1
|
Rigobelo EC, de Andrade LA, Santos CHB, Frezarin ET, Sales LR, de Carvalho LAL, Guariz Pinheiro D, Nicodemo D, Babalola OO, Verdi MCQ, Mondin M, Desoignies N. Effects of Trichoderma harzianum and Bacillus subtilis on the root and soil microbiomes of the soybean plant INTACTA RR2 PRO™. FRONTIERS IN PLANT SCIENCE 2024; 15:1403160. [PMID: 39258296 PMCID: PMC11383790 DOI: 10.3389/fpls.2024.1403160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/06/2024] [Indexed: 09/12/2024]
Abstract
Introduction Soybean is a significant export product for several countries, including the United States and Brazil. There are numerous varieties of soybean. Among them, a genetically modified type known as INTACTA RR2 PRO™ has been designed to demonstrate resistance to glyphosate and to produce toxins that are lethal to several species of caterpillars. Limited information is available on the use of Trichoderma harzianum and Bacillus subtilis to promote plant growth and their impact on the plant microbiome. Methods This study aimed to evaluate the effects of these microorganisms on this soybean cultivar by analyzing parameters, such as root and shoot dry matter, nutritional status, and root and soil microbial diversity. Results The results indicated that treatments with B. subtilis alone or in combination with T. harzianum as seed or seed and soil applications significantly enhanced plant height and biomass compared to the other treatments and the control. No significant differences in phosphorus and nitrogen concentrations were detected across treatments, although some treatments showed close correlations with these nutrients. Microbial inoculations slightly influenced the soil and root microbiomes, with significant beta diversity differences between soil and root environments, but had a limited overall impact on community composition. Discussion The combined application of B. subtilis and T. harzianum particularly enhanced plant growth and promoted plant-associated microbial groups, such as Rhizobiaceae, optimizing plant-microbe interactions. Furthermore, the treatments resulted in a slight reduction in fungal richness and diversity.
Collapse
Affiliation(s)
- Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Luana Alves de Andrade
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Carlos Henrique Barbosa Santos
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Edvan Teciano Frezarin
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Luziane Ramos Sales
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Lucas Amoroso Lopes de Carvalho
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Daniel Guariz Pinheiro
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Daniel Nicodemo
- Faculty of Agrarian and Veterinary Sciences, State University of São Paulo (UNESP), Jaboticabal, Brazil
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Maria Caroline Quecine Verdi
- University of São Paulo, College of Agriculture "Luiz de Queiroz", Genetics Science Department, Piracicaba, Brazil
| | - Mateus Mondin
- University of São Paulo, College of Agriculture "Luiz de Queiroz", Genetics Science Department, Piracicaba, Brazil
| | - Nicolas Desoignies
- University of São Paulo, College of Agriculture "Luiz de Queiroz", Genetics Science Department, Piracicaba, Brazil
- Phytopathology, Microbial and Molecular Farming Lab, Center D'Etudes et Recherche Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
| |
Collapse
|
2
|
Li Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Biofilms formation in plant growth-promoting bacteria for alleviating agro-environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167774. [PMID: 37848152 DOI: 10.1016/j.scitotenv.2023.167774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Biofilm formation represents a pivotal and adaptable trait among microorganisms within natural environments. This attribute plays a multifaceted role across diverse contexts, including environmental, aquatic, industrial, and medical systems. While previous research has primarily focused on the adverse impacts of biofilms, harnessing their potential effectively could confer substantial advantages to humanity. In the face of escalating environmental pressures (e.g., drought, salinity, extreme temperatures, and heavy metal pollution), which jeopardize global crop yields, enhancing crop stress tolerance becomes a paramount endeavor for restoring sufficient food production. Recently, biofilm-forming plant growth-promoting bacteria (PGPB) have emerged as promising candidates for agricultural application. These biofilms are evidence of microorganism colonization on plant roots. Their remarkable stress resilience empowers crops to thrive and yield even in harsh conditions. This is accomplished through increased root colonization, improved soil properties, and the synthesis of valuable secondary metabolites (e.g., ACC deaminase, acetin, 2,3-butanediol, proline, etc.). This article elucidates the mechanisms underpinning the role of biofilm-forming PGPB in bolstering plant growth amidst environmental challenges. Furthermore, it explores the tangible applications of these biofilms in agriculture and delves into strategies for manipulating biofilm formation to extract maximal benefits in practical crop production scenarios.
Collapse
Affiliation(s)
- Yujia Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai 602105, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
3
|
Mimma AA, Akter T, Haque MA, Bhuiyan MAB, Chowdhury MZH, Sultana S, Islam SMN. Effect of Metarhizium anisopliae (MetA1) on growth enhancement and antioxidative defense mechanism against Rhizoctonia root rot in okra. Heliyon 2023; 9:e18978. [PMID: 37636386 PMCID: PMC10450861 DOI: 10.1016/j.heliyon.2023.e18978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Rhizoctonia solani is an important necrotrophic pathogenic fungus that causes okra root disease and results in severe yield reduction. Many biocontrol agents are being studied with the intent of improving plant growth and defense systems and reducing crop loss by preventing fungal infections. Recently, a member of the Hypocrealean family, Metarhizium anisopliae, has been reported for insect pathogenicity, endophytism, plant growth promotion, and antifungal potentialities. This research investigated the role of M. anisopliae (MetA1) in growth promotion and root disease suppression in okra. The antagonism against R. solani and the plant growth promotion traits of MetA1 were tested in vitro. The effects of endophytic MetA1 on promoting plant growth and disease suppression were assessed in planta. Dual culture and cell-free culture filtrate assays showed antagonistic activity against R. solani by MetA1. Some plant growth promotion traits, such as phosphate solubilization and catalase activity were also exhibited by MetA1. Seed primed with MetA1 increased the shoot, root, leaves, chlorophyll content, and biomass content compared to control okra plants. The plants challenged with R. solani showed the highest hydrogen peroxide (H2O2) and lipid peroxidation (MDA) contents in the leaves of okra. Whereas MetA1 applied plants showed a reduction of H2O2 and MDA by 5.21 and 14.96%, respectively, under pathogen-inoculated conditions by increasing antioxidant enzyme activities, including catalase (CAT), peroxidase (POD), glutathione S-transferase (GST), and ascorbate peroxidase (APX), by 30.11, 10.19, 5.62, and 5.06%, respectively. Moreover, MetA1 increased soluble sugars, carbohydrates, proline, and secondary metabolites, viz., phenol and flavonoid contents in okra resulting in a better osmotic adjustment of diseases infecting plants. MetA1 reduced disease incidence by 58.33% at 15 DAI compared to the R. solani inoculated plant. The results revealed that MetA1 improved plant growth, elevated the plant defense system, and suppressed root diseases caused by R. solani. Thus, MetA1 was found to be an effective candidate for the biological control program.
Collapse
Affiliation(s)
- Afsana Akter Mimma
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Tanjina Akter
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md. Ashraful Haque
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md. Abdullahil Baki Bhuiyan
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md. Zahid Hasan Chowdhury
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Sharmin Sultana
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Shah Mohammad Naimul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| |
Collapse
|
4
|
Saadaoui M, Faize M, Bonhomme L, Benyoussef NO, Kharrat M, Chaar H, Label P, Venisse JS. Assessment of Tunisian Trichoderma Isolates on Wheat Seed Germination, Seedling Growth and Fusarium Seedling Blight Suppression. Microorganisms 2023; 11:1512. [PMID: 37375014 DOI: 10.3390/microorganisms11061512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Beneficial microorganisms, including members of the Trichoderma genus, are known for their ability to promote plant growth and disease resistance, as well as being alternatives to synthetic inputs in agriculture. In this study, 111 Trichoderma strains were isolated from the rhizospheric soil of Florence Aurore, an ancient wheat variety that was cultivated in an organic farming system in Tunisia. A preliminary ITS analysis allowed us to cluster these 111 isolates into three main groups, T. harzianum (74 isolates), T. lixii (16 isolates) and T. sp. (21 isolates), represented by six different species. Their multi-locus analysis (tef1, translation elongation factor 1; rpb2, RNA polymerase B) identified three T. afroharzianum, one T. lixii, one T. atrobrunneum and one T. lentinulae species. These six new strains were selected to determine their suitability as plant growth promoters (PGP) and biocontrol agents (BCA) against Fusarium seedling blight disease (FSB) in wheat caused by Fusarium culmorum. All of the strains exhibited PGP abilities correlated to ammonia and indole-like compound production. In terms of biocontrol activity, all of the strains inhibited the development of F. culmorum in vitro, which is linked to the production of lytic enzymes, as well as diffusible and volatile organic compounds. An in planta assay was carried out on the seeds of a Tunisian modern wheat variety (Khiar) by coating them with Trichoderma. A significant increase in biomass was observed, which is associated with increased chlorophyll and nitrogen. An FSB bioprotective effect was confirmed for all strains (with Th01 being the most effective) by suppressing morbid symptoms in germinated seeds and seedlings, as well as by limiting F. culmorum aggressiveness on overall plant growth. Plant transcriptome analysis revealed that the isolates triggered several SA- and JA-dependent defense-encoding genes involved in F. culmorum resistance in the roots and leaves of three-week-old seedlings. This finding makes these strains very promising in promoting growth and controlling FSB disease in modern wheat varieties.
Collapse
Affiliation(s)
- Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
- Université de Tunis El Manar, Campus Universitaire Farhat Hached, B.P. n° 94-ROMMANA, Tunis 1068, Tunisia
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization URL-CNRST 10, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco
| | - Ludovic Bonhomme
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Noura Omri Benyoussef
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
- National Institute of Agronomy of Tunisia (INAT), Tunis 1082, Tunisia
| | - Mohamed Kharrat
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
| | - Hatem Chaar
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
- National Institute of Agronomy of Tunisia (INAT), Tunis 1082, Tunisia
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | | |
Collapse
|
5
|
Singh S, Chanotiya CS, Singh A, Vajpayee P, Kalra A. Role of ACC-deaminase synthesizing Trichoderma harzianum and plant growth-promoting bacteria in reducing salt-stress in Ocimum sanctum. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:815-828. [PMID: 37520812 PMCID: PMC10382467 DOI: 10.1007/s12298-023-01328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023]
Abstract
Salinity is a significant concern in crop production, causing severe losses in agricultural yields. Ocimum sanctum, also known as Holy Basil, is an important ancient medicinal plant used in the Indian traditional system of medicine. The present study explores the use of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing strains of plant-growth-promoting bacteria (PGPB) namely Str-8 (Halomonas desiderata), Sd-6 (Brevibacterium halotolerans), Fd-2 (Achromobacter xylosoxidans), Art-7 (Burkholderia cepacia), and Ldr-2 (Bacillus subtilis), and T. harzianum (Th), possessing multi-functional properties like growth promotion, stress alleviation, and for enhancing O. sanctum yield under salt stress. The results showed that co-inoculation of Th and PGPBs enhanced plant height and fresh herb weight by 3.78-17.65% and 7.86-58.76%, respectively; highest being in Th + Fd-2 and Th + Art-7 compared to positive control plants. The doubly inoculated plants showed increased pigments, phenol, flavonoids, protein, sugar, relative water content, and nutrient uptake (Nitrogen and Phosphorous) as compared to monocultures and untreated positive control plants. In addition, co-inoculation in plants resulted in lower Na+, MDA, H2O2, CAT, APX activities, and also lower ACC accumulation (49.75 to 72.38% compared to non-treated salt- stressed plant) in O. sanctum, which probably played a significant role in minimizing the deleterious effects of salinity. Finally, multifactorial analysis showed that co-inoculation of Th and PGPBs improved O. sanctum growth, its physiological activities, and alleviated salt stress compared to single inoculated and positive control plants. These microbial consortia were evaluated for the first time on O. sanctum under salt stress. Therefore, the microbial consortia application could be employed to boost crop productivity in poor, marginalized and stressed agricultural fields. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01328-2.
Collapse
Affiliation(s)
- Suman Singh
- Department of Microbial Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, U.P 226015 India
| | - Chandan Singh Chanotiya
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, U.P 226015 India
| | - Akanksha Singh
- Department of Microbial Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, U.P 226015 India
| | | | - Alok Kalra
- Department of Microbial Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, U.P 226015 India
| |
Collapse
|
6
|
A critical analysis on the roles of exopolysaccharides and ACC deaminase in salinity stress tolerance in crop plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Belabess Z, Barka EA. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022; 10:microorganisms10030596. [PMID: 35336171 PMCID: PMC8951280 DOI: 10.3390/microorganisms10030596] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
The increase in the world population has generated an important need for both quality and quantity agricultural products, which has led to a significant surge in the use of chemical pesticides to fight crop diseases. Consumers, however, have become very concerned in recent years over the side effects of chemical fungicides on human health and the environment. As a result, research into alternative solutions to protect crops has been imposed and attracted wide attention from researchers worldwide. Among these alternatives, biological controls through beneficial microorganisms have gained considerable importance, whilst several biological control agents (BCAs) have been screened, among them Bacillus, Pantoea, Streptomyces, Trichoderma, Clonostachys, Pseudomonas, Burkholderia, and certain yeasts. At present, biopesticide products have been developed and marketed either to fight leaf diseases, root diseases, or fruit storage diseases. However, no positive correlation has been observed between the number of screened BCAs and available marketed products. Therefore, this review emphasizes the development of biofungicides products from screening to marketing and the problems that hinder their development. Finally, particular attention was given to the gaps observed in this sector and factors that hamper its development, particularly in terms of efficacy and legislation procedures.
Collapse
Affiliation(s)
- Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
- Correspondence: (R.L.); (E.A.B.); Tel.: +212-55-30-02-39 (R.L.); +33-3-2691-3441 (E.A.B.)
| | - Said Ezrari
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Nabil Radouane
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Jihane Kenfaoui
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Qassim Esmaeel
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Hajar El Hamss
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 Oujda, Oujda 60000, Morocco;
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France;
- Correspondence: (R.L.); (E.A.B.); Tel.: +212-55-30-02-39 (R.L.); +33-3-2691-3441 (E.A.B.)
| |
Collapse
|
8
|
Dautt-Castro M, Jijón-Moreno S, Gómez-Hernández N, del Carmen González-López M, Hernández-Hernández EJ, Rosendo-Vargas MM, Rebolledo-Prudencio OG, Casas-Flores S. New Insights on the Duality of Trichoderma as a Phytopathogen Killer and a Plant Protector Based on an Integrated Multi-omics Perspective. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Roychoudhury T, Ray B, Seal A. Metabolically dependent consortia in biofilm: A new horizon for green agriculture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Bhatia R, Gulati D, Sethi G. Biofilms and nanoparticles: applications in agriculture. Folia Microbiol (Praha) 2021; 66:159-170. [PMID: 33528768 DOI: 10.1007/s12223-021-00851-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/04/2021] [Indexed: 02/04/2023]
Abstract
A profound need to explore eco-friendly methods to practice sustainable agriculture leads to the research and exploration of plant growth-promoting rhizobacteria (PGPRs). Biofilms are assemblages of microbial communities within a self-secreted exopolymeric matrix, adhering to different biotic and abiotic surfaces and performing a variety of desired and undesired functions. Biofilm formation by PGPRs is governed by effective root colonization of the host plant in providing plant growth promotion and stress management. Biofilms can also provide a suitable environment for the synthesis and entrapment of nanoparticles. Together, nanoparticles and PGPRs may contribute towards biocontrol and crop management. This review discusses the significance of biofilms in agriculture and their confluence with different types of nanoparticles for plant protection and improved crop production.
Collapse
Affiliation(s)
- Ranjana Bhatia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India.
| | - Divij Gulati
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Gavin Sethi
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
11
|
Velmourougane K, Prasanna R, Supriya P, Ramakrishnan B, Thapa S, Saxena AK. Transcriptome profiling provides insights into regulatory factors involved in Trichoderma viride-Azotobacter chroococcum biofilm formation. Microbiol Res 2019; 227:126292. [PMID: 31421719 DOI: 10.1016/j.micres.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Azotobacter chroococcum (Az) and Trichoderma viride (Tv) represent agriculturally important and beneficial plant growth promoting options which contribute towards nutrient management and biocontrol, respectively. When Az and Tv are co-cultured, they form a biofilm, which has proved promising as an inoculant in several crops; however, the basic aspects related to regulation of biofilm formation were not investigated. Therefore, whole transcriptome sequencing (Illumina NextSeq500) and gene expression analyses were undertaken, related to biofilm formation vis a vis Tv and Az growing individually. Significant changes in the transcriptome profiles of biofilm were recorded and validated through qPCR analyses. In-depth evaluation also identified several genes (phoA, phoB, glgP, alg8, sipW, purB, pssA, fadD) specifically involved in biofilm formation in Az, Tv and Tv-Az. Genes coding for RNA-dependent RNA polymerase, ABC transporters, translation elongation factor EF-1, molecular chaperones and double homeobox 4 were either up-regulated or down-regulated during biofilm formation. To our knowledge, this is the first report on the modulation of gene expression in an agriculturally beneficial association, as a biofilm. Our results provide insights into the regulatory factors involved during biofilm formation, which can help to improve the beneficial effects and develop more effective and promising plant- microbe associations.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Puram Supriya
- Centre for Agricultural Bioinformatics, ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kusmaur, PO Kaitholi, Mau Nath Bhanjan, Uttar Pradesh 275101, India
| |
Collapse
|
12
|
Velmourougane K, Prasanna R, Chawla G, Nain L, Kumar A, Saxena AK. Trichoderma-Azotobacter biofilm inoculation improves soil nutrient availability and plant growth in wheat and cotton. J Basic Microbiol 2019; 59:632-644. [PMID: 30900762 DOI: 10.1002/jobm.201900009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 12/28/2022]
Abstract
Microbial biofilms are gaining importance in agriculture, due to their multifaceted agronomic benefits and resilience to environmental fluctuations. This study focuses on comparing the influence of single inoculation-Azotobacter chroococcum (Az) or Trichoderma viride (Tv) and their biofilm (Tv-Az), on soil and plant metabolic activities in wheat and cotton grown under Phytotron conditions. Tv-Az proved superior to all the other treatments in terms of better colonisation, plant growth attributes and 10-40% enhanced availability of macronutrients and micronutrients in the soil, over control. Confocal and scanning electron microscopy showed that the cells attached to the root tips initially, followed by their proliferation along the surface of the roots. Soil polysaccharides, proteins and dehydrogenase activity showed several fold enhancement in Tv-Az biofilm inoculated samples. Time course studies revealed that the population of Az and Tv in the rhizoplane and rhizosphere was significantly higher with a 0.14-0.31 log colony-forming unit (CFU) increase in the biofilm-inoculated treatment in both crops. Enhancement in soil biological activities was facilitated by the improved colonisation of the biofilm, due to the synergistic association between Tv and Az. This demonstrates the utility of Tv-Az biofilm as a multifunctional plant growth promoting and soil fertility enhancing option in agriculture.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gautam Chawla
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arun Kumar
- National Phytotron Facility, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, India
| |
Collapse
|
13
|
Vinayarani G, Prakash HS. Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani. World J Microbiol Biotechnol 2018. [DOI: 10.1007/s11274-018-2431-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Velmourougane K, Prasanna R, Saxena AK, Singh SB, Chawla G, Kaushik R, Ramakrishnan B, Nain L. Modulation of growth media influences aggregation and biofilm formation between Azotobacter chroococcum and Trichoderma viride. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Velmourougane K, Prasanna R, Singh SB, Kumar R, Saha S. Sequence of inoculation influences the nature of extracellular polymeric substances and biofilm formation in Azotobacter chroococcum and Trichoderma viride. FEMS Microbiol Ecol 2017; 93:3814244. [DOI: 10.1093/femsec/fix066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/10/2017] [Indexed: 11/13/2022] Open
|
16
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
17
|
Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol (Praha) 2017; 62:425-435. [DOI: 10.1007/s12223-017-0513-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 03/02/2017] [Indexed: 01/31/2023]
|
18
|
Development of Mesorhizobium ciceri-Based Biofilms and Analyses of Their Antifungal and Plant Growth Promoting Activity in Chickpea Challenged by Fusarium Wilt. Indian J Microbiol 2016; 57:48-59. [PMID: 28148979 DOI: 10.1007/s12088-016-0610-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022] Open
Abstract
Biofilmed biofertilizers have emerged as a new improved inoculant technology to provide efficient nutrient and pest management and sustain soil fertility. In this investigation, development of a Trichoderma viride-Mesorhizobium ciceri biofilmed inoculant was undertaken, which we hypothesized, would possess more effective biological nitrogen fixing ability and plant growth promoting properties. As a novel attempt, we selected Mesorhizobium ciceri spp. with good antifungal attributes with the assumption that such inoculants could also serve as biocontrol agents. These biofilms exhibited significant enhancement in several plant growth promoting attributes, including 13-21 % increase in seed germination, production of ammonia, IAA and more than onefold to twofold enhancement in phosphate solubilisation, when compared to their individual partners. Enhancement of 10-11 % in antifungal activity against Fusarium oxysporum f. sp. ciceri was also recorded, over the respective M. ciceri counterparts. The effect of biofilms and the M. ciceri cultures individual on growth parameters of chickpea under pathogen challenged soil illustrated that the biofilms performed at par with the M. ciceri strains for most plant biometrical and disease related attributes. Elicitation of defense related enzymes like l-phenylalanine ammonia lyase, peroxidase and polyphenol oxidase was higher in M. ciceri/biofilm treated plants as compared to uninoculated plants under pathogen challenged soil. Further work on the signalling mechanisms among the partners and their tripartite interactions with host plant is envisaged in future studies.
Collapse
|
19
|
Bidyarani N, Prasanna R, Babu S, Hossain F, Saxena AK. Enhancement of plant growth and yields in Chickpea ( Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiol Res 2016; 188-189:97-105. [DOI: 10.1016/j.micres.2016.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/06/2016] [Accepted: 04/10/2016] [Indexed: 11/25/2022]
|
20
|
Teng Y, Luo Y, Ma W, Zhu L, Ren W, Luo Y, Christie P, Li Z. Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities. FRONTIERS IN PLANT SCIENCE 2015; 9:220. [PMID: 26113858 PMCID: PMC4461814 DOI: 10.3389/fpls.2015.00438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/28/2015] [Indexed: 05/25/2023]
Abstract
This study aimed to explore the effects of Trichoderma reesei FS10-C on the phytoremediation of Cd-contaminated soil by the hyperaccumulator Sedum plumbizincicola and on soil fertility. The Cd tolerance of T. reesei FS10-C was characterized and then a pot experiment was conducted to investigate the growth and Cd uptake of S. plumbizincicola with the addition of inoculation agents in the presence and absence of T. reesei FS10-C. The results indicated that FS10-C possessed high Cd resistance (up to 300 mg L(-1)). All inoculation agents investigated enhanced plant shoot biomass by 6-53% of fresh weight and 16-61% of dry weight and Cd uptake by the shoots by 10-53% compared with the control. All inoculation agents also played critical roles in increasing soil microbial biomass and microbial activities (such as biomass C, dehydrogenase activity and fluorescein diacetate hydrolysis activity). Two inoculation agents accompanied by FS10-C were also superior to the inoculation agents, indicating that T. reesei FS10-C was effective in enhancing both Cd phytoremediation by S. plumbizincicola and soil fertility. Furthermore, solid fermentation powder of FS10-C showed the greatest capacity to enhance plant growth, Cd uptake, nutrient release, microbial biomass and activities, as indicated by its superior ability to promote colonization by Trichoderma. The solid fermentation powder of FS10-C might serve as a suitable inoculation agent for T. reesei FS10-C to enhance both the phytoremediation efficiency of Cd-contaminated soil and soil fertility.
Collapse
Affiliation(s)
- Ying Teng
- *Correspondence: Ying Teng, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | | | | | | | | | | | | | | |
Collapse
|