1
|
Jin H, Lee EG, Khalid F, Jo SW, Baik SH. Isolation of Bacillus altitudinis 5-DSW with Protease Activity from Deep-Sea Mineral Water and Preparation of Functional Active Peptide Fractions from Chia Seeds. Microorganisms 2024; 12:2048. [PMID: 39458357 PMCID: PMC11509774 DOI: 10.3390/microorganisms12102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
In this study, we successfully isolated Bacillus strains with high protease activity from deep-sea mineral water in Korea and used them to obtain functional peptide fractions from chia seeds. The obtained Bacillus strains showed a high similarity of 99% with B. altitude with a long rod type (named B. altitudinis 5-DSW) and high protease activity at 40 °C, and 70% of the activity remained even at 70 °C. The defatted chia seed protein (15-50 kDa) was treated with crude protease from B. altitudinis 5-DSW and digested into small peptides below 20 kDa. The obtained chia seed peptides showed 3 times and 1.5 times higher antioxidant activity in DPPH and ABT radical scavenging assays, respectively. Moreover, chia seed peptides showed enhanced AChE inhibitory activity with an IC50 value of 14.48 ± 0.88 μg/mL and BChE inhibition activity with an IC50 value of 10.90 ± 0.80 μg/mL. Our results indicate that the newly isolated B. altitudinis 5-DSW and chia seed protein hydrolysates have potential applications in biotechnology and functional food development, enhancing the nutritional quality and value-added utilization of chia byproducts.
Collapse
Affiliation(s)
- Hao Jin
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea; (H.J.); (E.-G.L.); (F.K.)
| | - Eun-Gyo Lee
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea; (H.J.); (E.-G.L.); (F.K.)
| | - Faiza Khalid
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea; (H.J.); (E.-G.L.); (F.K.)
| | - Seung-Wha Jo
- Microbial Institute for Fermentation Industry (MIFI), Sunchang 56048, Jeonbuk, Republic of Korea;
| | - Sang-Ho Baik
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea; (H.J.); (E.-G.L.); (F.K.)
| |
Collapse
|
2
|
Tian Q, Zhang Y, Meng D, Zhai L, Shen Y, You C, Guan Z, Liao X. Simultaneous removal of tetracycline and sulfamethoxazole by laccase-mediated oxidation and ferrate(VI) oxidation: the impact of mediators and metal ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15708-15721. [PMID: 36171319 DOI: 10.1007/s11356-022-23232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This study explores the impact of mediators and metal ions of laccase-mediated oxidation and ferrate(VI) oxidation for the simultaneous removal of tetracycline antibiotics (TCs) and sulfonamide antibiotics (SAs) and to effectively remove their antimicrobial activity. The results showed that the antimicrobial activity of tetracycline against Bacillus altitudinis and Escherichia coli was significantly reduced, and the antimicrobial activity of sulfamethoxazole against B. altitudinis disappeared completely after treatment with the laccase-ABTS system. The combination of 6.0 U/mL of laccase and 0.2 mmol/L of ABTS removed 100% of 20.0 mg/L of tetracycline after 1.0 min at pH 6.0 and 25.0 °C, whereas the removal ratio of 20.0 mg/L of sulfamethoxazole was only 6.7%. The Al3+ and Cu2+ ions promoted the oxidation, and the Mn2+ ion decelerated the oxidation of tetracycline and sulfamethoxazole by the laccase-mediator systems. In contrast, the antimicrobial activity of tetracycline against B. altitudinis and E. coli was shown to be significantly reduced, and the sulfamethoxazole still retained high antimicrobial activity against B. altitudinis after treatment with Fe(VI) oxidation. The removal ratio of 20.0 mg/L of tetracycline was 100% after 1.0 min of treatment with 982.0 mg/L of K2FeO4 at pH 6.0 and 25.0 °C, whereas the removal ratio of 20.0 mg/L of sulfamethoxazole was only 49.5%. The Al3+, Cu2+, and Mn2+ ions both decelerated the oxidation of tetracycline and sulfamethoxazole by Fe(VI) oxidation. In general, the combination of the laccase-ABTS system and Fe(VI) was proposed for the simultaneous treatment of TCs and SAs in wastewater and to effectively remove their antimicrobial activity.
Collapse
Affiliation(s)
- Qiaopeng Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - Yong Zhang
- Department of Chemical and Biological Engineering, Hunan University of Science and Technology, Yongzhou 425199, Hunan, People's Republic of China
| | - Di Meng
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu, 476000, Henan, People's Republic of China
| | - Lixin Zhai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yu Shen
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Cuiping You
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhengbing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Ren R, Zhai L, Tian Q, Meng D, Guan Z, Cai Y, Liao X. Identification of a novel glycerophosphodiester phosphodiesterase from Bacillus altitudinis W3 and its application in degradation of diphenyl phosphate. 3 Biotech 2021; 11:161. [PMID: 33758739 DOI: 10.1007/s13205-021-02704-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
Diphenyl phosphate (DPHP) has been increasingly detected in environmental samples, posing a potential hazard to humans and other organisms and arousing concern regarding its adverse effects. Biological degradation of DPHP is considered a promising and environmentally friendly method for its removal. In this study, the bagdpd gene was mined from the Bacillus altitudinis W3 genome and identified as a glycerophosphodiester phosphodiesterase by bioinformatics analysis. The enzyme was expressed and its biochemical properties were studied. When using bis(4-nitrophenyl) phosphate as substrate, enzyme activity was optimal at 55 °C and a pH of 8.5. The enzyme remained stable in the pH range of 8.0 - 10.0. The rBaGDPD enzyme degraded DPHP and the reaction product was identified as phenyl phosphate by LC-MS. This is the first report of a glycerophosphodiester phosphodiesterase exhibiting hydrolytic activity against DPHP. This study demonstrated that rBaGDPD could have the potential for bioremediation and industrial applications.
Collapse
Affiliation(s)
- Runxian Ren
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Lixin Zhai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Qiaopeng Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Di Meng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Zhengbin Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
4
|
Yang S, Zhai L, Huang L, Meng D, Li J, Hao Z, Guan Z, Cai Y, Liao X. Mining of alkaline proteases from Bacillus altitudinis W3 for desensitization of milk proteins: Their heterologous expression, purification, and characterization. Int J Biol Macromol 2020; 153:1220-1230. [DOI: 10.1016/j.ijbiomac.2019.10.252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023]
|
5
|
Tian Q, Dou X, Huang L, Wang L, Meng D, Zhai L, Shen Y, You C, Guan Z, Liao X. Characterization of a robust cold-adapted and thermostable laccase from Pycnoporus sp. SYBC-L10 with a strong ability for the degradation of tetracycline and oxytetracycline by laccase-mediated oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121084. [PMID: 31473514 DOI: 10.1016/j.jhazmat.2019.121084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
A native laccase (Lac-Q) with robust cold-adapted and thermostable characteristics from the white-rot fungus Pycnoporus sp. SYBC-L10 was purified, characterized, and used in antibiotic treatments. Degradation experiments revealed that Lac-Q at 10.0 U mL-1 coupled with 1.0 mmol L-1 ABTS could degrade 100% of the tetracycline or oxytetracycline (50 mg L-1) within 5 min with a static incubation at 0 °C (pH 6.0). The presence of the Mn2+ ion inhibited the removal rate of tetracycline and oxytetracycline by the Lac-Q-ABTS system, and the presence of Al3+, Cu2+, and Fe3+ accelerated the removal rate of tetracycline and oxytetracycline by the Lac-Q-ABTS system. Furthermore, the growth inhibition of Bacillus altitudinis SYBC hb4 and E. coli by tetracycline antibiotics revealed that the antimicrobial activity was significantly reduced after treatment with the Lac-Q-ABTS system. Finally, seven transformation products of oxytetracycline (namely TP 445, TP 431, TP 413, TP 399, TP 381, TP 367, and TP 351) were identified during the Lac-Q-mediated oxidation process by using UPLC-MS/MS. A possible degradation pathway including deamination, demethylation, and dehydration was proposed. These results suggest that the Lac-Q-ABTS system shows a great potential for the treatment of antibiotic wastewater containing different metal ions at various temperatures.
Collapse
Affiliation(s)
- Qiaopeng Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China.
| | - Xin Dou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China
| | - Lin Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China
| | - Lei Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China; School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, PR China
| | - Di Meng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China
| | - Lixin Zhai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China
| | - Yu Shen
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China
| | - Cuiping You
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China
| | - Zhengbing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
6
|
Jia X, Lin X, Lin C, Lin L, Chen J. Enhanced alkaline catalase production by Serratia marcescens FZSF01: Enzyme purification, characterization, and recombinant expression. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7535604. [PMID: 27579320 PMCID: PMC4992532 DOI: 10.1155/2016/7535604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/03/2016] [Indexed: 12/11/2022]
Abstract
Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and K m of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications.
Collapse
|
8
|
Zhang Y, Li X, Hao Z, Xi R, Cai Y, Liao X. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal. PLoS One 2016; 11:e0158351. [PMID: 27362423 PMCID: PMC4928806 DOI: 10.1371/journal.pone.0158351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP.
Collapse
Affiliation(s)
- Yanzhou Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xunhang Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- The Bioscience and Engineering College, Jiangxi Agriculture University, Nanchang, 330045, China
| | - Zhikui Hao
- Institute of Applied Biotechnology, Taizhou Vocational & Technical College, Taizhou, 318000, China
| | - Ruchun Xi
- College of Forestry, South China Agricultural University, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
9
|
Kauldhar BS, Dhau JS, Sooch BS. Covalent linkage of alkalothermophilic catalase onto functionalized cellulose. RSC Adv 2016. [DOI: 10.1039/c6ra02779b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|