1
|
Liu T, Zhou Z, Luo C, Luo H, Tang J, Shi X, Li D, Zhang Q, Li J, Xia Y, Song N, Yi T. Elucidation of mechanisms underlying active oxygen burst in Citrus sinensis after Diaporthe citri infection using transcriptome analysis. Front Microbiol 2024; 15:1425441. [PMID: 39268534 PMCID: PMC11390498 DOI: 10.3389/fmicb.2024.1425441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Reactive oxygen species (ROS) generation is a common disease defense mechanism in plants. However, it is unclear whether Citrus host activates defense response against Diaporthe citri causing citrus melanose disease by producing ROS, and the underlying molecular mechanisms are unknown. Methods DAB staining and RNA-Seq technology were used to compare the active oxygen burst and differential gene expression, respectively, in uninfected and infected Citrus sinensis leaves at different time points during D. citri infection in vivo. The functions of CsRBOH (a significant DEG) were confirmed in N. benthamiana through the Agrobacterium-mediated transient expression system. Results DAB staining indicated that C. sinensis initiated defense against D. citri infection within 24 h by generating ROS. Illumina sequencing revealed 25,557 expressed genes of C. sinensis. The most upregulated DEGs (n = 1,570) were identified 72 h after fungal inoculation (sample denoted as CD72). In the CD72 vs. Cs (samples at 0 h after fungal inoculation) comparison, the KEGG pathway category with the highest number of genes (n = 62) and most significant enrichment was Protein processing in endoplasmic reticulum, followed by Glutathione metabolism and MAPK signaling pathway-plant. GO analysis revealed that the DEGs of CD72 vs. Cs related to active oxygen burst and chitin recognition were significantly grouped into the regulation of biological processes and molecular functions, with GO terms including response to ROS, response to fungus, and oxidoreductase activity. Remarkably, CsRBOH was significantly enriched in the GO and KEGG analyses, and its expression pattern in qRT-PCR and DAB staining results were consistent. Among the 63 ROS-related DEGs, HSP genes and genes associated with the peroxidase family were highly significant as revealed by protein-protein interaction networks. Furthermore, ROS accumulation, cell death, and upregulation of defense-related genes were observed in N. benthamiana leaves with CsRBOH expressed through the Agrobacterium-mediated transient expression system. Conclusion Our findings suggested that C. sinensis activates CsRBOH and ROS-related genes, leading to ROS accumulation to resist the invasion by D. citri. This study laid the foundation for future research on molecular mechanisms and breeding of C. sinensis cultivars resistant to citrus melanose.
Collapse
Affiliation(s)
- Tiantian Liu
- Hunan Provincial Key Laboratory of Plant Diseases and Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Zehua Zhou
- Hunan Provincial Key Laboratory of Plant Diseases and Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Changwei Luo
- Hunan Provincial Key Laboratory of Plant Diseases and Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Hua Luo
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Jun Tang
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Xiaojiang Shi
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Diping Li
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Qiong Zhang
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Jin Li
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Yonggang Xia
- Human Academy of Forestry, Changsha, Hunan, China
| | - Na Song
- Hunan Provincial Key Laboratory of Plant Diseases and Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Tuyong Yi
- Hunan Provincial Key Laboratory of Plant Diseases and Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
2
|
Huang F, Ling J, Cui Y, Guo B, Song X. Profiling of the Citrus Leaf Endophytic Mycobiota Reveals Abundant Pathogen-Related Fungal Groups. J Fungi (Basel) 2024; 10:596. [PMID: 39330356 PMCID: PMC11433070 DOI: 10.3390/jof10090596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Plant endophytic microbial communities consist of many latent plant pathogens and, also, many pathogen-related species with reduced virulence. Though with a long history of co-evolution, the diversity and composition of the endophytic mycobiota, especially the pathogen-related fungal groups, has been under-investigated in Citrus (C.). Based on the amplicon sequencing of fungal internal transcribed spacer (ITS), the leaf endophytic mycobiota were profiled on citrus varieties from different citrus-producing regions. The pomelo variety shared significantly distinctive leaf mycobiota when compared to the mandarin and sweet orange; these conform to their host genetic relationships. In addition, a data set of 241 citrus-related fungi, including 171 (71%) pathogens and potential pathogens, was summarized from previous studies. Under the criteria of local BLAST (covered ITS nucleotide ≥ 150 bp, sequence identity ≥ 99%), a total of 935 fungal operational taxonomic units (OTUs) were assigned to 62 pathogen-related fungal groups, representing 14.9% of the relative abundance in the whole community. Of which, the top groups consisted of Colletotrichum gloeosporioides (mean relative abundance, 4.3%), Co. citricola and Co. karstii (2.7%), Zasmidium citri-griseum (2.4%), and Z. fructigenum (1.4%). At the genus level, the ratio of the pathogen-related fungal groups in 64% of fungal genera (16 out of 25) exceeded 50%, which are the solely or mainly occurring fungi of their genus in citrus. Our study suggests that the leaf endophytic compartment may be an important place for the growth of latent pathogens.
Collapse
Affiliation(s)
- Feng Huang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Jinfeng Ling
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yiping Cui
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Bin Guo
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Xiaobing Song
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| |
Collapse
|
3
|
Wang D, Deng D, Zhan J, Wu W, Duan C, Sun S, Zhu Z. An Emerging Disease of Chickpea, Basal Stem Rot Caused by Diaporthe aspalathi in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1950. [PMID: 39065477 PMCID: PMC11280406 DOI: 10.3390/plants13141950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Chickpea (Cicer arietinum L.) is an important legume crop worldwide. An emerging disease, basal stem rot with obvious wilt symptoms, was observed in the upper part of chickpea plants during the disease survey in Qiubei County of Yunnan Province. Three fungal isolates (ZD36-1, ZD36-2, and ZD36-3) were obtained from the diseased tissue of chickpea plants collected from the field. Those isolates were morphologically found to be similar to Diaporthe aspalathi. Molecular sequence analyses of multiple gene regions (ITS, tef1, tub2, cal, and his3) indicated that the three isolates showed a high identity with D. aspalathi. Pathogenicity and host range tests of the isolates were performed on the original host chickpea and eight other legume crops. The isolates were strongly pathogenic to chickpea and appeared highly pathogenic to soybean, cowpea, and mung bean; moderated or mild pathogenic to adzuki bean and common bean; however, the isolates did not cause symptoms on grass pea (Lathyrus sativus). Diaporthe aspalathi was previously reported as a main pathogen causing the southern stem canker in soybean. To our knowledge, this is the first report of D. aspalathi inducing basal stem rot on chickpea worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Suli Sun
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.W.); (D.D.); (J.Z.); (W.W.); (C.D.)
| | - Zhendong Zhu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.W.); (D.D.); (J.Z.); (W.W.); (C.D.)
| |
Collapse
|
4
|
Wang X, Kotta-Loizou I, Coutts RHA, Deng H, Han Z, Hong N, Shafik K, Wang L, Guo Y, Yang M, Xu W, Wang G. A circular single-stranded DNA mycovirus infects plants and confers broad-spectrum fungal resistance. MOLECULAR PLANT 2024; 17:955-971. [PMID: 38745413 DOI: 10.1016/j.molp.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Circular single-stranded DNA (ssDNA) viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. In this study, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1-P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases fungal virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that DsCDV1 P3 is systematically localized in the plasmodesmata, while its expression in trans-complementation experiments could restore systematic infection of a movement-deficient plant virus, suggesting that P3 is a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.
Collapse
Affiliation(s)
- Xianhong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK; Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Huifang Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Zhenhao Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Karim Shafik
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China; Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt
| | - Liping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Yashuang Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Mengmeng Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China.
| | - Guoping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
5
|
Li P, Xiao X, Wang J, Niu F, Huang J, Xie B, Ye L, Zhang C, Wang D, Wu Q, Zheng X, Gai Y, Li H, Jiao C. Transcriptional insights of citrus defense response against Diaporthe citri. BMC PLANT BIOLOGY 2023; 23:614. [PMID: 38044435 PMCID: PMC10694908 DOI: 10.1186/s12870-023-04624-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Citrus melanose, caused by Diaporthe citri, is one of the most important and widespread fungal diseases of citrus. Previous studies demonstrated that the citrus host was able to trigger the defense response to restrict the spread of D. citri. However, the molecular mechanism underlying this defense response has yet to be elucidated. Here, we used RNA-Seq to explore the gene expression pattern at the early (3 days post infection, dpi) and late (14 dpi) infection stages of citrus leaves in response to D. citri infection, and outlined the differences in transcriptional regulation associated with defense responses. The functional enrichment analysis indicated that the plant cell wall biogenesis was significantly induced at the early infection stage, while the callose deposition response was more active at the late infection stage. CYP83B1 genes of the cytochrome P450 family were extensively induced in the callus deposition-mediated defense response. Remarkably, the gene encoding pectin methylesterase showed the highest upregulation and was only found to be differentially expressed at the late infection stage. Genes involved in the synthesis and regulation of phytoalexin coumarin were effectively activated. F6'H1 and S8H, encoding key enzymes in the biosynthesis of coumarins and their derivatives, were more strongly expressed at the late infection stage than at the early infection stage. Collectively, our study profiled the response pattern of citrus leaves against D. citri infection and provided the transcriptional evidence to support the defense mechanism.
Collapse
Affiliation(s)
- Pudong Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaoe Xiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingrui Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fan Niu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jiangnan Huang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Bianyue Xie
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lu Ye
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chaofan Zhang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Dengliang Wang
- Quzhou Academy of agricultural and Forestry Sciences, Quzhou, 323000, Zhejiang, China
| | - Qun Wu
- Quzhou Academy of agricultural and Forestry Sciences, Quzhou, 323000, Zhejiang, China
| | - Xueliang Zheng
- Agricultural Characteristic Industry Development Center of Quzhou City, Quzhou, Zhejiang, 323000, China
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Hongye Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Chen Jiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
6
|
Lambert C, Schweizer L, Matio Kemkuignou B, Anoumedem EGM, Kouam SF, Marin-Felix Y. Four new endophytic species of Diaporthe (Diaporthaceae, Diaporthales) isolated from Cameroon. MycoKeys 2023; 99:319-362. [PMID: 37915461 PMCID: PMC10616871 DOI: 10.3897/mycokeys.99.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Diaporthe (Diaporthaceae, Diaporthales) is a large group of fungi frequently reported as phytopathogens, with ubiquitous distribution across the globe. Diaporthe have traditionally been characterized by the morphology of their ana- and teleomorphic state, revealing a high degree of heterogeneity as soon as DNA sequencing was utilized across the different members of the group. Their relevance for biotechnology and agriculture attracts the attention of taxonomists and natural product chemists alike in context of plant protection and exploitation for their potential to produce bioactive secondary metabolites. While more than 1000 species are described to date, Africa, as a natural habitat, has so far been under-sampled. Several endophytic fungi belonging to Diaporthe were isolated from different plant hosts in Cameroon over the course of this study. Phylogenetic analyses based on DNA sequence data of the internal transcribed spacer region and intervening 5.8S nrRNA gene, and partial fragments of the calmodulin, beta-tubulin, histone and the translation elongation factor 1-α genes, demonstrated that these isolates represent four new species, i.e. D.brideliae, D.cameroonensis, D.pseudoanacardii and D.rauvolfiae. Moreover, the description of D.isoberliniae is here emended, now incorporating the morphology of beta and gamma conidia produced by two of our endophytic isolates, which had never been documented in previous records. Moreover, the paraphyletic nature of the genus is discussed and suggestions are made for future revision of the genus.
Collapse
Affiliation(s)
- Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, GermanyMolecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
| | - Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Elodie Gisèle M. Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Simeon F. Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
7
|
Tang X, Lu YZ, Dissanayake LS, Goonasekara ID, Jayawardena RS, Xiao YP, Hyde KD, Chen XM, Kang JC. Two new fungal genera ( Diaporthales) found on Dipterocarpaceae in Thailand. Front Microbiol 2023; 14:1169052. [PMID: 37342559 PMCID: PMC10278593 DOI: 10.3389/fmicb.2023.1169052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Diaporthales is a species-rich order of fungi that includes endophytes, saprobes, and pathogens associated with forest plants and crops. They may also occur as parasites or secondary invaders of plant tissues injured or infected by other organisms or inhabit living animal and human tissues, as well as soil. Meanwhile, some severe pathogens wipe out large-scale cultivations of profitable crops, timber monocultures, and forests. Based on morphological and phylogenetic analyses of combined ITS, LSU, tef1-α, and rpb2 sequence data, generated using maximum likelihood (ML), maximum parsimony (MP), and MrBayes (BI), we introduce two new genera of Diaporthales found in Dipterocarpaceae in Thailand, namely Pulvinaticonidioma and Subellipsoidispora. Pulvinaticonidioma is characterized by solitary, subglobose, pycnidial, unilocular conidiomata with the internal layers convex and pulvinate at the base; hyaline, unbranched, septate conidiophores; hyaline, phialidic, cylindrical to ampulliform, determinate conidiogenous cells and hyaline, cylindrical, straight, unicellular, and aseptate conidia with obtuse ends. Subellipsoidispora has clavate to broadly fusoid, short pedicellate asci with an indistinct J- apical ring; biturbinate to subellipsoidal, hyaline to pale brown, smooth, guttulate ascospores that are 1-septate and slightly constricted at the septa. Detailed morphological and phylogenetic comparisons of these two new genera are provided in this study.
Collapse
Affiliation(s)
- Xia Tang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, Guizhou, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Yong-Zhong Lu
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, Guizhou, China
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Lakmali S. Dissanayake
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, Guizhou, China
| | - Ishani D. Goonasekara
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- International Relations Unit, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Yuan-Pin Xiao
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Xue-Mei Chen
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Ji-Chuan Kang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Xiao X, Liu Y, Zheng F, Xiong T, Zeng Y, Wang W, Zheng X, Wu Q, Xu J, Crous P, Jiao C, Li H. High species diversity in Diaporthe associated with citrus diseases in China. PERSOONIA 2023; 51:229-256. [PMID: 38665984 PMCID: PMC11041894 DOI: 10.3767/persoonia.2023.51.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/08/2023] [Indexed: 04/28/2024]
Abstract
Species in Diaporthe have broad host ranges and cosmopolitan geographic distributions, occurring as endophytes, saprobes and plant pathogens. Previous studies have indicated that many Diaporthe species are associated with Citrus. To further determine the diversity of Diaporthe species associated with citrus diseases in China, we conducted extensive surveys in major citrus-producing areas from 2017-2020. Diseased tissues were collected from leaves, fruits, twigs, branches and trunks showing a range of symptoms including melanose, dieback, gummosis, wood decay and canker. Based on phylogenetic comparisons of DNA sequences of the internal transcribed spacer regions (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-alpha (tef1) and beta-tubulin (tub2), 393 isolates from 10 provinces were identified as belonging to 36 species of Diaporthe, including 32 known species, namely D. apiculata, D. biconispora, D. biguttulata, D. caryae, D. citri, D. citriasiana, D. compacta, D. discoidispora, D. endophytica, D. eres, D. fusicola, D. fulvicolor, D. guangxiensis, D. hongkongensis, D. hubeiensis, D. limonicola, D. litchii, D. novem, D. passifloricola, D. penetriteum, D. pescicola, D. pometiae, D. sackstonii, D. sennicola, D. sojae, D. spinosa, D. subclavata, D. tectonae, D. tibetensis, D. unshiuensis, D. velutina and D. xishuangbanica, and four new species, namely D. gammata, D. jishouensis, D. ruiliensis and D. sexualispora. Among the 32 known species, 14 are reported for the first time on Citrus, and two are newly reported from China. Among the 36 species, D. citri was the dominant species as exemplified by its high frequency of isolation and virulence. Pathogenicity tests indicated that most Diaporthe species obtained in this study were weakly aggressive or non-pathogenic to the tested citrus varieties. Only D. citri produced the longest lesion lengths on citrus shoots and induced melanose on citrus leaves. These results further demonstrated that a rich diversity of Diaporthe species occupy Citrus, but only a few species are harmful and D. citri is the main pathogen for Citrus in China. The present study provides a basis from which targeted monitoring, prevention and control measures can be developed. Citation: Xiao XE, Liu YD, Zheng F, et al. 2023. High species diversity in Diaporthe associated with citrus diseases in China. Persoonia 51: 229-256. doi: 10.3767/persoonia.2023.51.06.
Collapse
Affiliation(s)
- X.E. Xiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.D. Liu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - F. Zheng
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - T. Xiong
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.T. Zeng
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - W. Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - X.L. Zheng
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou, 324000, China
| | - Q. Wu
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou, 324000, China
| | - J.P. Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - C. Jiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - H.Y. Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
9
|
Liu XY, Chaisiri C, Lin Y, Fu YP, Yin WX, Zhu FX, Li JB, Xiong B, Wu H, Xu A, Luo CX. Effective Management of Citrus Melanose Based on Combination of Ecofriendly Chemicals. PLANT DISEASE 2023; 107:1172-1176. [PMID: 36222721 DOI: 10.1094/pdis-03-22-0513-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Citrus melanose, caused by the ascomycete fungus Diaporthe citri, is one of the most important diseases in China that affects not only the production but also the quality of citrus. In China, mancozeb is recommended to control melanose disease at the dose of 1.34 g/liter. However, it is widely applied in practice at the dose of 2.66 g/liter or even 4 g/liter, because reduced efficacy of the recommended dose was observed in regions severely damaged by melanose. In this study, some ecofriendly chemicals for melanose management were evaluated. First, the sensitivity to fungicides was screened in the laboratory based on the inhibition of mycelial growth and conidial germination of D. citri. Results showed that both quinone outside inhibitor (QoI) fungicides kresoxim-methyl and trifloxystrobin inhibited conidial germination of D. citri up to 100% at 0.1 μg/ml. The in vivo control efficacy on detached fruit indicated that treatments with elastic nanocopolymer film at 2 g/liter, mancozeb at 1 g/liter, and kresoxim-methyl at 0.1 g/liter significantly inhibited the infection process compared with the control treatment of mineral oil alone. In field trials, the efficacy of kresoxim-methyl at 0.1 g/liter and elastic nanocopolymer film at 2 g/liter mixed with mancozeb at 1 g/liter was equal to that of mancozeb at 2.66 g/liter. The use of mancozeb could be reduced greatly, and the newly developed fungicide combinations are more environmentally friendly due to the low toxicity of both QoI fungicides and elastic nanocopolymer film. The newly developed method with ecofriendly chemicals should play an important role in the management of citrus melanose in the future.
Collapse
Affiliation(s)
- X Y Liu
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - C Chaisiri
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Y Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Y P Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - W X Yin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - F X Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - J B Li
- Nanfeng Citrus Research Institute, Nanfeng 344500, China
| | - B Xiong
- Nanfeng Citrus Research Institute, Nanfeng 344500, China
| | - H Wu
- Nanfeng Citrus Research Institute, Nanfeng 344500, China
| | - A Xu
- Nanfeng Citrus Research Institute, Nanfeng 344500, China
| | - C X Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Kemkuignou BM, Lambert C, Schmidt K, Schweizer L, Anoumedem EGM, Kouam SF, Stadler M, Stradal T, Marin-Felix Y. Unreported cytochalasins from an acid-mediated transformation of cytochalasin J isolated from Diaporthe cf. ueckeri. Fitoterapia 2023; 166:105434. [PMID: 36681097 DOI: 10.1016/j.fitote.2023.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Chemical investigation of an endophytic fungus herein identified as Diaporthe cf. ueckeri yielded four known compounds, named cytochalasins H and J and dicerandrols A and B. Reports of acid sensitivity within the cytochalasan family inspired an attempt of acid-mediated conversion of cytochalasins H and J, resulting in the acquisition of five polycyclic cytochalasins featuring 5/6/5/8-fused tetracyclic and 5/6/6/7/5-fused pentacyclic skeletons. Two of the obtained polycyclic cytochalasins constituted unprecedented analogues, for which the trivial names cytochalasins J4 and J5 were proposed, whereas the others were identified as the known phomopchalasin A, phomopchalasin D and 21-acetoxycytochalasin J3. The structures of the compounds were determined by extensive spectral analysis, namely HR-ESIMS, ESIMS and 1D/2D NMR. The stereochemistry of cytochalasins J4 and J5 was proposed using their ROESY data, biosynthetic and mechanistic considerations and by comparison of their ECD spectra with those of related congeners. All compounds except for cytochalasins H and J were tested for antimicrobial and cytotoxic activity. Cytochalasins J4 and J5 showed neither antimicrobial nor cytotoxic activity in the tested concentrations, with only weak antiproliferative activity observable against KB3.1 cells. The actin disruptive properties of all cytochalasins obtained in this study and of the previously reported cytochalasins RKS-1778 and phomopchalasin N were examined, and monitored by fluorescence microscopy using human osteo-sarcoma (U2-OS) cells. Compared to their precursor molecules (cytochalasins H and J), phomopchalasins A and D, 21-acetoxycytochalasin J3, cytochalasins J4 and J5 revealed a strongly reduced activity on the F-actin network, highlighting that the macrocyclic ring is crucial for bioactivity.
Collapse
Affiliation(s)
- Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Katharina Schmidt
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Elodie Gisèle M Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, P.O. Box 47, Cameroon
| | - Simeon F Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, P.O. Box 47, Cameroon
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Theresia Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany.
| |
Collapse
|
11
|
Effect of Different Types of Continuous Cropping on Microbial Communities and Physicochemical Properties of Black Soils. DIVERSITY 2022. [DOI: 10.3390/d14110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The barriers caused by continuous tillage have had a negative impact on the crop and soil environment. Black soils are economically important as a valuable natural resource in Northeast China, but limited soil resources have led to continuous planting of major food crops and medicinal plants. At present, the extent to which two different types of plants—grains and medicinal plants that are successively grown on the same soil—have an impact on soil quality and microbiology is not known. In this study, we investigated the effects of different types of long-term continuous cropping on soil and soil microbial communities by determining the physicochemical properties, the soil community composition and function of grain crops and medicinal-plant soils with more than five years of continuous cropping, as well as fallow soils. The results showed that long-term continuous cropping reduced the pH of different types of soils, but there was no significant difference in the content of AK. The relative abundance of beneficial dominant phyla, such as Actinomycetes, Acidobacteria, and Green Campylobacter decreased and the relative abundance of pathogenic genera such as Alternaria and Didymellaceae, increased after the long-term continuous cropping of DM (grain crops) and DG (medicinal plants). Specifically, continuous cropping increased the relative abundance of fungi with pathogenic potential, such as Sordariomycetes, Dothideomycetes, Saccharomycetes, and Mucoromycetes in grain soils and Agaricostilbomycetes in herb soils. Among the soil physicochemical properties, NH4+-N and pH were the most important factors contributing to changes in the composition of bacterial and fungal communities, respectively. Continuous cropping of different types of plants altered the diversity of the microbial communities, with the most significant effect from the continuous cropping of food crops. Our findings provide a scientific and theoretical basis for future agricultural research to improve soil microbial activity, mitigate continuous-cropping barriers, and increase productivity.
Collapse
|
12
|
Zhai G, Chen S, Shen H, Guo H, Jiang M, Liu L. Bioactive Monoterpenes and Polyketides from the Ascidian-Derived Fungus Diaporthe sp. SYSU-MS4722. Mar Drugs 2022; 20:553. [PMID: 36135742 PMCID: PMC9504586 DOI: 10.3390/md20090553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
There has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered, while new monoterpenes were rarely isolated from marine-derived fungi in the past two decades. Three new monoterpenes, diaporterpenes A-C (1-3), and one new α-pyrones, diaporpyrone A (6), along with nine known polyketides 4, 5, and 7-13 were isolated from the ascidian-derived fungus Diaporthe sp. SYSU-MS4722. Their planar structures were elucidated based on extensive spectroscopic analyses (1D and 2D NMR and HR-ESIMS). The absolute configurations of 1 and 3 were identified by an X-ray crystallographic diffraction experiment using Cu-Ka radiation, and those of compound 2 were assigned by calculating NMR chemical shifts and ECD spectra. It afforded an example of natural epimers with different physical properties, especially crystallization, due to the difference in intermolecular hydrogen bonding. Compounds 9, 10, and 13 showed moderate total antioxidant capacity (0.82 of 9; 0.70 of 10; 0.48 of 13) with Trolox (total antioxidant capacity: 1.0) as a positive control, and compounds 5 and 7 showed anti-inflammatory activity with IC50 values of 35.4 and 40.8 µM, respectively (positive control indomethacin: IC50 = 35.8 µM).
Collapse
Affiliation(s)
- Guifa Zhai
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- School of Medicine, Shenzhen Campus, Sun Yat-Sen University, Shenzhen 518107, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Hongjie Shen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| |
Collapse
|
13
|
Chaiwan N, Jeewon R, Pem D, Jayawardena RS, Nazurally N, Mapook A, Promputtha I, Hyde KD. New Species of Discosia rhododendricola, Neopestalotiopsis rhododendricola and New Geographical Record of Diaporthe nobilis from Rhododendron sp. J Fungi (Basel) 2022; 8:jof8090907. [PMID: 36135632 PMCID: PMC9504118 DOI: 10.3390/jof8090907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
In the present study, we report two new asexual fungal species (i.e., Discosia rhododendricola, Neopestalotiopsis rhododendricola (Sporocadaceae) and a new host for a previously described species (i.e., Diaporthe nobilis; Diaporthaceae). All species were isolated from Rhododendron spp. in Kunming, Yunnan Province, China. All taxa are described based on morphology, and phylogenetic relationships were inferred using a multigenic approach (LSU, ITS, RPB2, TEF1 and TUB2). The phylogenetic analyses indicated that D. rhododendronicola sp. nov. is phylogenetically related to D. muscicola, and N. rhododendricola sp. nov is related to N. sonnaratae. Diaporthe nobilis is reported herein as a new host record from Rhododendron sp. for China, and its phylogeny is depicted based on ITS, TEF1 and TUB2 sequence data.
Collapse
Affiliation(s)
- Napalai Chaiwan
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
| | - Dhandevi Pem
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | - Nadeem Nazurally
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Reduit 80837, Mauritius
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China
- Correspondence:
| |
Collapse
|
14
|
Chaisiri C, Liu X, Lin Y, Luo C. Diaporthe citri: A Fungal Pathogen Causing Melanose Disease. PLANTS (BASEL, SWITZERLAND) 2022; 11:1600. [PMID: 35736750 PMCID: PMC9227384 DOI: 10.3390/plants11121600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022]
Abstract
Citrus melanose is a fungal disease caused by Diaporthe citri F.A. Wolf. It is found in various citrus-growing locations across the world. The host range of D. citri is limited to plants of the Citrus genus. The most economically important hosts are Citrus reticulata (mandarin), C. sinensis (sweet orange), C. grandis or C. maxima (pumelo), and C. paradisi (grapefruit). In the life cycle of D. citri throughout the citrus growing season, pycnidia can be seen in abundance on dead branches, especially after rain, with conidia appearing as slimy masses discharged from the dead twigs. Raindrops can transmit conidia to leaves, twigs, and fruits, resulting in disease dispersion throughout small distances. Persistent rains and warm climatic conditions generally favor disease onset and development. The melanose disease causes a decline in fruit quality, which lowers the value of fruits during marketing and exportation. High rainfall areas should avoid planting susceptible varieties. In this article, information about the disease symptoms, history, geographic distribution, epidemiology, impact, and integrated management practices, as well as the pathogen morphology and identification, was reviewed and discussed.
Collapse
Affiliation(s)
- Chingchai Chaisiri
- Key Lab of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China; (C.C.); (X.L.)
- Hubei Key Lab of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China;
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyu Liu
- Key Lab of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China; (C.C.); (X.L.)
- Hubei Key Lab of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China;
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Hubei Key Lab of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China;
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China; (C.C.); (X.L.)
- Hubei Key Lab of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China;
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Matio Kemkuignou B, Schweizer L, Lambert C, Anoumedem EGM, Kouam SF, Stadler M, Marin-Felix Y. New polyketides from the liquid culture of Diaporthebreyniae sp. nov. (Diaporthales, Diaporthaceae). MycoKeys 2022; 90:85-118. [PMID: 36760420 PMCID: PMC9849082 DOI: 10.3897/mycokeys.90.82871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/02/2022] [Indexed: 11/12/2022] Open
Abstract
During the course of a study on the biodiversity of endophytes from Cameroon, a fungal strain was isolated. A multigene phylogenetic inference using five DNA loci revealed that this strain represents an undescribed species of Diaporthe, which is introduced here as D.breyniae. Investigation into the chemistry of this fungus led to the isolation of two previously undescribed secondary metabolites for which the trivial names fusaristatins G (7) and H (8) are proposed, together with eleven known compounds. The structures of all of the metabolites were established by using one-dimensional (1D) and two-dimensional (2D) Nuclear Magnetic Resonance (NMR) spectroscopic data in combination with High-Resolution ElectroSpray Ionization Mass Spectrometry (HR-ESIMS) data. The absolute configuration of phomopchalasin N (4), which was reported for the first time concurrently to the present publication, was determined by analysis of its Rotating frame Overhauser Effect SpectroscopY (ROESY) spectrum and by comparison of its Electronic Circular Dichroism (ECD) spectrum with that of related compounds. A selection of the isolated secondary metabolites were tested for antimicrobial and cytotoxic activities, and compounds 4 and 7 showed weak antifungal and antibacterial activity. On the other hand, compound 4 showed moderate cytotoxic activity against all tested cancer cell lines with IC50 values in the range of 5.8-45.9 µM. The latter was found to be less toxic than the other isolated cytochalasins (1-3) and gave hints in regards to the structure-activity relationship (SAR) of the studied cytochalasins. Fusaristatin H (8) also exhibited weak cytotoxicity against KB3.1 cell lines with an IC50 value of 30.3 µM. Graphical abstract.
Collapse
Affiliation(s)
- Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
| | - Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Elodie Gisèle M. Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Simeon F. Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
16
|
Gomzhina MM, Gannibal PB. Diaporthe species infecting sunflower ( Helianthus annuus) in Russia, with the description of two new species. Mycologia 2022; 114:556-574. [PMID: 35583980 DOI: 10.1080/00275514.2022.2040285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phomopsis stem canker is economically important sunflower disease that caused by multiple Diaporthe species. Recent investigations resulted in the resolution that there are at least 13 Diaporthe species that can infect sunflower. A comprehensive analysis of the biodiversity and geographic distribution of Diaporthe species in Russia, particularly those that infect sunflower, has not been undertaken. For this study, 16 Diaporthe isolates were obtained from samples of stem canker and visually healthy seeds of Helianthus annuus from northwestern, central European, southern European Russia, North Caucasus, and the Urals in 2016-2019. The aim of this study was to identify these Diaporthe isolates based on morphology and sequence analyses of the nuclear ribosomal internal transcribed spacer (ITS) region, partial calmodulin (cal), DNA-lyase (apn2), histone H3 (his3), translation elongation factor-1α gene (tef1), and ß-tubulin (tub2) genes. The phylogenetic reconstruction revealed well-supported monophyletic clades corresponding to six Diaporthe species: D. eres, D. gulyae, D. helianthi, and D. phaseolorum. Two new species were described: Diaporthe monetii sp. nov. and Diaporthe vangoghii sp. nov. The isolates of D. gulyae and D. phaseolorum collected represent the first records of these species in Russia.
Collapse
Affiliation(s)
- Maria M Gomzhina
- A. A. Jaczewskii Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, Shosse Podbelskogo 3, Pushkin, Saint Petersburg, 196608, Russia
| | - Philipp B Gannibal
- A. A. Jaczewskii Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, Shosse Podbelskogo 3, Pushkin, Saint Petersburg, 196608, Russia
| |
Collapse
|
17
|
Li PD, Zhu ZR, Zhang Y, Xu J, Wang H, Wang Z, Li H. The phyllosphere microbiome shifts toward combating melanose pathogen. MICROBIOME 2022; 10:56. [PMID: 35366955 PMCID: PMC8976405 DOI: 10.1186/s40168-022-01234-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/23/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plants can recruit beneficial microbes to enhance their ability to defend against pathogens. However, in contrast to the intensively studied roles of the rhizosphere microbiome in suppressing plant pathogens, the collective community-level change and effect of the phyllosphere microbiome in response to pathogen invasion remains largely elusive. RESULTS Here, we integrated 16S metabarcoding, shotgun metagenomics and culture-dependent methods to systematically investigate the changes in phyllosphere microbiome between infected and uninfected citrus leaves by Diaporthe citri, a fungal pathogen causing melanose disease worldwide. Multiple microbiome features suggested a shift in phyllosphere microbiome upon D. citri infection, highlighted by the marked reduction of community evenness, the emergence of large numbers of new microbes, and the intense microbial network. We also identified the microbiome features from functional perspectives in infected leaves, such as enriched microbial functions for iron competition and potential antifungal traits, and enriched microbes with beneficial genomic characteristics. Glasshouse experiments demonstrated that several bacteria associated with the microbiome shift could positively affect plant performance under D. citri challenge, with reductions in disease index ranging from 65.7 to 88.4%. Among them, Pantoea asv90 and Methylobacterium asv41 identified as "recruited new microbes" in the infected leaves, exhibited antagonistic activities to D. citri both in vitro and in vivo, including inhibition of spore germination and/or mycelium growth. Sphingomonas spp. presented beneficial genomic characteristics and were found to be the main contributor for the functional enrichment of iron complex outer membrane receptor protein in the infected leaves. Moreover, Sphingomonas asv20 showed a stronger suppression ability against D. citri in iron-deficient conditions than iron-sufficient conditions, suggesting a role of iron competition during their antagonistic action. CONCLUSIONS Overall, our study revealed how phyllosphere microbiomes differed between infected and uninfected citrus leaves by melanose pathogen, and identified potential mechanisms for how the observed microbiome shift might have helped plants cope with pathogen pressure. Our findings provide novel insights into understanding the roles of phyllosphere microbiome responses during pathogen challenge. Video abstract.
Collapse
Affiliation(s)
- Pu-Dong Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zeng-Rong Zhu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - Hongkai Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhengyi Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hongye Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya, 572000, China.
| |
Collapse
|
18
|
Xu G, Zhang X, Liang X, Chen D, Xie C, Kang Z, Zheng L. A novel hexa-segmented dsRNA mycovirus confers hypovirulence in the phytopathogenic fungus Diaporthe pseudophoenicicola. Environ Microbiol 2022; 24:4274-4284. [PMID: 35315558 DOI: 10.1111/1462-2920.15963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
A novel hexa-segmented double-stranded RNA (dsRNA) mycovirus was isolated and characterized from the filamentous phytopathogenic fungus Diaporthe pseudophoenicicola, and was named Diaporthe pseudophoenicicola chrysovirus 1 (DpCV1). The full-length cDNAs of dsRNA1-6 were 3335, 3030, 3039, 2980, 963, and 780 bp, respectively. Sequence analysis indicated the presence of nine open reading frames (ORFs) in the DpCV1 genome. ORF1 in dsRNA1 putatively encoded the RNA-dependent RNA polymerase (RdRp), and ORF3 in dsRNA2 encoded a capsid protein (CP). The seven remaining ORFs, ORF2 in dsRNA2, ORF4 in dsRNA3, ORF6, 7 in dsRNA4, ORF8 in dsRNA5, and ORF9 in dsRNA6, encoded proteins with unknown functions. Phylogenetic analysis revealed that DpCV1 is closely related to members of the cluster I group within the family Chrysoviridae but formed a separate clade. Importantly, all the six segments of DpCV1 were cured successfully through single spore isolation to obtain the isogenic virus-free strains. DpCV1 can confer hypovirulence to the fungal host of Diaporthe pseudophoenicicola. Compared with the virus-free strain, WC02 harboring the DpCV1 is more sensitive to fungicide prochloraz. Furthermore, the cell wall of DpCV1 infected strain was loose and enlarged. This is the first report of a hexa-segmented tentative chrysovirus in D. pseudophoenicicola. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gang Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Xinchun Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Daipeng Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Changping Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education and School of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
19
|
Abundant Genetic Diversity and Extensive Differentiation among Geographic Populations of the Citrus Pathogen Diaporthe citri in Southern China. J Fungi (Basel) 2021; 7:jof7090749. [PMID: 34575787 PMCID: PMC8468327 DOI: 10.3390/jof7090749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
The fungal pathogen Diaporthe citri is a major cause of diseases in citrus. One common disease is melanose, responsible for large economic losses to the citrus fruit industry. However, very little is known about the epidemiology and genetic structure of D. citri. In this study, we analyzed 339 isolates from leaves and fruits with melanose symptoms from five provinces in southern China at 14 polymorphic simple sequence repeat (SSR) loci and the mating type idiomorphs. The genetic variations were analyzed at three levels with separate samples: among provinces, among orchards within one county, and among trees within one orchard. The five provincial populations from Fujian, Zhejiang, Jiangxi, Hunan, and Guizhou were significantly differentiated, while limited differences were found among orchards from the same county or among trees from the same orchard. STRUCTURE analysis detected two genetic clusters in the total sample, with different provincial subpopulations showing different frequencies of isolates in these two clusters. Mantel analysis showed significant positive correlation between genetic and geographic distances, consistent with geographic separation as a significant barrier to gene flow in D. citri in China. High levels of genetic diversity were found within individual subpopulations at all three spatial scales of analyses. Interestingly, most subpopulations at all three spatial scales had the two mating types in similar frequencies and with alleles at the 14 SSR loci not significantly different from linkage equilibrium. Indeed, strains with different mating types and different multilocus genotypes were frequently isolated from the same leaves and fruits. The results indicate that sexual reproduction plays an important role in natural populations of D. citri in southern China and that its ascospores likely represent an important contributor to citrus disease.
Collapse
|
20
|
|
21
|
Gao H, Pan M, Tian C, Fan X. Cytospora and Diaporthe Species Associated With Hazelnut Canker and Dieback in Beijing, China. Front Cell Infect Microbiol 2021; 11:664366. [PMID: 34408987 PMCID: PMC8366500 DOI: 10.3389/fcimb.2021.664366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022] Open
Abstract
Hazelnut (Corylus heterophylla Fisch.) is an important nut crop in China but has been declining owing to the destructive effects of fungal branch canker and dieback. The identification and management of these pathogens are difficult because of the lack of attention to branch canker, insufficient understanding of phylogenetic, and overlapping morphological characteristics of the pathogens. In total, 51 strains were isolated from Chinese wild hazelnut in this study, and three species of Cytospora and two of Diaporthe were identified through morphological observation and multi-locus phylogenetic analyses (ITS, act, rpb2, tef1-α, and tub2 for Cytospora; ITS, cal, his3, tef1-α, and tub2 for Diaporthe). Three new species, Cytospora corylina, C. curvispora, and Diaporthe corylicola, and two known species, Cytospora leucostoma and Diaporthe eres, grew at 5-30°C and a pH of 3.0-11.0, with optimum growth at approximately 25°C and pH 4.0-7.0. Additionally, the effects of six carbon sources on mycelial growth were investigated. This study explored the main pathogenic fungi species of Corylus heterophylla, completed the corresponding database of pathogenic fungi information, and clarified their biological characteristics. Moreover, the results of this study provided a theoretical basis for Corylus heterophylla disease management and prevention in China.
Collapse
Affiliation(s)
| | | | | | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
22
|
Ariyawansa HA, Tsai I, Wang JY, Withee P, Tanjira M, Lin SR, Suwannarach N, Kumla J, Elgorban AM, Cheewangkoon R. Molecular Phylogenetic Diversity and Biological Characterization of Diaporthe Species Associated with Leaf Spots of Camellia sinensis in Taiwan. PLANTS (BASEL, SWITZERLAND) 2021; 10:1434. [PMID: 34371637 PMCID: PMC8309328 DOI: 10.3390/plants10071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
Camellia sinensis is one of the major crops grown in Taiwan and has been widely cultivated around the island. Tea leaves are prone to various fungal infections, and leaf spot is considered one of the major diseases in Taiwan tea fields. As part of a survey on fungal species causing leaf spots on tea leaves in Taiwan, 19 fungal strains morphologically similar to the genus Diaporthe were collected. ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α), tub2 (beta-tubulin), and cal (calmodulin) gene regions were used to construct phylogenetic trees and determine the evolutionary relationships among the collected strains. In total, six Diaporthe species, including one new species, Diaporthe hsinchuensis, were identified as linked with leaf spot of C. sinensis in Taiwan based on both phenotypic characters and phylogeny. These species were further characterized in terms of their pathogenicity, temperature, and pH requirements under laboratory conditions. Diaporthe tulliensis, D. passiflorae, and D. perseae were isolated from C. sinensis for the first time. Furthermore, pathogenicity tests revealed that, with wound inoculation, only D. hongkongensis was pathogenic on tea leaves. This investigation delivers the first assessment of Diaporthe taxa related to leaf spots on tea in Taiwan.
Collapse
Affiliation(s)
- Hiran A. Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan; (I.T.); (J.-Y.W.)
| | - Ichen Tsai
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan; (I.T.); (J.-Y.W.)
- Biodiversity and Climate Research Centre (BiK-F), 60325 Frankfurt am Main, Germany
- Department of Biological Science, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jian-Yuan Wang
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan; (I.T.); (J.-Y.W.)
| | - Patchareeya Withee
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (M.T.)
| | - Medsaii Tanjira
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (M.T.)
| | - Shiou-Ruei Lin
- Department of Tea Agronomy, Tea Research and Extension Station, Taoyuan 32654, Taiwan;
| | - Nakarin Suwannarach
- Research Centre of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Centre of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (M.T.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
23
|
Liu XY, Chaisiri C, Lin Y, Yin WX, Luo CX. Whole-Genome Sequence of Diaporthe citri Isolate NFHF-8-4, the Causal Agent of Citrus Melanose. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:845-847. [PMID: 33761784 DOI: 10.1094/mpmi-01-21-0004-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diaporthe species are the causal agents of melanose, stem-end rot, and gummosis diseases of citrus. D. citri is the predominant species on different citrus varieties. These diseases exceedingly reduce quality and marketability of fresh fruits. Melanose on fruits especially causes massive economic losses. The infection mechanisms of D. citri are still unclear and the genome sequence of D. citri has not been released. In order to systemically explore the interaction between citrus and D. citri, we sequenced the whole-genome of D. citri NFHF-8-4, which was isolated from a sample with melanose in Jiangxi Province. The NFHF-8-4 genome sequence will provide valuable information for studying the development process, infection process, and resistance to fungicides mechanisms in D. citri.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science & Technology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chingchai Chaisiri
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science & Technology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- College of Plant Science & Technology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei-Xiao Yin
- College of Plant Science & Technology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science & Technology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Tennakoon DS, Kuo CH, Maharachchikumbura SSN, Thambugala KM, Gentekaki E, Phillips AJL, Bhat DJ, Wanasinghe DN, de Silva NI, Promputtha I, Hyde KD. Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00474-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Pu H, Liu J, Wang Y, Peng Y, Zheng W, Tang Y, Hui B, Nie C, Huang X, Duan Y, Huang Y. Bioactive α-Pyrone Derivatives from the Endophytic Fungus Diaporthe sp. CB10100 as Inducible Nitric Oxide Synthase Inhibitors. Front Chem 2021; 9:679592. [PMID: 34084766 PMCID: PMC8167431 DOI: 10.3389/fchem.2021.679592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) produces NO from l-arginine and plays critical roles in inflammation and immune activation. Selective and potent iNOS inhibitors may be potentially used in many indications, such as rheumatoid arthritis, pain, and neurodegeration. In the current study, five new compounds, including a dibenzo-α- pyrone derivative ellagic acid B (5) and four α-pyrones diaporpyrone A-D (9-12), together with three known compounds (6-8), were isolated from the endophytic fungus Diaporthe sp. CB10100. The structures of these new natural products were unambiguously elucidated using NMR, HRESIMS or electronic circular dichroism calculations. Ellagic acid B (5) features a tetracyclic 6/6/6/6 ring system with a fused 2H-chromene, which is different from ellagic acid (4) with a fused 2H-chromen-2-one. Both 2-hydroxy-alternariol (6) and alternariol (7) reduced the expression of iNOS at protein levels in a dose-dependent manner, using a lipopolysaccharide (LPS)-induced RAW264.7 cell models. Also, they decreased the protein expression levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 and monocyte chemotactic protein 1. Importantly, 6 and 7 significantly reduced the production of NO as low as 10 μM in LPS-induced RAW264.7 cells. Molecular docking of 6 and 7 to iNOS further suggests that both of them may interact with iNOS. Our study suggests that 6 and 7, as well as the alternariol scaffold may be further developed as potential iNOS inhibitors.
Collapse
Affiliation(s)
- Hong Pu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.,School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Jianxin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Yeji Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China
| | - Yuhui Peng
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Wanying Zheng
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Yang Tang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Boping Hui
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Chunmei Nie
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, China
| |
Collapse
|
26
|
Cui MJ, Wei X, Xia PL, Yi JP, Yu ZH, Deng JX, Li QL. Diaporthe taoicola and D. siamensis, Two New Records on Citrus sinensis in China. MYCOBIOLOGY 2021; 49:267-274. [PMID: 34290550 PMCID: PMC8259869 DOI: 10.1080/12298093.2021.1912254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/21/2021] [Accepted: 03/30/2021] [Indexed: 06/13/2023]
Abstract
Two Diaporthe species isolated from fruit of Citrus sinensis in China were characterized based on morphology and multilocus phylogeny of ITS, tef1, and tub2 gene sequences. The phylogeny indicated that the two species match Diaporthe taoicola and D. siamensis. A critical examination of phenotypic characteristics confirmed the phylogenetic results. Diaporthe taoicola was morphologically characterized by producing Alpha conidia with tapering toward both ends. Meanwhile, D. siamensis produced cylindrical or ellipsoidal Alpha conidia with two oil drops. Pathogenicity tests revealed that both species were pathogenic to fruit of C. sinensis. To our knowledge, the two species were firstly reported on Citrus sinensis in China.
Collapse
Affiliation(s)
- Meng Jiao Cui
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xin Wei
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, China
| | | | - Ji Ping Yi
- Zigui Plant Protection Station, Yichang, China
| | - Zhi He Yu
- Department of Applied Microbiology, College of Life Sciences, Yangtze University, Jingzhou, China
| | - Jian Xin Deng
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qi Li Li
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, China
| |
Collapse
|
27
|
Gai Y, Xiong T, Xiao X, Li P, Zeng Y, Li L, Riely BK, Li H. The Genome Sequence of the Citrus Melanose Pathogen Diaporthe citri and Two Citrus-Related Diaporthe Species. PHYTOPATHOLOGY 2021; 111:779-783. [PMID: 33315476 DOI: 10.1094/phyto-08-20-0376-sc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Melanose disease is one the most widely distributed and economically important fungal diseases of citrus worldwide. The causative agent is the filamentous fungus Diaporthe citri (syn. Phomopsis citri). Here, we report the genome assemblies of three strains of D. citri, namely strains ZJUD2, ZJUD14, and Q7, which were generated using a combination of PacBio Sequel long-read and Illumina paired-end sequencing data. The assembled genomes of D. citri ranged from 52.06 to 63.61 Mb in genome size, containing 15,977 to 16,622 protein-coding genes. We also sequenced and annotated the genome sequences of two citrus-related Diaporthe species, D. citriasiana and D. citrichinensis. In addition, a database for citrus-related Diaporthe genomes was established to provide a public platform to access genome sequences, genome annotation and comparative genomics data of these Diaporthe species. The described genome sequences and the citrus-related Diaporthe genomes database provide a useful resource for the study of fungal biology, pathogen-host interaction, molecular diagnostic marker development, and population genomic analyses of Diaporthe species. The database will be updated regularly when the genomes of newly isolated Diaporthe species are sequenced. The citrus-related Diaporthe genomes database is freely available for nonprofit use at zjudata.com/blast/diaporthe.php.
Collapse
Affiliation(s)
- Yunpeng Gai
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Tao Xiong
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaoe Xiao
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Pudong Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yating Zeng
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lei Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Brendan K Riely
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
Bezerra JDP, Crous PW, Aiello D, Gullino ML, Polizzi G, Guarnaccia V. Genetic Diversity and Pathogenicity of Botryosphaeriaceae Species Associated with Symptomatic Citrus Plants in Europe. PLANTS (BASEL, SWITZERLAND) 2021; 10:492. [PMID: 33807726 PMCID: PMC7999779 DOI: 10.3390/plants10030492] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
This study represents the first survey studying the occurrence, genetic diversity, and pathogenicity of Botryosphaeriaceae species associated with symptomatic citrus species in citrus-production areas in five European countries. Based on morphological features and phylogenetic analyses of internal transcribed spacer (ITS) of nuclear ribosomal DNA (nrDNA), translation elongation factor 1-alpha (TEF1) and β-tubulin (TUB2) genes, nine species were identified as belonging to the genera Diplodia, Dothiorella, Lasiodiplodia, and Neofusicoccum. Isolates of Neofusicoccum parvum and Diplodia pseudoseriata were the most frequently detected, while Dothiorella viticola had the widest distribution, occurring in four of the five countries sampled. Representative isolates of the nine Botryosphaeriaceae species used in the pathogenicity tests caused similar symptoms to those observed in nature. Isolates assayed were all re-isolated, thereby fulfilling Koch's postulates. Isolates of Diplodia pseudoseriata and Diplodia olivarum are recorded for the first time on citrus and all species found in our study, except N. parvum, are reported for the first time on citrus in Europe.
Collapse
Affiliation(s)
- Jadson Diogo Pereira Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Rua 235, s/n, Setor Universitário, Goiânia 74605-050, Brazil;
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| | - Pedro Wilhelm Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| | - Dalia Aiello
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy; (D.A.); (G.P.)
| | - Maria Lodovica Gullino
- Centre for Innovation in the Agro-Environmental Sector, AGROINNOVA, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy;
| | - Giancarlo Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy; (D.A.); (G.P.)
| | - Vladimiro Guarnaccia
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
- Centre for Innovation in the Agro-Environmental Sector, AGROINNOVA, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy;
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
29
|
Chaisiri C, Liu X, Lin Y, Fu Y, Zhu F, Luo C. Phylogenetic and Haplotype Network Analyses of Diaporthe eres Species in China Based on Sequences of Multiple Loci. BIOLOGY 2021; 10:179. [PMID: 33804529 PMCID: PMC8000818 DOI: 10.3390/biology10030179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022]
Abstract
Diaporthe eres is considered one of the most important causal agents of many plant diseases, with a broad host range worldwide. In this study, multiple sequences of ribosomal internal transcribed spacer region (ITS), translation elongation factor 1-α gene (EF1-α), beta-tubulin gene (TUB2), calmodulin gene (CAL), and histone-3 gene (HIS) were used for multi-locus phylogenetic analysis. For phylogenetic analysis, maximum likelihood (ML), maximum parsimony (MP), and Bayesian inferred (BI) approaches were performed to investigate relationships of D. eres with closely related species. The results strongly support that the D. eres species falls into a monophyletic lineage, with the characteristics of a species complex. Phylogenetic informativeness (PI) analysis showed that clear boundaries could be proposed by using EF1-α, whereas ITS showed an ineffective reconstruction and, thus, was unsuitable for speciating boundaries for Diaporthe species. A combined dataset of EF1-α, CAL, TUB2, and HIS showed strong resolution for Diaporthe species, providing insights for the D. eres complex. Accordingly, besides D. biguttusis, D. camptothecicola, D. castaneae-mollissimae, D. cotoneastri, D. ellipicola, D. longicicola, D. mahothocarpus, D. momicola, D. nobilis, and Phomopsis fukushii, which have already been previously considered the synonymous species of D. eres, another three species, D. henanensis, D. lonicerae and D. rosicola, were further revealed to be synonyms of D. eres in this study. In order to demonstrate the genetic diversity of D. eres species in China, 138 D. eres isolates were randomly selected from previous studies in 16 provinces. These isolates were obtained from different major plant species from 2006 to 2020. The genetic distance was estimated with phylogenetic analysis and haplotype networks, and it was revealed that two major haplotypes existed in the Chinese populations of D. eres. The haplotype networks were widely dispersed and not uniquely correlated to specific populations. Overall, our analyses evaluated the phylogenetic identification for D. eres species and demonstrated the population diversity of D. eres in China.
Collapse
Affiliation(s)
- Chingchai Chaisiri
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.L.)
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiangyu Liu
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.L.)
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yang Lin
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yanping Fu
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Fuxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Chaoxi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.L.)
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
30
|
Huang S, Xia J, Zhang X, Sun W. Morphological and phylogenetic analyses reveal three new species of Diaporthe from Yunnan, China. MycoKeys 2021; 78:49-77. [PMID: 33664613 PMCID: PMC7910272 DOI: 10.3897/mycokeys.78.60878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/01/2021] [Indexed: 11/12/2022] Open
Abstract
Species of Diaporthe have often been reported as plant pathogens, endophytes or saprobes, commonly isolated from a wide range of plant hosts. Sixteen strains isolated from species of ten host genera in Yunnan Province, China, represented three new species of Diaporthe, D. chrysalidocarpi, D. machili and D. pometiae as well as five known species D. arecae, D. hongkongensis, D. middletonii, D. osmanthi and D. pandanicola. Morphological comparisons with known species and DNA-based phylogenies based on the analysis of a multigene (ITS, TUB, TEF, CAL and HIS) dataset support the establishment of the new species. This study reveals that a high species diversity of Diaporthe with wide host ranges occur in tropical rainforest in Yunnan Province, China.
Collapse
Affiliation(s)
- Shengting Huang
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, ChinaYangtze UniversityJingzhouChina
| | - Jiwen Xia
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, ChinaYangtze UniversityJingzhouChina
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Wenxiu Sun
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, ChinaYangtze UniversityJingzhouChina
| |
Collapse
|
31
|
Dong Z, Manawasinghe IS, Huang Y, Shu Y, Phillips AJL, Dissanayake AJ, Hyde KD, Xiang M, Luo M. Endophytic Diaporthe Associated With Citrus grandis cv. Tomentosa in China. Front Microbiol 2021; 11:609387. [PMID: 33633693 PMCID: PMC7900006 DOI: 10.3389/fmicb.2020.609387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/29/2020] [Indexed: 11/26/2022] Open
Abstract
Diaporthe species are associated with Citrus as endophytes, pathogens, and saprobes worldwide. However, little is known about Diaporthe as endophytes in Citrus grandis in China. In this study, 24 endophytic Diaporthe isolates were obtained from cultivated C. grandis cv. "Tomentosa" in Huazhou, Guangdong Province in 2019. The nuclear ribosomal internal transcribed spacer (ITS), partial sequences of translation elongation factor 1-α (tef1), β-tubulin (tub2), and partial calmodulin (cal) gene regions were sequenced and employed to construct phylogenetic trees. Based on morphology and combined multigene phylogeny, eleven Diaporthe species were identified including two new species, Diaporthe endocitricola and D. guangdongensis. These are the first report of D. apiculata, D. aquatica, D. arecae, D. biconispora, D. limonicola, D. masirevicii, D. passifloricola, D. perseae, and D. sennae on C. grandis. This study provides the first intensive study of endophytic Diaporthe species on C. grandis cv. tomentosa in China. These results will improve the current knowledge of Diaporthe species associated with C. grandis. The results obtained in this study will also help to understand the potential pathogens and biocontrol agents and to develop a platform in disease management.
Collapse
Affiliation(s)
- Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ishara S. Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Mueang Chiang Rai, Thailand
| | - Yinghua Huang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongxin Shu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisbon, Portugal
| | - Asha J. Dissanayake
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kevin D. Hyde
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Mueang Chiang Rai, Thailand
| | - Meimei Xiang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mei Luo
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
32
|
Chaisiri C, Liu XY, Yin WX, Luo CX, Lin Y. Morphology Characterization, Molecular Phylogeny, and Pathogenicity of Diaporthe passifloricola on Citrus reticulata cv. Nanfengmiju in Jiangxi Province, China. PLANTS (BASEL, SWITZERLAND) 2021; 10:218. [PMID: 33498730 PMCID: PMC7911537 DOI: 10.3390/plants10020218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022]
Abstract
The Nanfengmiju (Citrus reticulata cv. Nanfengmiju), a high-quality local variety of mandarin, is one of the major fruit crops in Jiangxi Province, China. Citrus melanose and stem-end rot, two common fungal diseases of Nanfengmiju, are both caused by Diaporthe spp. (syn. Phomopsis spp.). Identification of the Diaporthe species is essential for epidemiological studies, quarantine measures, and management of diseases caused by these fungi. Melanose disease was observed on Nanfengmiju fruit in Jiangxi Province of China in 2016. Based on morphological characterization and multi-locus phylogenetic analyses, three out of 39 isolates from diseased samples were identified as D. passifloricola. Since these three isolates did not cause melanose on citrus fruit in the pathogenicity tests, they were presumed to be endophytic fungi present in the diseased tissues. However, our results indicate that D. passifloricola may persist as a symptom-less endophyte in the peel of citrus fruit, yet it may cause stem-end if it invades the stem end during fruit storage. To the best of our knowledge, this is the first report of D. passifloricola as the causal agent of the stem-end rot disease in Citrus reticulata cv. Nanfengmiju.
Collapse
Affiliation(s)
- Chingchai Chaisiri
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.-Y.L.); (W.-X.Y.); (C.-X.L.)
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang-Yu Liu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.-Y.L.); (W.-X.Y.); (C.-X.L.)
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei-Xiao Yin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.-Y.L.); (W.-X.Y.); (C.-X.L.)
| | - Chao-Xi Luo
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.-Y.L.); (W.-X.Y.); (C.-X.L.)
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.-Y.L.); (W.-X.Y.); (C.-X.L.)
| |
Collapse
|
33
|
Sun W, Huang S, Xia J, Zhang X, Li Z. Morphological and molecular identification of Diaporthe species in south-western China, with description of eight new species. MycoKeys 2021; 77:65-95. [PMID: 33519269 PMCID: PMC7819953 DOI: 10.3897/mycokeys.77.59852] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Diaporthe species have often been reported as plant pathogens, endophytes and saprophytes, commonly isolated from a wide range of infected plant hosts. In the present study, twenty strains obtained from leaf spots of twelve host plants in Yunnan Province of China were isolated. Based on a combination of morphology, culture characteristics and multilocus sequence analysis of the rDNA internal transcribed spacer region (ITS), translation elongation factor 1-α (TEF), β-tubulin (TUB), calmodulin (CAL), and histone (HIS) genes, these strains were identified as eight new species: Diaporthe camelliae-sinensis, D. grandiflori, D. heliconiae, D. heterostemmatis, D. litchii, D. lutescens, D. melastomatis, D. pungensis and two previously described species, D. subclavata and D. tectonendophytica. This study showed high species diversity of Diaporthe in tropical rain forests and its hosts in south-western China.
Collapse
Affiliation(s)
- Wenxiu Sun
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, ChinaYangtze UniversityJingzhouChina
| | - Shengting Huang
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, ChinaYangtze UniversityJingzhouChina
| | - Jiwen Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Zhuang Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, ChinaShandong Agricultural UniversityTaianChina
| |
Collapse
|
34
|
Berraf-Tebbal A, Mahamedi AE, Aigoun-Mouhous W, Špetík M, Čechová J, Pokluda R, Baránek M, Eichmeier A, Alves A. Lasiodiplodia mitidjana sp. nov. and other Botryosphaeriaceae species causing branch canker and dieback of Citrus sinensis in Algeria. PLoS One 2020; 15:e0232448. [PMID: 32433708 PMCID: PMC7239386 DOI: 10.1371/journal.pone.0232448] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/14/2020] [Indexed: 11/18/2022] Open
Abstract
Several Botryosphaeriaceae species are known to occur worldwide, causing dieback, canker and fruit rot on various hosts. Surveys conducted in ten commercial citrus orchards in the northern region of Algeria revealed five species of Botryosphaeriaceae belonging to three genera associated with diseased trees. Morphological and cultural characteristics as well as phylogenetic analyses of the internal transcribed spacer (ITS) region and the translation elongation factor 1-alpha (tef1-α) identified Diplodia mutila, Diplodia seriata, Dothiorella viticola, Lasiodiplodia mediterranea and a novel species which is here described as Lasiodiplodia mithidjana sp. nov.. Of these, L. mithidjana (14.1% of the samples) and L. mediterranea (13% of the samples) were the most widespread and abundant species. Pathogenicity tests revealed that L. mediterranea and D. seriata were the most aggressive species on citrus shoots. This study highlights the importance of Botryosphaeriaceae species as agents of canker and dieback of citrus trees in Algeria.
Collapse
Affiliation(s)
- Akila Berraf-Tebbal
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
- * E-mail:
| | - Alla Eddine Mahamedi
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Département des Sciences Naturelles, Ecole Normale Supérieure de Kouba-Alger, Alger, Algeria
- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaïa, Ghardaïa, Algeria
| | - Wassila Aigoun-Mouhous
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Département des Sciences Naturelles, Ecole Normale Supérieure de Kouba-Alger, Alger, Algeria
- Département des Biotechnologies, Faculté des Sciences de la Nature et de la Vie, Université de Blida, Blida, Algeria
| | - Milan Špetík
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Jana Čechová
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Robert Pokluda
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Miroslav Baránek
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Aleš Eichmeier
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Artur Alves
- Departamento de Biologia, CESAM, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
35
|
Yang Q, Jiang N, Tian CM. Three new Diaporthe species from Shaanxi Province, China. MycoKeys 2020; 67:1-18. [PMID: 32425650 PMCID: PMC7214511 DOI: 10.3897/mycokeys.67.49483] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/05/2020] [Indexed: 11/12/2022] Open
Abstract
Diaporthe species (Sordariomycetes, Diaporthales) are often reported as important plant pathogens, saprobes and endophytes on a wide range of plant hosts. In this study, Diaporthe specimens were collected from symptomatic twigs and branches at the Huoditang Forest Farm in Shaanxi Province, China. Identification was done using a combination of morphology and comparison of DNA sequence data of the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions. Three new Diaporthe species are proposed: D.albosinensis, D.coryli and D.shaanxiensis. All species are illustrated and their morphology and phylogenetic relationships with other Diaporthe species are discussed.
Collapse
Affiliation(s)
- Qin Yang
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China Beijing Forestry University Beijing China.,The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China Central South University of Forestry and Technology Changsha China
| | - Ning Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China Central South University of Forestry and Technology Changsha China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China Central South University of Forestry and Technology Changsha China
| |
Collapse
|
36
|
Chaisiri C, Liu XY, Lin Y, Li JB, Xiong B, Luo CX. Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus. PLANTS 2020; 9:plants9030329. [PMID: 32143512 PMCID: PMC7154919 DOI: 10.3390/plants9030329] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
Melanose disease caused by Diaporthe citri is considered as one of the most important and destructive diseases of citrus worldwide. In this study, isolates from melanose samples were obtained and analyzed. Firstly, the internal transcribed spacer (ITS) sequences were used to measure Diaporthe-like boundary species. Then, a subset of thirty-eight representatives were selected to perform the phylogenetic analysis with combined sequences of ITS, beta-tubulin gene (TUB), translation elongation factor 1-α gene (TEF), calmodulin gene (CAL), and histone-3 gene (HIS). As a result, these representative isolates were identified belonging to D. citri, D. citriasiana, D. discoidispora, D. eres, D. sojae, and D. unshiuensis. Among these species, the D. citri was the predominant species that could be isolated at highest rate from different melanose diseased tissues. The morphological characteristics of representative isolates of D. citri were investigated on different media. Finally, a molecular tool based on the novel species-specific primer pair TUBDcitri-F1/TUBD-R1, which was designed from TUB gene, was developed to detect D. citri efficiently. A polymerase chain reaction (PCR) amplicon of 217 bp could be specifically amplified with the developed molecular tool. The sensitivity of the novel species-specific detection was upon to 10 pg of D. citri genomic DNA in a reaction. Therefore, the D. citri could be unequivocally identified from closely related Diaporthe species by using this simple PCR approach.
Collapse
Affiliation(s)
- Chingchai Chaisiri
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China (Y.L.)
- Department of Plant Pathology, College of Plant Science & Technology, and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang-Yu Liu
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China (Y.L.)
- Department of Plant Pathology, College of Plant Science & Technology, and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China (Y.L.)
| | - Jiang-Bo Li
- Nanfeng Citrus Research Institute, Nanfeng 344500, China
| | - Bin Xiong
- Nanfeng Citrus Research Institute, Nanfeng 344500, China
| | - Chao-Xi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China (Y.L.)
- Department of Plant Pathology, College of Plant Science & Technology, and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
37
|
Eichmeier A, Kiss T, Penazova E, Pecenka J, Berraf-Tebbal A, Baranek M, Pokluda R, Cechova J, Gramaje D, Grzebelus D. MicroRNAs in Vitis vinifera cv. Chardonnay Are Differentially Expressed in Response to Diaporthe Species. Genes (Basel) 2019; 10:E905. [PMID: 31703418 PMCID: PMC6896114 DOI: 10.3390/genes10110905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
Diaporthe species are important pathogens, saprobes, and endophytes on grapevines. Several species are known, either as agents of pre- or post-harvest infections, as causal agents of many relevant diseases, including swelling arm, trunk cankers, leaf spots, root and fruit rots, wilts, and cane bleaching. A growing body of evidence exists that a class of small non-coding endogenous RNAs, known as microRNAs (miRNAs), play an important role in post-transcriptional gene regulation, during plant development and responses to biotic and abiotic stresses. In this study, we explored differentially expressed miRNAs in response to Diaporthe eres and Diaporthe bohemiae infection in Vitis vinifera cv. Chardonnay under in vitro conditions. We used computational methods to predict putative miRNA targets in order to explore the involvement of possible pathogen response pathways. We identified 136 known and 41 new miRNA sequence variants, likely generated through post-transcriptional modifications. In the Diaporthe eres treatment, 61 known and 17 new miRNAs were identified while in the Diaporthe bohemiae treatment, 101 known and 21 new miRNAs were revealed. Our results contribute to further understanding the role miRNAs play during plant pathogenesis, which is possibly crucial in understanding disease symptom development in grapevines infected by D. eres and D. bohemiae.
Collapse
Affiliation(s)
- Ales Eichmeier
- Faculty of Horticulture, Mendeleum-Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (T.K.); (E.P.); (J.P.); (A.B.-T.); (M.B.); (R.P.); (J.C.); (D.G.)
| | - Tomas Kiss
- Faculty of Horticulture, Mendeleum-Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (T.K.); (E.P.); (J.P.); (A.B.-T.); (M.B.); (R.P.); (J.C.); (D.G.)
| | - Eliska Penazova
- Faculty of Horticulture, Mendeleum-Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (T.K.); (E.P.); (J.P.); (A.B.-T.); (M.B.); (R.P.); (J.C.); (D.G.)
| | - Jakub Pecenka
- Faculty of Horticulture, Mendeleum-Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (T.K.); (E.P.); (J.P.); (A.B.-T.); (M.B.); (R.P.); (J.C.); (D.G.)
| | - Akila Berraf-Tebbal
- Faculty of Horticulture, Mendeleum-Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (T.K.); (E.P.); (J.P.); (A.B.-T.); (M.B.); (R.P.); (J.C.); (D.G.)
| | - Miroslav Baranek
- Faculty of Horticulture, Mendeleum-Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (T.K.); (E.P.); (J.P.); (A.B.-T.); (M.B.); (R.P.); (J.C.); (D.G.)
| | - Robert Pokluda
- Faculty of Horticulture, Mendeleum-Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (T.K.); (E.P.); (J.P.); (A.B.-T.); (M.B.); (R.P.); (J.C.); (D.G.)
| | - Jana Cechova
- Faculty of Horticulture, Mendeleum-Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (T.K.); (E.P.); (J.P.); (A.B.-T.); (M.B.); (R.P.); (J.C.); (D.G.)
| | - David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas—Universidad de la Rioja—Gobierno de La Rioja, Ctra. de Burgos Km. 6, 26007 Logroño, Spain;
| | - Dariusz Grzebelus
- Faculty of Horticulture, Mendeleum-Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (T.K.); (E.P.); (J.P.); (A.B.-T.); (M.B.); (R.P.); (J.C.); (D.G.)
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31425 Krakow, Poland
| |
Collapse
|
38
|
Liu Y, Ruan Q, Jiang S, Qu Y, Chen J, Zhao M, Yang B, Liu Y, Zhao Z, Cui H. Cytochalasins and polyketides from the fungus Diaporthe sp. GZU-1021 and their anti-inflammatory activity. Fitoterapia 2019; 137:104187. [DOI: 10.1016/j.fitote.2019.104187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022]
|
39
|
Long H, Zhang Q, Hao YY, Shao XQ, Wei XX, Hyde KD, Wang Y, Zhao DG. Diaporthe species in south-western China. MycoKeys 2019; 57:113-127. [PMID: 31523165 PMCID: PMC6717119 DOI: 10.3897/mycokeys.57.35448] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/15/2019] [Indexed: 11/19/2022] Open
Abstract
Three strains of the genus Diaporthe were isolated from different plant hosts in south-western China. Phylogenetic analyses of the combined ITS, β-tubulin, tef1 and calmoudulin dataset indicated that these strains represented three independent lineages in Diaporthe. Diaporthemillettiaesp. nov. clustered with D.hongkongensis and D.arecae, Diaportheosmanthisp. nov. grouped with D.arengae, D.pseudomangiferae and D.perseae and Diaporthe strain GUCC9146, isolated from Camelliasinensis, was grouped in the D.eres species complex with a close relationship to D.longicicola. These species are reported with taxonomic descriptions and illustrations.
Collapse
Affiliation(s)
- Hui Long
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China Guizhou University Guiyang China
| | - Qian Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China Guizhou University Guiyang China
| | - Yuan-Yuan Hao
- Administration Center of the Yellow River Delta Sustainable Development Institute of Sandong Province, Dongying, 257091, China Qinghai University Xining China
| | - Xian-Qiang Shao
- Dejiang County Chinese herbal medicine industry development office, Tongren, 565200, China Mae Fah Luang University Chiang Rai Thailand
| | - Xiao-Xing Wei
- Academy of Animal and Veterinary Sciences, Qinghai University (Qinghai Academy of Animal and Veterinary Sciences), Xining, China Guizhou University Guizhou China
| | - Kevin D Hyde
- Center of Excellence in Fungal Research and School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand Guizhou Academy of Agricultural Sciences Guiyang China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China Guizhou University Guiyang China.,Guizhou Key Laboratory Agro-Bioengineering, Guizhou University Guiyang, Guizhou, 550025, China Sustainable Development Institute of Sandong Province Dongying China
| | - De-Gang Zhao
- Guizhou Key Laboratory Agro-Bioengineering, Guizhou University Guiyang, Guizhou, 550025, China Sustainable Development Institute of Sandong Province Dongying China.,Guizhou Academy of Agricultural Sciences, Guiyang 550006, China Dejiang County Chinese herbal medicine industry development office Tongren China
| |
Collapse
|
40
|
Marin-Felix Y, Hernández-Restrepo M, Wingfield M, Akulov A, Carnegie A, Cheewangkoon R, Gramaje D, Groenewald J, Guarnaccia V, Halleen F, Lombard L, Luangsa-ard J, Marincowitz S, Moslemi A, Mostert L, Quaedvlieg W, Schumacher R, Spies C, Thangavel R, Taylor P, Wilson A, Wingfield B, Wood A, Crous P. Genera of phytopathogenic fungi: GOPHY 2. Stud Mycol 2019; 92:47-133. [PMID: 29997401 PMCID: PMC6031069 DOI: 10.1016/j.simyco.2018.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA barcodes for the currently accepted species are included. This second paper in the GOPHY series treats 20 genera of phytopathogenic fungi and their relatives including: Allantophomopsiella, Apoharknessia, Cylindrocladiella, Diaporthe, Dichotomophthora, Gaeumannomyces, Harknessia, Huntiella, Macgarvieomyces, Metulocladosporiella, Microdochium, Oculimacula, Paraphoma, Phaeoacremonium, Phyllosticta, Proxypiricularia, Pyricularia, Stenocarpella, Utrechtiana and Wojnowiciella. This study includes the new genus Pyriculariomyces, 20 new species, five new combinations, and six typifications for older names.
Collapse
Key Words
- 26 new taxa
- Apoharknessia eucalypti Crous & M.J. Wingf.
- Cylindrocladiella addiensis L. Lombard & Crous
- Cylindrocladiella nauliensis L. Lombard & Crous
- DNA barcodes
- Diaporthe heterophyllae Guarnaccia & Crous
- Diaporthe racemosae A.R. Wood, Guarnaccia & Crous
- Dichotomophthora basellae Hern.-Restr., Cheew. & Crous
- Dichotomophthora brunnea Hern.-Restr. & Crous
- Fungal systematics
- Harknessia bourbonica Crous & M.J. Wingf.
- Harknessia corymbiae Crous & A.J. Carnegie
- Harknessia cupressi Crous & R.K. Schumach.
- Harknessia pilularis Crous & A.J. Carnegie
- Helminthosporium arundinaceum Corda
- Huntiella abstrusa A.M. Wilson, Marinc., M.J. Wingf.
- Macgarvieomyces luzulae (Ondřej) Y. Marín, Akulov & Crous
- Metulocladosporiella chiangmaiensis Y. Marín, Cheew. & Crous
- Metulocladosporiella malaysiana Y. Marín & Crous
- Metulocladosporiella musigena Y. Marín, Cheew. & Crous
- Metulocladosporiella samutensis Y. Marín, Luangsa-ard & Crous
- Microdochium novae-zelandiae Hern.-Restr., Thangavel & Crous
- Oculimacula acuformis (Nirenberg) Y. Marín & Crous
- Phaeoacremonium pravum C.F.J. Spies, L. Mostert & Halleen
- Phomopsis pseudotsugae M. Wilson
- Phyllosticta iridigena Y. Marín & Crous
- Phyllosticta persooniae Y. Marín & Crous
- Pyricularia luzulae Ondřej
- Pyricularia zingiberis Y. Nishik
- Pyriculariomyces Y. Marín, M.J. Wingf. & Crous
- Pyriculariomyces asari (Crous & M.J. Wingf.) Y. Marín, M.J. Wingf. & Crous
- Six new typifications
- Utrechtiana arundinacea (Corda) Crous, Quaedvl. & Y. Marín
- Utrechtiana constantinescui (Melnik & Shabunin) Crous & Y. Marín
Collapse
Affiliation(s)
- Y. Marin-Felix
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - M. Hernández-Restrepo
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - A. Akulov
- V.N. Karasin National University of Kharkiv, Svobody sq. 4, Kharkiv 61077, Ukraine
| | - A.J. Carnegie
- Forest Science, NSW Department of Primary Industries, Locked Bag 5123, Parramatta, New South Wales 2124, Australia
| | - R. Cheewangkoon
- Department of Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, 26071 Logroño, La Rioja, Spain
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - V. Guarnaccia
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| | - L. Lombard
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - J. Luangsa-ard
- Microbe Interaction and Ecology Laboratory, Biodiversity and Biotechnological Resource Research Unit (BBR), BIOTEC, NSTDA 113, Thailand Science Park Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - A. Moslemi
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne 3010, Melbourne, Victoria, Australia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - W. Quaedvlieg
- Naktuinbouw, Sotaweg 22, 2371 GD Roelofarendsveen, the Netherlands
| | | | - C.F.J. Spies
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| | - R. Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne 3010, Melbourne, Victoria, Australia
| | - A.M. Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - A.R. Wood
- ARC – Plant Protection Research Institute, Private Bag X5017, Stellenbosch 7599, South Africa
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
41
|
Lin S, Taylor NJ, Peduto Hand F. Identification and Characterization of Fungal Pathogens Causing Fruit Rot of Deciduous Holly. PLANT DISEASE 2018; 102:2430-2445. [PMID: 30253114 DOI: 10.1094/pdis-02-18-0372-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cut branches of deciduous holly (Ilex spp. L.) harboring colorful berries are traditionally used as ornaments in holiday decorations. Since 2012, a fruit rot of unspecified cause has resulted in significant yield reduction and economic losses across Midwestern and Eastern U.S. nurseries. In this study, symptomatic fruit samples collected from nine different locations over five years were analyzed, and several fungal species were isolated. A combination of morphological characterization, multilocus phylogenetic analyses, and pathogenicity assays revealed that Alternaria alternata and Diaporthe ilicicola sp. nov. were the primary pathogens associated with symptomatic fruit. Other fungi including A. arborescens, Colletotrichum fioriniae, C. nymphaeae, Epicoccum nigrum, and species in the D. eres species complex appeared to be minor pathogens in this disease complex. In detached fruit pathogenicity assays testing the role of wounding and inoculum concentration on disease development, disease incidence and severity increased when fruit was wounded and inoculated with a higher inoculum concentration. These findings indicate that management strategies that can protect fruit from injury or reduce inoculum may lower disease levels in the field. This research established the basis for further studies on this emerging disease and the design of research-based management strategies. To our knowledge, it also represents the first report of species of Alternaria, Colletotrichum, Diaporthe, and Epicoccum causing fruit rot of deciduous holly.
Collapse
Affiliation(s)
- Shan Lin
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210
| | - Nancy J Taylor
- C. Wayne Ellett Plant and Pest Diagnostic Clinic, The Ohio State University, Reynoldsburg, OH 43068; and
| | | |
Collapse
|
42
|
Yang Q, Fan XL, Guarnaccia V, Tian CM. High diversity of Diaporthe species associated with dieback diseases in China, with twelve new species described. MycoKeys 2018; 39:97-149. [PMID: 30271260 PMCID: PMC6160862 DOI: 10.3897/mycokeys.39.26914] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022] Open
Abstract
Diaporthe species have often been reported as important plant pathogens, saprobes and endophytes on a wide range of plant hosts. Although several Diaporthe species have been recorded in China, little is known about species able to infect forest trees. Therefore, extensive surveys were recently conducted in Beijing, Heilongjiang, Jiangsu, Jiangxi, Shaanxi and Zhejiang Provinces. The current results emphasised on 15 species from 42 representative isolates involving 16 host genera using comparisons of DNA sequence data for the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions, as well as their morphological features. Three known species, D.biguttulata, D.eres and D.unshiuensis, were identified. In addition, twelve novel taxa were collected and are described as D.acerigena, D.alangii, D.betulina, D.caryae, D.cercidis, D.chensiensis, D.cinnamomi, D.conica, D.fraxinicola, D.kadsurae, D.padina and D.ukurunduensis. The current study improves the understanding of species causing diebacks on ecological and economic forest trees and provides useful information for the effective disease management of these hosts in China.
Collapse
Affiliation(s)
- Qin Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, P.R. China, V. GuarnacciaBeijing Forestry UniversityBeijingChina
| | - Xin-Lei Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, P.R. China, V. GuarnacciaBeijing Forestry UniversityBeijingChina
| | - Vladimiro Guarnaccia
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The NetherlandsWesterdijk Fungal Biodiversity InstituteUtrechtNetherlands
- Department of Plant Pathology, University of Stellenbosch, Matieland 7602, South AfricaUniversity of StellenboschMatielandSouth Africa
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, P.R. China, V. GuarnacciaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
43
|
Meng L, Wang Y, Wei WH, Zhang H. Population genetic structure of Diaphorina citri Kuwayama (Hemiptera: Liviidae): host-driven genetic differentiation in China. Sci Rep 2018; 8:1473. [PMID: 29367741 PMCID: PMC5784137 DOI: 10.1038/s41598-018-19533-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/04/2018] [Indexed: 11/09/2022] Open
Abstract
The Asian citrus psyllid Diaphorina citri Kuwayama is a major pest in citrus production, transmitting Candidatus Liberibacter asiaticus. It has spread widely across eastern and southern China. Unfortunately, little is known about the genetic diversity and population structure of D. citri, making pest control difficult. In this study, nine specifically developed SSR markers and three known mitochondrial DNA were used for population genetics study of D. citri using 225 samples collected from all 7 distribution regions in China. Based on the SSR data, D. citri was found highly diverse with a mean observed heterozygosity of 0.50, and three subgroups were structured by host plant: (i) Shatangju, NF mandarin and Ponkan; (ii) Murraya paniculata and Lemon; (iii) Citrus unshiu, Bingtangcheng, Summer orange and Navel. No significant genetic differences were found with mtDNA data. We suggested the host-associated divergence is likely to have occurred very recently. A unimodal distribution of paired differences, the negative and significant Tajima’s D and Fu’s FS parameters among mtDNA suggested a recent demographic expansion. The extensive citrus cultivation and increased suitable living habitat was recommended as a key for this expansion event.
Collapse
Affiliation(s)
- Lixue Meng
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Yongmo Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Wen-Hua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China.
| |
Collapse
|
44
|
Guarnaccia V, Crous PW. Emerging citrus diseases in Europe caused by species of Diaporthe. IMA Fungus 2017; 8:317-334. [PMID: 29242778 PMCID: PMC5729715 DOI: 10.5598/imafungus.2017.08.02.07] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/23/2017] [Indexed: 10/25/2022] Open
Abstract
Species of Diaporthe are considered important plant pathogens, saprobes, and endophytes on a wide range of plant hosts. Several species are well-known on citrus, either as agents of pre- or post-harvest infections, such as dieback, melanose and stem-end rot on fruit. In this study we explored the occurrence, diversity and pathogenicity of Diaporthe species associated with Citrus and allied genera in European orchards, nurseries, and gardens. Surveys were carried out during 2015 and 2016 in Greece, Italy, Malta, Portugal, and Spain. A total of 79 Diaporthe strains were isolated from symptomatic twigs, branches and trunks. A multi-locus phylogeny was established based on five genomic loci (ITS, tef1, cal, his3 and tub2), and the morphological characters of the isolates determined. Preliminary pathogenicity tests were performed on lemon, lime, and orange plants with representative isolates. The most commonly isolated species were D. foeniculina and D. baccae, while only four isolates of D. novem were collected. Two new Diaporthe species, described here as D. limonicola and D. melitensis spp. nov. were found associated with a new devastating dieback disease of lemon plants. Furthermore, one cluster of sterile Diaporthe isolates was renamed as D. infertilis. Pathogenicity tests revealed most of the Citrus species as susceptible to D. baccae, D. foeniculina, and D. novem. Moreover, D. limonicola and D. melitensis caused serious cankers affecting all the Citrus species tested. This study is the first report of D. baccae and D. novem on citrus in Europe, and the first detection of a new Diaporthe canker disease of citrus in Europe. However, no isolates of D. citri were found. The study improves our understanding of the species associated with several disease symptoms on citrus plants, and provides useful information for effective disease management.
Collapse
Affiliation(s)
- Vladimiro Guarnaccia
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Pedro W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Microbiology & Plant Pathology, Forestry & Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
45
|
|
46
|
Santos L, Alves A, Alves R. Evaluating multi-locus phylogenies for species boundaries determination in the genus Diaporthe. PeerJ 2017; 5:e3120. [PMID: 28367371 PMCID: PMC5372842 DOI: 10.7717/peerj.3120] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Species identification is essential for controlling disease, understanding epidemiology, and to guide the implementation of phytosanitary measures against fungi from the genus Diaporthe. Accurate Diaporthe species separation requires using multi-loci phylogenies. However, defining the optimal set of loci that can be used for species identification is still an open problem. METHODS Here we addressed that problem by identifying five loci that have been sequenced in 142 Diaporthe isolates representing 96 species: TEF1, TUB, CAL, HIS and ITS. We then used every possible combination of those loci to build, analyse, and compare phylogenetic trees. RESULTS As expected, species separation is better when all five loci are simultaneously used to build the phylogeny of the isolates. However, removing the ITS locus has little effect on reconstructed phylogenies, identifying the TEF1-TUB-CAL-HIS 4-loci tree as almost equivalent to the 5-loci tree. We further identify the best 3-loci, 2-loci, and 1-locus trees that should be used for species separation in the genus. DISCUSSION Our results question the current use of the ITS locus for DNA barcoding in the genus Diaporthe and suggest that TEF1 might be a better choice if one locus barcoding needs to be done.
Collapse
Affiliation(s)
- Liliana Santos
- Departamento de Biologia, CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Artur Alves
- Departamento de Biologia, CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Rui Alves
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida and IRBLleida, Lleida, Spain
| |
Collapse
|
47
|
Cui H, Yu J, Chen S, Ding M, Huang X, Yuan J, She Z. Alkaloids from the mangrove endophytic fungus Diaporthe phaseolorum SKS019. Bioorg Med Chem Lett 2017; 27:803-807. [DOI: 10.1016/j.bmcl.2017.01.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
|
48
|
Affiliation(s)
- Yahui Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Shijingshan Rd, Shijingshan, Beijing 100049, P.R. China
| | - Fang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
49
|
The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. FUNGAL DIVERS 2015. [DOI: 10.1007/s13225-015-0351-8] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Diaporthe rostrata, a novel ascomycete from Juglans mandshurica associated with walnut dieback. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1104-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|