOI: 10.3389/fcvm.2022.940663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background Dietary polyphenols, polypeptides, and oligosaccharides modulate inflammation and immunity by altering the composition of gut microbiota. The polyphenols and polypeptides in Chinese rice wine have protective effects against cardiovascular disease. In this study, we hypothesized that the polyphenols, polypeptides, and oligosaccharides in Chinese rice wine can ameliorate diabetic cardiomyopathy (DCM) by altering gut microbiota and metabolites. Methods Mice with DCM and high glucose cells were treated with rice wine polyphenols (RWPH), rice wine polypeptides (RWPE), and rice wine oligosaccharides. Cardiac function was evaluated by echocardiography and detection of myocardial injury markers. We observed the pathological structures using hematoxylin and eosin staining, Masson's trichrome staining, and transmission electron microscopy. The expression levels of autophagy-related proteins and stubRFP-sensGFP-LC3 fluorescence were measured to evaluate autophagy. We performed TUNEL staining and measured the levels of Bax, Bcl-2, and p53 to assess apoptosis. To analyze the effects of the rice wine functional components on the gut microbiota and metabolites of DCM mice, we performed fecal 16S-rDNA gene sequencing and serum untargeted metabolomics. Results Our results showed an increase in cardiac and mitochondrial function, promotion of autophagy, and inhibition of cardiomyocyte apoptosis, which indicates that RWPH and RWPE can ameliorate DCM. The abundance of Akkermansia and Desulfovibrio were reduced by the presence of RWPH and RWPE. The growth of the Lachnospiraceae_NK4A136_group and Clostridiales-unclassified were promoted by the presence of RWPH. Tryptophan metabolism-associated metabolites were increased and phenylalanine levels were reduced by the presence of RWPH and RWPE. The biosynthesis of primary bile acids was enhanced by the presence of RWPH. Conclusion Both RWPH and RWPE provided a protective effect against DCM by promoting autophagy, inhibiting apoptosis, and reversing both gut microbiota dysbiosis and metabolic dysregulation.
Collapse
Affiliation(s)
- Jinjin Yang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jiaoying Song
- Medical College of Shaoxing University, Shaoxing, China
| | - Jiedong Zhou
- Medical College of Shaoxing University, Shaoxing, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zhuonan Wu
- Medical College of Shaoxing University, Shaoxing, China
| | - Nan Liu
- Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenqing Xie
- Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangyuan Guo
- Medical College of Shaoxing University, Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- *Correspondence: Jufang Chi
| |
Collapse
|
6
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|