1
|
Heljanko V, Karama M, Kymäläinen A, Kurittu P, Johansson V, Tiwari A, Nyirenda M, Malahlela M, Heikinheimo A. Wastewater and environmental sampling holds potential for antimicrobial resistance surveillance in food-producing animals - a pilot study in South African abattoirs. Front Vet Sci 2024; 11:1444957. [PMID: 39421833 PMCID: PMC11483616 DOI: 10.3389/fvets.2024.1444957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global One Health challenge that causes increased mortality and a high financial burden. Animal production contributes to AMR, as more than half of antimicrobials are used in food-producing animals globally. There is a growing body of literature on AMR in food-producing animals in African countries, but the surveillance practices across countries vary considerably. This pilot study aims to explore the potential of wastewater and environmental surveillance (WES) of AMR and its extension to the veterinary field. Floor drainage swab (n = 18, 3/abattoir) and wastewater (n = 16, 2-3/abattoir) samples were collected from six South African abattoirs that handle various animal species, including cattle, sheep, pig, and poultry. The samples were tested for Extended-Spectrum Beta-Lactamase (ESBL) and Carbapenemase-producing Enterobacterales, Methicillin-Resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococci (VRE), and Candida auris by using selective culturing and MALDI-TOF MS identification. The phenotype of all presumptive ESBL-producing Escherichia coli (n = 60) and Klebsiella pneumoniae (n = 24) isolates was confirmed with a disk diffusion test, and a subset (15 and 6 isolates, respectively), were further characterized by whole-genome sequencing. In total, 314 isolates (0-12 isolates/sample) withstood MALDI-TOF MS, from which 37 species were identified, E. coli and K. pneumoniae among the most abundant. Most E. coli (n = 48/60; 80%) and all K. pneumoniae isolates were recovered from the floor drainage samples, while 21 presumptive carbapenem-resistant Acinetobacter spp. isolates were isolated equally from floor drainage and wastewater samples. MRSA, VRE, or C. auris were not found. All characterized E. coli and K. pneumoniae isolates represented ESBL-phenotype. Genomic analyses revealed multiple sequence types (ST) of E. coli (n = 10) and K. pneumoniae (n = 5), including STs associated with food-producing animals globally, such as E. coli ST48 and ST10 and K. pneumoniae ST101. Common beta-lactamases linked to food-producing animals, such as bla CTX-M-55 and bla CTX-M-15, were detected. The presence of food-production-animal-associated ESBL-gene-carrying E. coli and K. pneumoniae in an abattoir environment and wastewater indicates the potential of WES in the surveillance of AMR in food-producing animals. Furthermore, the results of this pilot study encourage studying the topic further with refined methodologies.
Collapse
Affiliation(s)
- Viivi Heljanko
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Musafiri Karama
- Veterinary Public Health Section, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Kymäläinen
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Paula Kurittu
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Ananda Tiwari
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Matteo Nyirenda
- Centre for Animal Health Studies, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng, South Africa
| | - Mogaugedi Malahlela
- Veterinary Public Health Section, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Annamari Heikinheimo
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
2
|
Vázquez-Villanueva J, Vázquez K, Martínez-Vázquez AV, Wong-González A, Hernández-Escareño J, Cabrero-Martínez O, Cruz-Pulido WL, Guerrero A, Rivera G, Bocanegra-García V. Molecular and Antimicrobial Susceptibility Characterization of Escherichia coli Isolates from Bovine Slaughterhouse Process. Antibiotics (Basel) 2023; 12:antibiotics12020291. [PMID: 36830200 PMCID: PMC9951931 DOI: 10.3390/antibiotics12020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Antimicrobials are routinely used in human and veterinary medicine. With repeated exposure, antimicrobials promote antibiotic resistance, which poses a threat to public health. In this study, we aimed to determine the susceptibility patterns, virulence factors, and phylogroups of E. coli isolates during the killing process in a bovine slaughterhouse. We analyzed 336 samples (from water, surfaces, carcasses, and feces), and 83.3% (280/336) were positive for E. coli. The most common phenotypic resistances that we detected were 50.7% (142/280) for tetracycline, 44.2% (124/280) for cephalothin, 34.6% (97/280) for streptomycin, and 36.7% (103/280) for ampicillin. A total of 82.4% of the isolates had resistance for at least one antimicrobial, and 37.5% presented multiresistance. We detected a total of 69 different phenotypic resistance patterns. We detected six other resistance-related genes, the most prevalent being tetA (22.5%) and strB (15.7%). The prevalence values of the virulence genes were 5.4% in hlyA, 1.4% in stx1, and 0.7% in stx2. The frequencies of the pathogenic strains (B2 and D) were 32.8% (92/280) and 67.1% (188/280) as commensals A and B1, respectively. E. coli isolates with pathogenic potential and multiresistance may represent an important source of dissemination and a risk to consumers.
Collapse
Affiliation(s)
- José Vázquez-Villanueva
- Centro de Biotecnología Genómica of Instituto Politécnico Nacional, Reynosa 88710, Mexico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo 66050, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo 66050, Mexico
| | | | - Alfredo Wong-González
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo 66050, Mexico
| | - Jesus Hernández-Escareño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo 66050, Mexico
| | - Omar Cabrero-Martínez
- Centro de Biotecnología Genómica of Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | | | - Abraham Guerrero
- CONACyT Research, Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Mexico
| | - Gildardo Rivera
- Centro de Biotecnología Genómica of Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Virgilio Bocanegra-García
- Centro de Biotecnología Genómica of Instituto Politécnico Nacional, Reynosa 88710, Mexico
- Correspondence: or ; Tel.: +52-8999243627 (ext. 87755)
| |
Collapse
|
3
|
Foyle L, Burnett M, Creaser A, Hens R, Keough J, Madin L, Price R, Smith H, Stone S, Kinobe RT. Prevalence and distribution of antimicrobial resistance in effluent wastewater from animal slaughter facilities: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120848. [PMID: 36563990 DOI: 10.1016/j.envpol.2022.120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The extensive use of antibiotics in food animal production and disposal of untreated wastewater from food animal slaughter facilities may create a shift in microbiomes of different ecosystems by generating reservoirs of antimicrobial resistance along the human-animal-environmental interface. This epidemiological problem has been studied, but its magnitude and impact on a global scale is poorly characterised. A systematic review was done to determine global prevalence and distribution patterns of antimicrobial resistance in effluent wastewater from animal slaughter facilities. Extracted data were stratified into rational groups for secondary analyses and presented as percentages. Culture and sensitivity testing was the predominant method; Escherichia spp., Enterococcus spp., and Staphylococcus aureus were the most targeted isolates. Variable incidences of resistance were detected against all major antimicrobial classes including reserved drugs such as ceftazidime, piperacillin, gentamicin, ciprofloxacin, and chloramphenicol; the median frequency and range in resistant Gram-negative isolates were: 11 (0-100), 62 (0-100), 8 (0-100), 14 (0-93) and 12 (0-62) respectively. Ciprofloxacin was the most tested drug with the highest incidences of resistance in livestock slaughterhouses in Iran (93%), Nigeria (50%) and China (20%), and poultry slaughterhouses in Germany (21-81%) and Spain (56%). Spatial global distribution patterns for antimicrobial resistance were associated with previously reported magnitude of antibiotic use in livestock or poultry farming and, the implicit existence of jurisdictional policies to regulate antibiotic use. These data indicate that anthropogenic activities in farming systems are a major contributor to the cause and dissemination of antimicrobial resistance into the environment via slaughterhouse effluents.
Collapse
Affiliation(s)
- Leo Foyle
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Solander Drive, Townsville, Queensland, 4811, Australia
| | - Matthew Burnett
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Abbey Creaser
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Rachel Hens
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Julia Keough
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Lauren Madin
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Ruby Price
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Hayley Smith
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Samuel Stone
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia
| | - Robert T Kinobe
- College of Public Health, Medical and Veterinary Sciences, 1 Solander Drive, James Cook University, Townsville, Queensland, 4811, Australia; Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Solander Drive, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
4
|
Characterization of Slaughterhouse Wastewater and Development of Treatment Techniques: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10071300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Commercialization in the meat-processing industry has emerged as one of the major agrobusiness challenges due to the large volume of wastewater produced during slaughtering and cleaning of slaughtering facilities. Slaughterhouse wastewater (SWW) contains proteins, fats, high organic contents, microbes, and other emerging pollutants (pharmaceutical and veterinary residues). It is important to first characterize the wastewater so that adequate treatment techniques can be employed so that discharge of this wastewater does not negatively impact the environment. Conventional characterization bulk parameters of slaughterhouse wastewater include pH, color, turbidity, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), and coliform counts. Characterization studies conducted have revealed the effects of the pollutants on microbial activity of SWW through identification of toxicity of antibiotic-resistant strains of bacteria. Due to the high-strength characteristics and complex recalcitrant pollutants, treatment techniques through combined processes such as anaerobic digestion coupled with advanced oxidation process were found to be more effective than stand-alone methods. Hence, there is need to explore and evaluate innovative treatments and techniques to provide a comprehensive summary of processes that can reduce the toxicity of slaughterhouse wastewater to the environment. This work presents a review of recent studies on the characterization of SWW, innovative treatments and technologies, and critical assessment for future research.
Collapse
|
5
|
Cufaoglu G, Cengiz G, Onaran Acar B, Yesilkaya B, Ayaz ND, Levent G, Goncuoglu M. Antibiotic, heavy metal, and disinfectant resistance in chicken, cattle, and sheep origin
E. coli
and whole‐genome sequencing analysis of a multidrug‐resistant
E. coli
O100:H25 strain. J Food Saf 2022. [DOI: 10.1111/jfs.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gizem Cufaoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Kirikkale University Kirikkale Turkey
| | - Gorkem Cengiz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Bahar Onaran Acar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Busra Yesilkaya
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Naim Deniz Ayaz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Kirikkale University Kirikkale Turkey
| | - Gizem Levent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
- School of Veterinary Medicine Texas Tech University Amarillo Texas USA
| | - Muammer Goncuoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| |
Collapse
|
6
|
Wang M, Xiong W, Zou Y, Lin M, Zhou Q, Xie X, Sun Y. Evaluating the net effect of sulfadimidine on nitrogen removal in an aquatic microcosm environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:1010-1019. [PMID: 31091633 DOI: 10.1016/j.envpol.2019.02.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/22/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Antibiotics enter into aquatic pond sediments by wastewater and could make detrimental effects on microbial communities. In this study, we examined the effects of sulfadimidine on nitrogen removal when added to experimental pond sediments. We found that sulfadimidine increased the number of sulfadimidine resistant bacteria and significantly increased the abundance of sul2 at the end of the incubation time (ANOVA test at Tukey HSD, P < 0.05). In addition, sulfadimidine decreased the N2O reduction rate as well as the amount of nitrate reduction. Pearson correlation analysis revealed that the N2O reduction rate was significantly and negatively correlated with narG (r = -0.679, P < 0.05). In contrast, we found a significant positive correlation between the amount of nitrate reduction and the abundance of narG (r = 0.609, P < 0.05) and nirK (r = 0.611, P < 0.05). High-throughput sequencing demonstrated that Actinobacteria, Euryarchaeota, Gemmatimonadetes, Nitrospirae, Burkholderiaceae (a family of Proteobacteria), and Thermoanaerobaculaceae (a family of Firmicutes) decreased with sulfadimidine exposure. In sediments, Actinobacteria, Bacteroidetes, Cyanobacteria, Epsilonbacteraeota, Euryarchaeota, Firmicutes, Gemmatimonadetes, and Spirochaetesat may play key roles in nitrogen transformation. Overall, the study exhibited a net effect of antibiotic exposure regarding nitrogen removal in an aquatic microcosm environment through a combination of biochemical pathways and molecular pathways, and draws attention to controlling antibiotic pollution in aquatic ecosystems.
Collapse
Affiliation(s)
- Mei Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yong Zou
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Manxia Lin
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Qin Zhou
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Xiying Xie
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Santos ECCD, Castro VS, Cunha-Neto A, Santos LFD, Vallim DC, Lisbôa RDC, Carvalho RCT, Junior CAC, Figueiredo EEDS. Escherichia coli O26 and O113:H21 on Carcasses and Beef from a Slaughterhouse Located in Mato Grosso, Brazil. Foodborne Pathog Dis 2018; 15:653-659. [PMID: 30036077 DOI: 10.1089/fpd.2018.2431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a group of emerging pathogens that can cause human diseases, including hemolytic uremic syndrome (HUS) and hemorrhagic colitis (HC). Monitoring slaughtering stages and checking contamination points are crucial for the production of safe food. In this context, the aim of this study was to verify contamination by STEC strains, to determine the contamination points and evaluate the resistance profile to 12 antimicrobials used in both veterinary and human medicine. A total of 80 samples were obtained from eight collection points (pen floor, rectum, hide, carcass swabs and esophagus, diaphragm, masseter, and retail beef tissue samples). The isolates were collected by dilution plating on MacConkey agar with sorbitol, cefixime, and tellurite and analyzed by multiplex polymerase chain reaction for virulence genes. Serotyping of non-O157 was performed, and testing for 12 antibiotics by disk diffusion was carried out. A total of 18 STEC strains were isolated, presenting different virulence profiles. Contamination by STEC was observed in the rectum (5/18), carcass surface (5/18), hide (3/18), diaphragm (2/18), retail beef (2/18), and masseter muscle (1/18). Pen floor swabs and esophagus tissues showed no STEC contamination. Moreover, three strains were identified as O26 and three as O113:H21 strains, which have been linked to HUS and HC outbreak cases in Brazil. All STEC isolates were susceptible to all evaluated antimicrobials, except streptomycin. The presence of STEC strains is a direct risk to the consumer, especially when isolated from retail beef, and contamination can occur during different slaughter stages. However, antimicrobial resistance profiles did not identify multidrug-resistant strains, limiting potential antimicrobial resistance transmission to other pathogens.
Collapse
Affiliation(s)
| | - Vinicius Silva Castro
- 2 Instituto de Química , Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adelino Cunha-Neto
- 3 Programa de Pós graduação Nutrição, Alimentos e Metabolismo, Universidade Federal de Mato Grosso , Cuiabá, Brazil .,4 Faculdade de Veterinária, Universidade Federal Fluminense , Rio de Janeiro, Brazil
| | - Luis Fernando Dos Santos
- 5 Instituto Adolf Lutz , Núcleo de Doenças Entéricas e Infecções por Patógenos Especiais, São Paulo, Brazil
| | | | | | | | - Carlos Adam Conte Junior
- 2 Instituto de Química , Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil .,4 Faculdade de Veterinária, Universidade Federal Fluminense , Rio de Janeiro, Brazil .,6 Instituto Oswaldo Cruz , Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eduardo Eustáquio de Souza Figueiredo
- 1 Programa de Pós graduação em Ciência Animal, Universidade Federal de Mato Grosso , Cuiabá, Brazil .,3 Programa de Pós graduação Nutrição, Alimentos e Metabolismo, Universidade Federal de Mato Grosso , Cuiabá, Brazil
| |
Collapse
|
8
|
Abbassi MS. Antimicrobial Resistance in Escherichia coli Isolates from Healthy Poultry, Bovine and Ovine in Tunisia: A Real Animal and Human Health Threat. ACTA ACUST UNITED AC 2017. [DOI: 10.17352/jcmbt.000021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Ghanbarpour R, Askari N, Ghorbanpour M, Tahamtan Y, Mashayekhi K, Afsharipour N, Darijani N. Genotypic analysis of virulence genes and antimicrobial profile of diarrheagenic Escherichia coli isolated from diseased lambs in Iran. Trop Anim Health Prod 2017; 49:591-597. [PMID: 28161846 PMCID: PMC7089295 DOI: 10.1007/s11250-017-1234-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/25/2017] [Indexed: 01/22/2023]
Abstract
The aim of the present study was to determine the analysis of virulence genes and antimicrobial profile of diarrheagenic Escherichia coli isolated from diseased lambs. Two hundred ninety E. coli isolates were recovered from 300 rectal swabs of diarrheic lambs and were confirmed by biochemical tests. The pathotype determination was done according to the presence of genes including f5, f41, LTI, STI, bfp, ipaH, stx 1 , stx 2 , eae, ehlyA, cnf 1 , cnf 2 , cdIII, cdIV, and f17 by PCR method. Sixty-six isolates (23.72%) possessed the STI gene and categorized into entrotoxigenic E. coli (ETEC). Nine isolates (3.1%) and five isolates (1.72%) were positive for the cnf1 and cnf2 genes which categorized into necrotoxic E. coli (NTEC). Hundred and seventeen isolates (40.34%) harbored stx 1 and/or stx 2 and classified as Shiga toxin-producing E. coli (STEC). Thirteen isolates (4.48%) were assigned to atypical entropathogenic E. coli (aEPEC) and possessed eae gene. Two isolates (0.68%) were positive for ipaH gene and were assigned to entroinvasive E. coli (EIEC). Statistical analysis showed a specific association between eae gene and STEC pathotype (P < 0.0001). The most prevalent resistance was observed against lincomycin (96.5%) and the lowest resistance was against kanamycine (56.02%), respectively. The high prevalence of STEC and ETEC indicates that diarrheic lambs represent an important reservoir for humans. ETEC may play an important role for frequent occurrence of diarrhea in lambs observed in this region. Due to high antibiotic resistance, appropriate control should be implemented in veterinary medicine to curb the development of novel resistant isolates.
Collapse
Affiliation(s)
- Reza Ghanbarpour
- Molecular Microbiology Research Group, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Nasrin Askari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Masoud Ghorbanpour
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | | | | - Nasim Darijani
- South of Kerman Provincial Veterinary Service, Kerman, Iran
| |
Collapse
|
10
|
Ranjbar R, Sheikhshahrokh A, Jonaidi Jafari N. Shiga (vero) toxin producingEscherichia coliin various types of food stuffs; virulence factors, O-serogroups and antimicrobial resistance properties. J Food Saf 2016. [DOI: 10.1111/jfs.12312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences; Tehran Iran
| | | | | |
Collapse
|
11
|
Um MM, Barraud O, Kérourédan M, Gaschet M, Stalder T, Oswald E, Dagot C, Ploy MC, Brugère H, Bibbal D. Comparison of the incidence of pathogenic and antibiotic-resistant Escherichia coli strains in adult cattle and veal calf slaughterhouse effluents highlighted different risks for public health. WATER RESEARCH 2016; 88:30-38. [PMID: 26460853 DOI: 10.1016/j.watres.2015.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
The goal of this study was to investigate the involvement of bovine slaughterhouse effluents and biosolids in the risk of environmental dissemination of pathogenic and antibiotic-resistant Escherichia coli. Several samples were collected from one adult cattle and one veal calf slaughterhouse wastewater treatment plant (WWTP). The treatment process had no impact on the percentage of Shiga toxin-producing E. coli (STEC) and on the percentage of atypical enteropathogenic E. coli (aEPEC). A STEC O157:H7 was isolated from the thickened sludge of the adult cattle slaughterhouse. As thickened sludge is intended to be spread on agricultural lands, the detection of this pathogenic strain is a public health issue. The percentage of antibiotic-resistant E. coli was 5.0% and 87.5% in wastewater from the adult cattle and the veal calf slaughterhouse, respectively. These percentages were not significantly different after treatment. Integron-bearing E. coli isolates were only detected in the veal calf slaughterhouse WWTP with percentages above 50.0% for all sampling points whatever the step of the treatment process. Taken together, these findings highlighted the fact that different public health risks might be associated with adult cattle or veal calf slaughterhouses regarding the dissemination of pathogenic and antibiotic-resistant E. coli isolates into the environment.
Collapse
Affiliation(s)
- Maryse Michèle Um
- INSERM UMR1043, INRA USC1360, INP-ENVT, Université de Toulouse, Toulouse, France
| | - Olivier Barraud
- Université de Limoges, UMR1092, Limoges, France; INSERM, UMR1092, Limoges, France; CHU Limoges, laboratoire de Bactériologie-Virologie-Hygiène, Limoges, France
| | - Monique Kérourédan
- INSERM UMR1043, INRA USC1360, INP-ENVT, Université de Toulouse, Toulouse, France
| | - Margaux Gaschet
- Université de Limoges, UMR1092, Limoges, France; INSERM, UMR1092, Limoges, France; CHU Limoges, laboratoire de Bactériologie-Virologie-Hygiène, Limoges, France
| | | | - Eric Oswald
- INSERM UMR1043, INRA USC1360, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | | | - Marie-Cecile Ploy
- Université de Limoges, UMR1092, Limoges, France; INSERM, UMR1092, Limoges, France; CHU Limoges, laboratoire de Bactériologie-Virologie-Hygiène, Limoges, France
| | - Hubert Brugère
- INSERM UMR1043, INRA USC1360, INP-ENVT, Université de Toulouse, Toulouse, France
| | - Delphine Bibbal
- INSERM UMR1043, INRA USC1360, INP-ENVT, Université de Toulouse, Toulouse, France.
| |
Collapse
|