1
|
Zhang J, Wang D, Li Y, Liu L, Liang Y, He B, Hu L, Jiang G. Application of three-dimensional printing technology in environmental analysis: A review. Anal Chim Acta 2023; 1281:341742. [PMID: 38783729 DOI: 10.1016/j.aca.2023.341742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 05/25/2024]
Abstract
The development of environmental analysis devices with high performance is essential to assess the potential risks of environmental pollutants. However, it is still challenging to develop environmental analysis equipment with miniaturization, portability, and high sensitivity based on traditional processing techniques. In recent years, the popularity of 3D printing technology (3DP) with high precision, low cost, and unlimited design freedom has provided opportunities to solve the existing challenges of environmental analysis. 3D printing has brought solutions to promote the high performance and versatility of environmental analysis equipment by optimizing printing materials, enhancing equipment structure, and integrating multidisciplinary technology. In this paper, we comprehensively review the latest progress in 3D printing in various aspects of environmental analysis procedures, including but not limited to sample collection, pretreatment, separation, and detection. We highlight their advantages and challenges in determining various environmental contaminants through passive sampling, solid-phase extraction, chromatographic separation, and mass spectrometry detection. The manufacturing of 3D-printed environmental analysis devices is also discussed. Finally, we look forward to their development prospects and challenges.
Collapse
Affiliation(s)
- Junpeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dingyi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingying Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
2
|
Kim TY, Kim S, Jung JH, Woo MA. Paper-Based Radial Flow Assay Integrated to Portable Isothermal Amplification Chip Platform for Colorimetric Detection of Target DNA. BIOCHIP JOURNAL 2023; 17:1-11. [PMID: 37363267 PMCID: PMC10134700 DOI: 10.1007/s13206-023-00101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 06/28/2023]
Abstract
A novel integrated detection system that introduces a paper-chip-based molecular detection strategy into a polydimethylsiloxane (PDMS) microchip and temperature control system was developed for on-site colorimetric detection of DNA. For the paper chip-based detection strategy, a padlock probe DNA (PLP)-mediated rolling circle amplification (RCA) reaction for signal amplification and a radial flow assay according to the Au-probe labeling strategy for visualization were optimized and applied for DNA detection. In the PDMS chip, the reactions for ligation of target-dependent PLP, RCA, and labeling were performed one-step under isothermal temperature in a single chamber, and one drop of the final reaction solution was loaded onto the paper chip to form a radial colorimetric signal. To create an optimal analysis environment, not only the optimization of molecular reactions for DNA detection but also the chamber shape of the PDMS chip and temperature control system were successfully verified. Our results indicate that a detection limit of 14.7 nM of DNA was achieved, and non-specific DNAs with a single-base mismatch at the target DNA were selectively discriminated. This integrated detection system can be applied not only for single nucleotide polymorphism identification, but also for pathogen gene detection. The adoption of inexpensive paper and PDMS chips allows the fabrication of cost-effective detection systems. Moreover, it is very suitable for operation in various resource-limited locations by adopting a highly portable and user-friendly detection method that minimizes the use of large and expensive equipment. Supplementary Information The online version contains supplementary material available at 10.1007/s13206-023-00101-7.
Collapse
Affiliation(s)
- Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institution, Wanju-Gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896 Republic of Korea
| | - Sanha Kim
- Department of Pharmaceutical Engineering, Dankook University, Cheonan-si, Chungcheongnam-do 31116 Republic of Korea
| | - Jae Hwan Jung
- Department of Pharmaceutical Engineering, Dankook University, Cheonan-si, Chungcheongnam-do 31116 Republic of Korea
| | - Min-Ah Woo
- Research Group of Food Safety and Distribution, Korea Food Research Institution, Wanju-Gun, Jeollabuk-do 55365 Republic of Korea
| |
Collapse
|
3
|
Liu J, Xie G, Lv S, Xiong Q, Xu H. Recent applications of rolling circle amplification in biosensors and DNA nanotechnology. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
4
|
Cheng Z, Wei J, Gu L, Zou L, Wang T, Chen L, Li Y, Yang Y, Li P. DNAzyme-based biosensors for mercury (Ⅱ) detection: Rational construction, advances and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128606. [PMID: 35278952 DOI: 10.1016/j.jhazmat.2022.128606] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Mercury contamination is one of the most severe issues in society due to its threats to public health and the ecological system. However, traditional methods for mercury ion detection are still limited by their time-consuming procedures, requirement of expensive instruments, and low selectivity. In recent decades, tremendous progress has been made in the development of functional nucleic acid-based, especially DNAzyme sensors for mercury (Ⅱ) (Hg2+) determination, including RNA-cleaving DNAzymes and G-quadruplex-based DNAzymes in particular. Researchers have heavily studied the construction of Hg2+ sensors, mainly originating from in vitro selection-derived DNAzymes, by incorporating T-Hg2+-T recognition moieties in existing DNAzyme scaffolds, and interfacing Hg2+-sensitive sequences with nanomaterials. In the last case, the employment of materials (as quenchers, signal transducers and DNA immobilizers) enriches the application scenarios of current Hg2+-DNAzymes, due to a combination of their functions. We summarize a broad range of sensing approaches, including optical, electrochemical, and other sensing methods, and compare their features. This review elaborates on the rational design strategies for engineering DNAzymes to selectively sense Hg2+, critically discusses their properties in different application scenarios, and summarizes recent advances in this field. Additionally, current progress, challenges and future perspectives are also discussed. This minireview provides deeper insights into the chemistry of these functional nucleic acids when working with Hg2+, explains the design ideas of DNAzyme-sensors in each platform, and reveals potential opportunities in developing more advanced DNAzyme sensors for the highly selective and sensitive recognition of Hg2+. ENVIRONMENTAL IMPLICATION: Mercury is one of the most toxic metallic contaminants due to its high toxicity, non-biodegradability, and serious human health risks when accumulated in the body. In the recent decade, intensive studies have focused on exploring mercury sensors by combining DNAzymes with various sensing methods, paving a promising avenue to gain ultra-high sensitivity and selectivity. However, so far, no review has introduced the recent advances on DNAzyme-based sensors for mercury detection in a critical way. In this review, we comprehensively summarized the studies on DNAzyme-based sensors for mercury detection using various sensing techniques including optical, electrochemical and other sensing methods.
Collapse
Affiliation(s)
- Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Liqiang Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu 610106, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuqing Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China; Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
5
|
Kim TY, Lim MC, Lim JW, Woo MA. Rolling Circle Amplification-based Copper Nanoparticle Synthesis on Cyclic Olefin Copolymer Substrate and Its Application in Aptasensor. BIOTECHNOL BIOPROC E 2022; 27:202-212. [PMID: 35474695 PMCID: PMC9026004 DOI: 10.1007/s12257-021-0220-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to develop a label-free fluorescent aptasensor for the detection of diazinon (DZN) on a cyclic olefin copolymer (COC) substrate. The aptasensor design was based on rolling circle amplification (RCA) technology and the use of self-assembled copper nanoparticles (CuNPs). A dual-function (DF) probe, capable of binding to circular DNA and an aptamer, was designed and immobilized on a COC-bottom 96-well plate. An aptamer was used for selective recognition of DZN, and the specific site of the aptamer that strongly reacted with DZN was successfully identified using circular dichroism (CD) analysis. In presence of DZN, the aptamer and DZN formed a strong complex, thus providing an opportunity for hybridization of the DF probe and circular DNA, thereby initiating an RCA reaction. Repetitive poly thymine (T) sequence with a length of 30-mer, generated in the RCA reaction, served as a template for the synthesis of fluorescent copper nanoparticles, emitting an orange fluorescence signal (at approximately 620 nm) proportional to the amount of RCA product, within 10 min under UV irradiation. The CuNP fluorescence was imaged and quantified using an image analysis software. A linear correlation of the fluorescence signal was confirmed in the DZN concentration range of 0.1–3 ppm, with a detection limit of 0.15 ppm. Adoption of a label-free detection method, utilizing RCA and fluorescent CuNPs on COC substrates, reduced the need for complex equipment and requirements for DZN analysis, thereby representing a simple and rapid sensing method circumventing the limitations of current complex and labor-intensive methods.
Collapse
Affiliation(s)
- Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju, Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, Korea
| | - Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju, Korea
| | - Ji Won Lim
- The 4th R&D Institute, 6th Directorate, Agency for Defense Development, Daejeon, Korea
| | - Min-Ah Woo
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju, Korea
| |
Collapse
|
6
|
Namgung H, Kaba AM, Oh H, Jeon H, Yoon J, Lee H, Kim D. Quantitative Determination of 3D-Printing and Surface-Treatment Conditions for Direct-Printed Microfluidic Devices. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00048-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Bialy RM, Mainguy A, Li Y, Brennan JD. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem Soc Rev 2022; 51:9009-9067. [DOI: 10.1039/d2cs00613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional nucleic acids regulate rolling circle amplification to produce multiple detection outputs suitable for the development of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Roger M. Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Alexa Mainguy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
8
|
Sivakumar R, Lee NY. Paper-Based Fluorescence Chemosensors for Metal Ion Detection in Biological and Environmental Samples. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00026-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Trends in sensor development toward next-generation point-of-care testing for mercury. Biosens Bioelectron 2021; 183:113228. [PMID: 33862396 DOI: 10.1016/j.bios.2021.113228] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/01/2023]
Abstract
Mercury is one of the most common heavy metals and a major environmental pollutant that affects ecosystems. Since mercury and its compounds are toxic to humans, even at low concentrations, it is very important to monitor mercury contamination in water and foods. Although conventional mercury detection methods, including inductively coupled plasma mass spectrometry, atomic absorption spectroscopy, and gas chromatography-mass spectrometry, exhibit excellent sensitivity and accuracy, they require operation by an expert in a sophisticated and fully controlled laboratory environment. To overcome these limitations and realize point-of-care testing, many novel methods for direct sample analysis in the field have recently been developed by improving the speed and simplicity of detection. Commonly, these unconventional sensors rely on colorimetric, fluorescence, or electrochemical mechanisms to transduce signals from mercury. In the case of colorimetric and fluorescent sensors, benchtop methods have gradually evolved through technology convergence to give standalone platforms, such as paper-based assays and lab-on-a-chip systems, and portable measurement devices, such as smartphones. Electrochemical sensors that use screen-printed electrodes with carbon or metal nanomaterials or hybrid materials to improve sensitivity and stability also provide promising detection platforms. This review summarizes the current state of sensor platforms for the on-field detection of mercury with a focus on key features and recent developments. Furthermore, trends for next-generation mercury sensors are suggested based on a paradigm shift to the active integration of cutting-edge technologies, such as drones, systems based on artificial intelligence, machine learning, and three-dimensional printing, and high-quality smartphones.
Collapse
|